satbQueue.cpp 14.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25
#include "precompiled.hpp"
26
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
27 28 29
#include "gc_implementation/g1/satbQueue.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/sharedHeap.hpp"
30
#include "oops/oop.inline.hpp"
31 32
#include "runtime/mutexLocker.hpp"
#include "runtime/thread.hpp"
33
#include "runtime/vmThread.hpp"
34

35 36 37 38 39 40 41 42
void ObjPtrQueue::flush() {
  // The buffer might contain refs into the CSet. We have to filter it
  // first before we flush it, otherwise we might end up with an
  // enqueued buffer with refs into the CSet which breaks our invariants.
  filter();
  PtrQueue::flush();
}

43 44 45 46 47 48 49 50 51 52 53 54 55
// This method removes entries from an SATB buffer that will not be
// useful to the concurrent marking threads. An entry is removed if it
// satisfies one of the following conditions:
//
// * it points to an object outside the G1 heap (G1's concurrent
//     marking only visits objects inside the G1 heap),
// * it points to an object that has been allocated since marking
//     started (according to SATB those objects do not need to be
//     visited during marking), or
// * it points to an object that has already been marked (no need to
//     process it again).
//
// The rest of the entries will be retained and are compacted towards
56 57 58 59
// the top of the buffer. Note that, because we do not allow old
// regions in the CSet during marking, all objects on the CSet regions
// are young (eden or survivors) and therefore implicitly live. So any
// references into the CSet will be removed during filtering.
60

61
void ObjPtrQueue::filter() {
62 63 64 65
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  void** buf = _buf;
  size_t sz = _sz;

66 67 68 69 70
  if (buf == NULL) {
    // nothing to do
    return;
  }

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  // Used for sanity checking at the end of the loop.
  debug_only(size_t entries = 0; size_t retained = 0;)

  size_t i = sz;
  size_t new_index = sz;

  while (i > _index) {
    assert(i > 0, "we should have at least one more entry to process");
    i -= oopSize;
    debug_only(entries += 1;)
    oop* p = (oop*) &buf[byte_index_to_index((int) i)];
    oop obj = *p;
    // NULL the entry so that unused parts of the buffer contain NULLs
    // at the end. If we are going to retain it we will copy it to its
    // final place. If we have retained all entries we have visited so
    // far, we'll just end up copying it to the same place.
    *p = NULL;

    bool retain = g1h->is_obj_ill(obj);
    if (retain) {
      assert(new_index > 0, "we should not have already filled up the buffer");
      new_index -= oopSize;
      assert(new_index >= i,
             "new_index should never be below i, as we alwaysr compact 'up'");
      oop* new_p = (oop*) &buf[byte_index_to_index((int) new_index)];
      assert(new_p >= p, "the destination location should never be below "
             "the source as we always compact 'up'");
      assert(*new_p == NULL,
             "we should have already cleared the destination location");
      *new_p = obj;
      debug_only(retained += 1;)
    }
  }
104 105

#ifdef ASSERT
106 107 108 109 110 111
  size_t entries_calc = (sz - _index) / oopSize;
  assert(entries == entries_calc, "the number of entries we counted "
         "should match the number of entries we calculated");
  size_t retained_calc = (sz - new_index) / oopSize;
  assert(retained == retained_calc, "the number of retained entries we counted "
         "should match the number of retained entries we calculated");
112 113
#endif // ASSERT

114
  _index = new_index;
115 116 117 118 119 120 121 122 123 124 125
}

// This method will first apply the above filtering to the buffer. If
// post-filtering a large enough chunk of the buffer has been cleared
// we can re-use the buffer (instead of enqueueing it) and we can just
// allow the mutator to carry on executing using the same buffer
// instead of replacing it.

bool ObjPtrQueue::should_enqueue_buffer() {
  assert(_lock == NULL || _lock->owned_by_self(),
         "we should have taken the lock before calling this");
126

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  // Even if G1SATBBufferEnqueueingThresholdPercent == 0 we have to
  // filter the buffer given that this will remove any references into
  // the CSet as we currently assume that no such refs will appear in
  // enqueued buffers.

  // This method should only be called if there is a non-NULL buffer
  // that is full.
  assert(_index == 0, "pre-condition");
  assert(_buf != NULL, "pre-condition");

  filter();

  size_t sz = _sz;
  size_t all_entries = sz / oopSize;
  size_t retained_entries = (sz - _index) / oopSize;
  size_t perc = retained_entries * 100 / all_entries;
  bool should_enqueue = perc > (size_t) G1SATBBufferEnqueueingThresholdPercent;
144 145 146
  return should_enqueue;
}

147
void ObjPtrQueue::apply_closure(ObjectClosure* cl) {
148 149 150 151 152 153
  if (_buf != NULL) {
    apply_closure_to_buffer(cl, _buf, _index, _sz);
  }
}

void ObjPtrQueue::apply_closure_and_empty(ObjectClosure* cl) {
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  if (_buf != NULL) {
    apply_closure_to_buffer(cl, _buf, _index, _sz);
    _index = _sz;
  }
}

void ObjPtrQueue::apply_closure_to_buffer(ObjectClosure* cl,
                                          void** buf, size_t index, size_t sz) {
  if (cl == NULL) return;
  for (size_t i = index; i < sz; i += oopSize) {
    oop obj = (oop)buf[byte_index_to_index((int)i)];
    // There can be NULL entries because of destructors.
    if (obj != NULL) {
      cl->do_object(obj);
    }
  }
}
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
#ifndef PRODUCT
// Helpful for debugging

void ObjPtrQueue::print(const char* name) {
  print(name, _buf, _index, _sz);
}

void ObjPtrQueue::print(const char* name,
                        void** buf, size_t index, size_t sz) {
  gclog_or_tty->print_cr("  SATB BUFFER [%s] buf: "PTR_FORMAT" "
                         "index: "SIZE_FORMAT" sz: "SIZE_FORMAT,
                         name, buf, index, sz);
}
#endif // PRODUCT

187 188 189 190 191 192 193 194 195 196 197
#ifdef ASSERT
void ObjPtrQueue::verify_oops_in_buffer() {
  if (_buf == NULL) return;
  for (size_t i = _index; i < _sz; i += oopSize) {
    oop obj = (oop)_buf[byte_index_to_index((int)i)];
    assert(obj != NULL && obj->is_oop(true /* ignore mark word */),
           "Not an oop");
  }
}
#endif

198 199 200 201 202
#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

SATBMarkQueueSet::SATBMarkQueueSet() :
203 204
  PtrQueueSet(), _closure(NULL), _par_closures(NULL),
  _shared_satb_queue(this, true /*perm*/) { }
205 206

void SATBMarkQueueSet::initialize(Monitor* cbl_mon, Mutex* fl_lock,
207
                                  int process_completed_threshold,
208
                                  Mutex* lock) {
209
  PtrQueueSet::initialize(cbl_mon, fl_lock, process_completed_threshold, -1);
210 211
  _shared_satb_queue.set_lock(lock);
  if (ParallelGCThreads > 0) {
Z
zgu 已提交
212
    _par_closures = NEW_C_HEAP_ARRAY(ObjectClosure*, ParallelGCThreads, mtGC);
213 214 215 216
  }
}

void SATBMarkQueueSet::handle_zero_index_for_thread(JavaThread* t) {
217
  DEBUG_ONLY(t->satb_mark_queue().verify_oops_in_buffer();)
218 219 220
  t->satb_mark_queue().handle_zero_index();
}

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#ifdef ASSERT
void SATBMarkQueueSet::dump_active_values(JavaThread* first,
                                          bool expected_active) {
  gclog_or_tty->print_cr("SATB queue active values for Java Threads");
  gclog_or_tty->print_cr(" SATB queue set: active is %s",
                         (is_active()) ? "TRUE" : "FALSE");
  gclog_or_tty->print_cr(" expected_active is %s",
                         (expected_active) ? "TRUE" : "FALSE");
  for (JavaThread* t = first; t; t = t->next()) {
    bool active = t->satb_mark_queue().is_active();
    gclog_or_tty->print_cr("  thread %s, active is %s",
                           t->name(), (active) ? "TRUE" : "FALSE");
  }
}
#endif // ASSERT

void SATBMarkQueueSet::set_active_all_threads(bool b,
                                              bool expected_active) {
  assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
  JavaThread* first = Threads::first();

#ifdef ASSERT
  if (_all_active != expected_active) {
    dump_active_values(first, expected_active);

    // I leave this here as a guarantee, instead of an assert, so
    // that it will still be compiled in if we choose to uncomment
    // the #ifdef ASSERT in a product build. The whole block is
    // within an #ifdef ASSERT so the guarantee will not be compiled
    // in a product build anyway.
    guarantee(false,
              "SATB queue set has an unexpected active value");
  }
#endif // ASSERT
255
  _all_active = b;
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

  for (JavaThread* t = first; t; t = t->next()) {
#ifdef ASSERT
    bool active = t->satb_mark_queue().is_active();
    if (active != expected_active) {
      dump_active_values(first, expected_active);

      // I leave this here as a guarantee, instead of an assert, so
      // that it will still be compiled in if we choose to uncomment
      // the #ifdef ASSERT in a product build. The whole block is
      // within an #ifdef ASSERT so the guarantee will not be compiled
      // in a product build anyway.
      guarantee(false,
                "thread has an unexpected active value in its SATB queue");
    }
#endif // ASSERT
272 273 274 275
    t->satb_mark_queue().set_active(b);
  }
}

276 277 278 279 280 281 282
void SATBMarkQueueSet::filter_thread_buffers() {
  for(JavaThread* t = Threads::first(); t; t = t->next()) {
    t->satb_mark_queue().filter();
  }
  shared_satb_queue()->filter();
}

283 284 285 286 287 288 289 290 291 292 293
void SATBMarkQueueSet::set_closure(ObjectClosure* closure) {
  _closure = closure;
}

void SATBMarkQueueSet::set_par_closure(int i, ObjectClosure* par_closure) {
  assert(ParallelGCThreads > 0 && _par_closures != NULL, "Precondition");
  _par_closures[i] = par_closure;
}

void SATBMarkQueueSet::iterate_closure_all_threads() {
  for(JavaThread* t = Threads::first(); t; t = t->next()) {
294
    t->satb_mark_queue().apply_closure_and_empty(_closure);
295
  }
296
  shared_satb_queue()->apply_closure_and_empty(_closure);
297 298 299 300 301 302 303 304
}

void SATBMarkQueueSet::par_iterate_closure_all_threads(int worker) {
  SharedHeap* sh = SharedHeap::heap();
  int parity = sh->strong_roots_parity();

  for(JavaThread* t = Threads::first(); t; t = t->next()) {
    if (t->claim_oops_do(true, parity)) {
305
      t->satb_mark_queue().apply_closure_and_empty(_par_closures[worker]);
306 307
    }
  }
308 309 310 311 312 313 314 315 316 317 318

  // We also need to claim the VMThread so that its parity is updated
  // otherwise the next call to Thread::possibly_parallel_oops_do inside
  // a StrongRootsScope might skip the VMThread because it has a stale
  // parity that matches the parity set by the StrongRootsScope
  //
  // Whichever worker succeeds in claiming the VMThread gets to do
  // the shared queue.

  VMThread* vmt = VMThread::vm_thread();
  if (vmt->claim_oops_do(true, parity)) {
319
    shared_satb_queue()->apply_closure_and_empty(_par_closures[worker]);
320 321 322 323 324
  }
}

bool SATBMarkQueueSet::apply_closure_to_completed_buffer_work(bool par,
                                                              int worker) {
325
  BufferNode* nd = NULL;
326 327 328 329
  {
    MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
    if (_completed_buffers_head != NULL) {
      nd = _completed_buffers_head;
330
      _completed_buffers_head = nd->next();
331 332 333 334 335 336 337
      if (_completed_buffers_head == NULL) _completed_buffers_tail = NULL;
      _n_completed_buffers--;
      if (_n_completed_buffers == 0) _process_completed = false;
    }
  }
  ObjectClosure* cl = (par ? _par_closures[worker] : _closure);
  if (nd != NULL) {
338 339 340
    void **buf = BufferNode::make_buffer_from_node(nd);
    ObjPtrQueue::apply_closure_to_buffer(cl, buf, 0, _sz);
    deallocate_buffer(buf);
341 342 343 344 345 346
    return true;
  } else {
    return false;
  }
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
void SATBMarkQueueSet::iterate_completed_buffers_read_only(ObjectClosure* cl) {
  assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
  assert(cl != NULL, "pre-condition");

  BufferNode* nd = _completed_buffers_head;
  while (nd != NULL) {
    void** buf = BufferNode::make_buffer_from_node(nd);
    ObjPtrQueue::apply_closure_to_buffer(cl, buf, 0, _sz);
    nd = nd->next();
  }
}

void SATBMarkQueueSet::iterate_thread_buffers_read_only(ObjectClosure* cl) {
  assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
  assert(cl != NULL, "pre-condition");

  for (JavaThread* t = Threads::first(); t; t = t->next()) {
    t->satb_mark_queue().apply_closure(cl);
  }
  shared_satb_queue()->apply_closure(cl);
}

#ifndef PRODUCT
// Helpful for debugging

#define SATB_PRINTER_BUFFER_SIZE 256

void SATBMarkQueueSet::print_all(const char* msg) {
  char buffer[SATB_PRINTER_BUFFER_SIZE];
  assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");

  gclog_or_tty->cr();
  gclog_or_tty->print_cr("SATB BUFFERS [%s]", msg);

  BufferNode* nd = _completed_buffers_head;
  int i = 0;
  while (nd != NULL) {
    void** buf = BufferNode::make_buffer_from_node(nd);
    jio_snprintf(buffer, SATB_PRINTER_BUFFER_SIZE, "Enqueued: %d", i);
    ObjPtrQueue::print(buffer, buf, 0, _sz);
    nd = nd->next();
    i += 1;
  }

  for (JavaThread* t = Threads::first(); t; t = t->next()) {
    jio_snprintf(buffer, SATB_PRINTER_BUFFER_SIZE, "Thread: %s", t->name());
    t->satb_mark_queue().print(buffer);
  }

  shared_satb_queue()->print("Shared");

  gclog_or_tty->cr();
}
#endif // PRODUCT

402
void SATBMarkQueueSet::abandon_partial_marking() {
403
  BufferNode* buffers_to_delete = NULL;
404 405 406
  {
    MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
    while (_completed_buffers_head != NULL) {
407 408 409
      BufferNode* nd = _completed_buffers_head;
      _completed_buffers_head = nd->next();
      nd->set_next(buffers_to_delete);
410 411 412 413
      buffers_to_delete = nd;
    }
    _completed_buffers_tail = NULL;
    _n_completed_buffers = 0;
414
    DEBUG_ONLY(assert_completed_buffer_list_len_correct_locked());
415 416
  }
  while (buffers_to_delete != NULL) {
417 418 419
    BufferNode* nd = buffers_to_delete;
    buffers_to_delete = nd->next();
    deallocate_buffer(BufferNode::make_buffer_from_node(nd));
420 421 422 423 424 425
  }
  assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
  // So we can safely manipulate these queues.
  for (JavaThread* t = Threads::first(); t; t = t->next()) {
    t->satb_mark_queue().reset();
  }
426
 shared_satb_queue()->reset();
427
}