frame_x86.cpp 19.2 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_frame_x86.cpp.incl"

#ifdef ASSERT
void RegisterMap::check_location_valid() {
}
#endif


// Profiling/safepoint support

bool frame::safe_for_sender(JavaThread *thread) {
  address   sp = (address)_sp;
  address   fp = (address)_fp;
  address   unextended_sp = (address)_unextended_sp;
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
  // sp must be within the stack
  bool sp_safe = (sp <= thread->stack_base()) &&
                 (sp >= thread->stack_base() - thread->stack_size());

  if (!sp_safe) {
    return false;
  }

  // unextended sp must be within the stack and above or equal sp
  bool unextended_sp_safe = (unextended_sp <= thread->stack_base()) &&
                            (unextended_sp >= sp);

  if (!unextended_sp_safe) {
    return false;
  }

  // an fp must be within the stack and above (but not equal) sp
  bool fp_safe = (fp <= thread->stack_base()) && (fp > sp);

  // We know sp/unextended_sp are safe only fp is questionable here

  // If the current frame is known to the code cache then we can attempt to
  // to construct the sender and do some validation of it. This goes a long way
  // toward eliminating issues when we get in frame construction code

  if (_cb != NULL ) {

    // First check if frame is complete and tester is reliable
D
duke 已提交
68 69 70
    // Unfortunately we can only check frame complete for runtime stubs and nmethod
    // other generic buffer blobs are more problematic so we just assume they are
    // ok. adapter blobs never have a frame complete and are never ok.
71 72

    if (!_cb->is_frame_complete_at(_pc)) {
D
duke 已提交
73 74 75 76
      if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
        return false;
      }
    }
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    // Entry frame checks
    if (is_entry_frame()) {
      // an entry frame must have a valid fp.

      if (!fp_safe) return false;

      // Validate the JavaCallWrapper an entry frame must have

      address jcw = (address)entry_frame_call_wrapper();

      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > fp);

      return jcw_safe;

    }

    intptr_t* sender_sp = NULL;
    address   sender_pc = NULL;

    if (is_interpreted_frame()) {
      // fp must be safe
      if (!fp_safe) {
        return false;
      }

      sender_pc = (address) this->fp()[return_addr_offset];
      sender_sp = (intptr_t*) addr_at(sender_sp_offset);

    } else {
      // must be some sort of compiled/runtime frame
      // fp does not have to be safe (although it could be check for c1?)

      sender_sp = _unextended_sp + _cb->frame_size();
      // On Intel the return_address is always the word on the stack
      sender_pc = (address) *(sender_sp-1);
    }

    // We must always be able to find a recognizable pc
    CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
    if (sender_pc == NULL ||  sender_blob == NULL) {
      return false;
    }


    // If the potential sender is the interpreter then we can do some more checking
    if (Interpreter::contains(sender_pc)) {

      // ebp is always saved in a recognizable place in any code we generate. However
      // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
      // is really a frame pointer.

      intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
      bool saved_fp_safe = ((address)saved_fp <= thread->stack_base()) && (saved_fp > sender_sp);

      if (!saved_fp_safe) {
        return false;
      }

      // construct the potential sender

      frame sender(sender_sp, saved_fp, sender_pc);

      return sender.is_interpreted_frame_valid(thread);

    }

    // Could just be some random pointer within the codeBlob

    if (!sender_blob->instructions_contains(sender_pc)) return false;

    // We should never be able to see an adapter if the current frame is something from code cache

    if ( sender_blob->is_adapter_blob()) {
      return false;
    }

    // Could be the call_stub

    if (StubRoutines::returns_to_call_stub(sender_pc)) {
      intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
      bool saved_fp_safe = ((address)saved_fp <= thread->stack_base()) && (saved_fp > sender_sp);

      if (!saved_fp_safe) {
        return false;
      }

      // construct the potential sender

      frame sender(sender_sp, saved_fp, sender_pc);

      // Validate the JavaCallWrapper an entry frame must have
      address jcw = (address)sender.entry_frame_call_wrapper();

      bool jcw_safe = (jcw <= thread->stack_base()) && ( jcw > (address)sender.fp());

      return jcw_safe;
    }

    // If the frame size is 0 something is bad because every nmethod has a non-zero frame size
    // because the return address counts against the callee's frame.

    if (sender_blob->frame_size() == 0) {
      assert(!sender_blob->is_nmethod(), "should count return address at least");
      return false;
    }

    // We should never be able to see anything here except an nmethod. If something in the
    // code cache (current frame) is called by an entity within the code cache that entity
    // should not be anything but the call stub (already covered), the interpreter (already covered)
    // or an nmethod.

    assert(sender_blob->is_nmethod(), "Impossible call chain");

    // Could put some more validation for the potential non-interpreted sender
    // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...

    // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb

    // We've validated the potential sender that would be created
D
duke 已提交
196 197
    return true;
  }
198 199 200 201 202 203

  // Must be native-compiled frame. Since sender will try and use fp to find
  // linkages it must be safe

  if (!fp_safe) {
    return false;
D
duke 已提交
204
  }
205 206 207 208 209 210 211 212 213 214

  // Will the pc we fetch be non-zero (which we'll find at the oldest frame)

  if ( (address) this->fp()[return_addr_offset] == NULL) return false;


  // could try and do some more potential verification of native frame if we could think of some...

  return true;

D
duke 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
}


void frame::patch_pc(Thread* thread, address pc) {
  if (TracePcPatching) {
    tty->print_cr("patch_pc at address  0x%x [0x%x -> 0x%x] ", &((address *)sp())[-1], ((address *)sp())[-1], pc);
  }
  ((address *)sp())[-1] = pc;
  _cb = CodeCache::find_blob(pc);
  if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_deopt_pc(_pc)) {
    address orig = (((nmethod*)_cb)->get_original_pc(this));
    assert(orig == _pc, "expected original to be stored before patching");
    _deopt_state = is_deoptimized;
    // leave _pc as is
  } else {
    _deopt_state = not_deoptimized;
    _pc = pc;
  }
}

bool frame::is_interpreted_frame() const  {
  return Interpreter::contains(pc());
}

int frame::frame_size() const {
  RegisterMap map(JavaThread::current(), false);
  frame sender = this->sender(&map);
  return sender.sp() - sp();
}

intptr_t* frame::entry_frame_argument_at(int offset) const {
  // convert offset to index to deal with tsi
  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
  // Entry frame's arguments are always in relation to unextended_sp()
  return &unextended_sp()[index];
}

// sender_sp
#ifdef CC_INTERP
intptr_t* frame::interpreter_frame_sender_sp() const {
  assert(is_interpreted_frame(), "interpreted frame expected");
  // QQQ why does this specialize method exist if frame::sender_sp() does same thing?
  // seems odd and if we always know interpreted vs. non then sender_sp() is really
  // doing too much work.
  return get_interpreterState()->sender_sp();
}

// monitor elements

BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
  return get_interpreterState()->monitor_base();
}

BasicObjectLock* frame::interpreter_frame_monitor_end() const {
  return (BasicObjectLock*) get_interpreterState()->stack_base();
}

#else // CC_INTERP

intptr_t* frame::interpreter_frame_sender_sp() const {
  assert(is_interpreted_frame(), "interpreted frame expected");
  return (intptr_t*) at(interpreter_frame_sender_sp_offset);
}

void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
  assert(is_interpreted_frame(), "interpreted frame expected");
  ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
}


// monitor elements

BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
  return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
}

BasicObjectLock* frame::interpreter_frame_monitor_end() const {
  BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
  // make sure the pointer points inside the frame
  assert((intptr_t) fp() >  (intptr_t) result, "result must <  than frame pointer");
  assert((intptr_t) sp() <= (intptr_t) result, "result must >= than stack pointer");
  return result;
}

void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
  *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
}

// Used by template based interpreter deoptimization
void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
    *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
}
#endif // CC_INTERP

frame frame::sender_for_entry_frame(RegisterMap* map) const {
  assert(map != NULL, "map must be set");
  // Java frame called from C; skip all C frames and return top C
  // frame of that chunk as the sender
  JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
  assert(!entry_frame_is_first(), "next Java fp must be non zero");
  assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
  map->clear();
  assert(map->include_argument_oops(), "should be set by clear");
  if (jfa->last_Java_pc() != NULL ) {
    frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
    return fr;
  }
  frame fr(jfa->last_Java_sp(), jfa->last_Java_fp());
  return fr;
}

frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
  // sp is the raw sp from the sender after adapter or interpreter extension
  intptr_t* sp = (intptr_t*) addr_at(sender_sp_offset);

  // This is the sp before any possible extension (adapter/locals).
  intptr_t* unextended_sp = interpreter_frame_sender_sp();

  // The interpreter and compiler(s) always save EBP/RBP in a known
  // location on entry. We must record where that location is
  // so this if EBP/RBP was live on callout from c2 we can find
  // the saved copy no matter what it called.

  // Since the interpreter always saves EBP/RBP if we record where it is then
  // we don't have to always save EBP/RBP on entry and exit to c2 compiled
  // code, on entry will be enough.
#ifdef COMPILER2
  if (map->update_map()) {
    map->set_location(rbp->as_VMReg(), (address) addr_at(link_offset));
#ifdef AMD64
    // this is weird "H" ought to be at a higher address however the
    // oopMaps seems to have the "H" regs at the same address and the
    // vanilla register.
    // XXXX make this go away
    if (true) {
      map->set_location(rbp->as_VMReg()->next(), (address)addr_at(link_offset));
    }
#endif // AMD64
  }
#endif /* COMPILER2 */
  return frame(sp, unextended_sp, link(), sender_pc());
}


//------------------------------sender_for_compiled_frame-----------------------
frame frame::sender_for_compiled_frame(RegisterMap* map) const {
  assert(map != NULL, "map must be set");
  const bool c1_compiled = _cb->is_compiled_by_c1();

  // frame owned by optimizing compiler
  intptr_t* sender_sp = NULL;

  assert(_cb->frame_size() >= 0, "must have non-zero frame size");
  sender_sp = unextended_sp() + _cb->frame_size();

  // On Intel the return_address is always the word on the stack
  address sender_pc = (address) *(sender_sp-1);

  // This is the saved value of ebp which may or may not really be an fp.
  // it is only an fp if the sender is an interpreter frame (or c1?)

  intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);

  if (map->update_map()) {
    // Tell GC to use argument oopmaps for some runtime stubs that need it.
    // For C1, the runtime stub might not have oop maps, so set this flag
    // outside of update_register_map.
    map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
    if (_cb->oop_maps() != NULL) {
      OopMapSet::update_register_map(this, map);
    }
    // Since the prolog does the save and restore of epb there is no oopmap
    // for it so we must fill in its location as if there was an oopmap entry
    // since if our caller was compiled code there could be live jvm state in it.
    map->set_location(rbp->as_VMReg(), (address) (sender_sp - frame::sender_sp_offset));
#ifdef AMD64
    // this is weird "H" ought to be at a higher address however the
    // oopMaps seems to have the "H" regs at the same address and the
    // vanilla register.
    // XXXX make this go away
    if (true) {
      map->set_location(rbp->as_VMReg()->next(), (address) (sender_sp - frame::sender_sp_offset));
    }
#endif // AMD64
  }

  assert(sender_sp != sp(), "must have changed");
  return frame(sender_sp, saved_fp, sender_pc);
}

frame frame::sender(RegisterMap* map) const {
  // Default is we done have to follow them. The sender_for_xxx will
  // update it accordingly
  map->set_include_argument_oops(false);

  if (is_entry_frame())       return sender_for_entry_frame(map);
  if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
  assert(_cb == CodeCache::find_blob(pc()),"Must be the same");

  if (_cb != NULL) {
    return sender_for_compiled_frame(map);
  }
  // Must be native-compiled frame, i.e. the marshaling code for native
  // methods that exists in the core system.
  return frame(sender_sp(), link(), sender_pc());
}


bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
  assert(is_interpreted_frame(), "must be interpreter frame");
  methodOop method = interpreter_frame_method();
  // When unpacking an optimized frame the frame pointer is
  // adjusted with:
  int diff = (method->max_locals() - method->size_of_parameters()) *
             Interpreter::stackElementWords();
  return _fp == (fp - diff);
}

void frame::pd_gc_epilog() {
  // nothing done here now
}

437
bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
D
duke 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
// QQQ
#ifdef CC_INTERP
#else
  assert(is_interpreted_frame(), "Not an interpreted frame");
  // These are reasonable sanity checks
  if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
    return false;
  }
  if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
    return false;
  }
  if (fp() + interpreter_frame_initial_sp_offset < sp()) {
    return false;
  }
  // These are hacks to keep us out of trouble.
  // The problem with these is that they mask other problems
  if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
    return false;
  }
457 458 459 460 461 462 463 464 465 466 467 468 469

  // do some validation of frame elements

  // first the method

  methodOop m = *interpreter_frame_method_addr();

  // validate the method we'd find in this potential sender
  if (!Universe::heap()->is_valid_method(m)) return false;

  // stack frames shouldn't be much larger than max_stack elements

  if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize()) {
D
duke 已提交
470 471
    return false;
  }
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

  // validate bci/bcx

  intptr_t  bcx    = interpreter_frame_bcx();
  if (m->validate_bci_from_bcx(bcx) < 0) {
    return false;
  }

  // validate constantPoolCacheOop

  constantPoolCacheOop cp = *interpreter_frame_cache_addr();

  if (cp == NULL ||
      !Space::is_aligned(cp) ||
      !Universe::heap()->is_permanent((void*)cp)) return false;

  // validate locals

  address locals =  (address) *interpreter_frame_locals_addr();

  if (locals > thread->stack_base() || locals < (address) fp()) return false;

  // We'd have to be pretty unlucky to be mislead at this point

D
duke 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
#endif // CC_INTERP
  return true;
}

BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
#ifdef CC_INTERP
  // Needed for JVMTI. The result should always be in the interpreterState object
  assert(false, "NYI");
  interpreterState istate = get_interpreterState();
#endif // CC_INTERP
  assert(is_interpreted_frame(), "interpreted frame expected");
  methodOop method = interpreter_frame_method();
  BasicType type = method->result_type();

  intptr_t* tos_addr;
  if (method->is_native()) {
    // Prior to calling into the runtime to report the method_exit the possible
    // return value is pushed to the native stack. If the result is a jfloat/jdouble
    // then ST0 is saved before EAX/EDX. See the note in generate_native_result
    tos_addr = (intptr_t*)sp();
    if (type == T_FLOAT || type == T_DOUBLE) {
    // QQQ seems like this code is equivalent on the two platforms
#ifdef AMD64
      // This is times two because we do a push(ltos) after pushing XMM0
      // and that takes two interpreter stack slots.
      tos_addr += 2 * Interpreter::stackElementWords();
#else
      tos_addr += 2;
#endif // AMD64
    }
  } else {
    tos_addr = (intptr_t*)interpreter_frame_tos_address();
  }

  switch (type) {
    case T_OBJECT  :
    case T_ARRAY   : {
      oop obj;
      if (method->is_native()) {
#ifdef CC_INTERP
        obj = istate->_oop_temp;
#else
        obj = (oop) at(interpreter_frame_oop_temp_offset);
#endif // CC_INTERP
      } else {
        oop* obj_p = (oop*)tos_addr;
        obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
      }
      assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
      *oop_result = obj;
      break;
    }
    case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
    case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
    case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
    case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
    case T_INT     : value_result->i = *(jint*)tos_addr; break;
    case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
    case T_FLOAT   : {
#ifdef AMD64
        value_result->f = *(jfloat*)tos_addr;
#else
      if (method->is_native()) {
        jdouble d = *(jdouble*)tos_addr;  // Result was in ST0 so need to convert to jfloat
        value_result->f = (jfloat)d;
      } else {
        value_result->f = *(jfloat*)tos_addr;
      }
#endif // AMD64
      break;
    }
    case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
    case T_VOID    : /* Nothing to do */ break;
    default        : ShouldNotReachHere();
  }

  return type;
}


intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
  int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
  return &interpreter_frame_tos_address()[index];
}