globalDefinitions.hpp 40.9 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27
#ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
#define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP

D
dcubed 已提交
28
#ifndef __STDC_FORMAT_MACROS
N
never 已提交
29
#define __STDC_FORMAT_MACROS
D
dcubed 已提交
30
#endif
N
never 已提交
31

32 33 34 35 36 37 38 39 40 41 42 43
#ifdef TARGET_COMPILER_gcc
# include "utilities/globalDefinitions_gcc.hpp"
#endif
#ifdef TARGET_COMPILER_visCPP
# include "utilities/globalDefinitions_visCPP.hpp"
#endif
#ifdef TARGET_COMPILER_sparcWorks
# include "utilities/globalDefinitions_sparcWorks.hpp"
#endif

#include "utilities/macros.hpp"

D
duke 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
// This file holds all globally used constants & types, class (forward)
// declarations and a few frequently used utility functions.

//----------------------------------------------------------------------------------------------------
// Constants

const int LogBytesPerShort   = 1;
const int LogBytesPerInt     = 2;
#ifdef _LP64
const int LogBytesPerWord    = 3;
#else
const int LogBytesPerWord    = 2;
#endif
const int LogBytesPerLong    = 3;

const int BytesPerShort      = 1 << LogBytesPerShort;
const int BytesPerInt        = 1 << LogBytesPerInt;
const int BytesPerWord       = 1 << LogBytesPerWord;
const int BytesPerLong       = 1 << LogBytesPerLong;

const int LogBitsPerByte     = 3;
const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;

const int BitsPerByte        = 1 << LogBitsPerByte;
const int BitsPerShort       = 1 << LogBitsPerShort;
const int BitsPerInt         = 1 << LogBitsPerInt;
const int BitsPerWord        = 1 << LogBitsPerWord;
const int BitsPerLong        = 1 << LogBitsPerLong;

const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;

const int WordsPerLong       = 2;       // Number of stack entries for longs

81 82
const int oopSize            = sizeof(char*); // Full-width oop
extern int heapOopSize;                       // Oop within a java object
D
duke 已提交
83 84 85 86 87
const int wordSize           = sizeof(char*);
const int longSize           = sizeof(jlong);
const int jintSize           = sizeof(jint);
const int size_tSize         = sizeof(size_t);

88
const int BytesPerOop        = BytesPerWord;  // Full-width oop
D
duke 已提交
89

90 91 92 93
extern int LogBytesPerHeapOop;                // Oop within a java object
extern int LogBitsPerHeapOop;
extern int BytesPerHeapOop;
extern int BitsPerHeapOop;
D
duke 已提交
94

95 96 97
// Oop encoding heap max
extern uint64_t OopEncodingHeapMax;

D
duke 已提交
98
const int BitsPerJavaInteger = 32;
99
const int BitsPerJavaLong    = 64;
D
duke 已提交
100 101
const int BitsPerSize_t      = size_tSize * BitsPerByte;

102 103 104
// Size of a char[] needed to represent a jint as a string in decimal.
const int jintAsStringSize = 12;

D
duke 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
// In fact this should be
// log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
// see os::set_memory_serialize_page()
#ifdef _LP64
const int SerializePageShiftCount = 4;
#else
const int SerializePageShiftCount = 3;
#endif

// An opaque struct of heap-word width, so that HeapWord* can be a generic
// pointer into the heap.  We require that object sizes be measured in
// units of heap words, so that that
//   HeapWord* hw;
//   hw += oop(hw)->foo();
// works, where foo is a method (like size or scavenge) that returns the
// object size.
class HeapWord {
  friend class VMStructs;
123
 private:
D
duke 已提交
124
  char* i;
125
#ifndef PRODUCT
126 127 128
 public:
  char* value() { return i; }
#endif
D
duke 已提交
129 130 131
};

// HeapWordSize must be 2^LogHeapWordSize.
132
const int HeapWordSize        = sizeof(HeapWord);
D
duke 已提交
133
#ifdef _LP64
134
const int LogHeapWordSize     = 3;
D
duke 已提交
135
#else
136
const int LogHeapWordSize     = 2;
D
duke 已提交
137
#endif
138 139
const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
D
duke 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

// The larger HeapWordSize for 64bit requires larger heaps
// for the same application running in 64bit.  See bug 4967770.
// The minimum alignment to a heap word size is done.  Other
// parts of the memory system may required additional alignment
// and are responsible for those alignments.
#ifdef _LP64
#define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
#else
#define ScaleForWordSize(x) (x)
#endif

// The minimum number of native machine words necessary to contain "byte_size"
// bytes.
inline size_t heap_word_size(size_t byte_size) {
  return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
}


const size_t K                  = 1024;
const size_t M                  = K*K;
const size_t G                  = M*K;
const size_t HWperKB            = K / sizeof(HeapWord);

164 165 166 167
const size_t LOG_K              = 10;
const size_t LOG_M              = 2 * LOG_K;
const size_t LOG_G              = 2 * LOG_M;

D
duke 已提交
168 169 170 171 172 173 174 175 176 177
const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint

// Constants for converting from a base unit to milli-base units.  For
// example from seconds to milliseconds and microseconds

const int MILLIUNITS    = 1000;         // milli units per base unit
const int MICROUNITS    = 1000000;      // micro units per base unit
const int NANOUNITS     = 1000000000;   // nano units per base unit

178 179 180
const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
const jint  NANOSECS_PER_MILLISEC = 1000000;

D
duke 已提交
181 182 183 184 185 186 187 188 189 190
inline const char* proper_unit_for_byte_size(size_t s) {
  if (s >= 10*M) {
    return "M";
  } else if (s >= 10*K) {
    return "K";
  } else {
    return "B";
  }
}

191 192
template <class T>
inline T byte_size_in_proper_unit(T s) {
D
duke 已提交
193
  if (s >= 10*M) {
194
    return (T)(s/M);
D
duke 已提交
195
  } else if (s >= 10*K) {
196
    return (T)(s/K);
D
duke 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
  } else {
    return s;
  }
}

//----------------------------------------------------------------------------------------------------
// VM type definitions

// intx and uintx are the 'extended' int and 'extended' unsigned int types;
// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.

typedef intptr_t  intx;
typedef uintptr_t uintx;

const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
const intx  max_intx  = (uintx)min_intx - 1;
const uintx max_uintx = (uintx)-1;

// Table of values:
//      sizeof intx         4               8
// min_intx             0x80000000      0x8000000000000000
// max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
// max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF

typedef unsigned int uint;   NEEDS_CLEANUP


//----------------------------------------------------------------------------------------------------
// Java type definitions

// All kinds of 'plain' byte addresses
typedef   signed char s_char;
typedef unsigned char u_char;
typedef u_char*       address;
typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
                                    // except for some implementations of a C++
                                    // linkage pointer to function. Should never
                                    // need one of those to be placed in this
                                    // type anyway.

//  Utility functions to "portably" (?) bit twiddle pointers
//  Where portable means keep ANSI C++ compilers quiet

inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }

//  Utility functions to "portably" make cast to/from function pointers.

inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
inline address_word  castable_address(address x)              { return address_word(x) ; }
inline address_word  castable_address(void* x)                { return address_word(x) ; }

// Pointer subtraction.
// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
// the range we might need to find differences from one end of the heap
// to the other.
// A typical use might be:
//     if (pointer_delta(end(), top()) >= size) {
//       // enough room for an object of size
//       ...
// and then additions like
//       ... top() + size ...
// are safe because we know that top() is at least size below end().
inline size_t pointer_delta(const void* left,
                            const void* right,
                            size_t element_size) {
  return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
}
// A version specialized for HeapWord*'s.
inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
  return pointer_delta(left, right, sizeof(HeapWord));
}

//
// ANSI C++ does not allow casting from one pointer type to a function pointer
// directly without at best a warning. This macro accomplishes it silently
// In every case that is present at this point the value be cast is a pointer
// to a C linkage function. In somecase the type used for the cast reflects
// that linkage and a picky compiler would not complain. In other cases because
// there is no convenient place to place a typedef with extern C linkage (i.e
// a platform dependent header file) it doesn't. At this point no compiler seems
// picky enough to catch these instances (which are few). It is possible that
// using templates could fix these for all cases. This use of templates is likely
// so far from the middle of the road that it is likely to be problematic in
// many C++ compilers.
//
#define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))

// Unsigned byte types for os and stream.hpp

// Unsigned one, two, four and eigth byte quantities used for describing
// the .class file format. See JVM book chapter 4.

typedef jubyte  u1;
typedef jushort u2;
typedef juint   u4;
typedef julong  u8;

const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong

301 302 303 304 305
typedef jbyte  s1;
typedef jshort s2;
typedef jint   s4;
typedef jlong  s8;

D
duke 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
//----------------------------------------------------------------------------------------------------
// JVM spec restrictions

const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)


//----------------------------------------------------------------------------------------------------
// HotSwap - for JVMTI   aka Class File Replacement and PopFrame
//
// Determines whether on-the-fly class replacement and frame popping are enabled.

#define HOTSWAP

//----------------------------------------------------------------------------------------------------
// Object alignment, in units of HeapWords.
//
// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
// reference fields can be naturally aligned.

325 326 327
extern int MinObjAlignment;
extern int MinObjAlignmentInBytes;
extern int MinObjAlignmentInBytesMask;
D
duke 已提交
328

329 330
extern int LogMinObjAlignment;
extern int LogMinObjAlignmentInBytes;
331

D
duke 已提交
332 333
// Machine dependent stuff

334 335 336 337 338 339 340 341 342
#ifdef TARGET_ARCH_x86
# include "globalDefinitions_x86.hpp"
#endif
#ifdef TARGET_ARCH_sparc
# include "globalDefinitions_sparc.hpp"
#endif
#ifdef TARGET_ARCH_zero
# include "globalDefinitions_zero.hpp"
#endif
343 344 345 346 347 348
#ifdef TARGET_ARCH_arm
# include "globalDefinitions_arm.hpp"
#endif
#ifdef TARGET_ARCH_ppc
# include "globalDefinitions_ppc.hpp"
#endif
349

D
duke 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

// The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
// Note: this value must be a power of 2

#define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)

// Signed variants of alignment helpers.  There are two versions of each, a macro
// for use in places like enum definitions that require compile-time constant
// expressions and a function for all other places so as to get type checking.

#define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))

inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
  return align_size_up_(size, alignment);
}

#define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))

inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
  return align_size_down_(size, alignment);
}

// Align objects by rounding up their size, in HeapWord units.

#define align_object_size_(size) align_size_up_(size, MinObjAlignment)

inline intptr_t align_object_size(intptr_t size) {
  return align_size_up(size, MinObjAlignment);
}

380 381 382
inline bool is_object_aligned(intptr_t addr) {
  return addr == align_object_size(addr);
}
D
duke 已提交
383

384
// Pad out certain offsets to jlong alignment, in HeapWord units.
D
duke 已提交
385 386 387 388 389

inline intptr_t align_object_offset(intptr_t offset) {
  return align_size_up(offset, HeapWordsPerLong);
}

J
jcoomes 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
// The expected size in bytes of a cache line, used to pad data structures.
#define DEFAULT_CACHE_LINE_SIZE 64

// Bytes needed to pad type to avoid cache-line sharing; alignment should be the
// expected cache line size (a power of two).  The first addend avoids sharing
// when the start address is not a multiple of alignment; the second maintains
// alignment of starting addresses that happen to be a multiple.
#define PADDING_SIZE(type, alignment)                           \
  ((alignment) + align_size_up_(sizeof(type), alignment))

// Templates to create a subclass padded to avoid cache line sharing.  These are
// effective only when applied to derived-most (leaf) classes.

// When no args are passed to the base ctor.
template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
class Padded: public T {
private:
  char _pad_buf_[PADDING_SIZE(T, alignment)];
};

// When either 0 or 1 args may be passed to the base ctor.
template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
class Padded01: public T {
public:
  Padded01(): T() { }
  Padded01(Arg1T arg1): T(arg1) { }
private:
  char _pad_buf_[PADDING_SIZE(T, alignment)];
};
D
duke 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

//----------------------------------------------------------------------------------------------------
// Utility macros for compilers
// used to silence compiler warnings

#define Unused_Variable(var) var


//----------------------------------------------------------------------------------------------------
// Miscellaneous

// 6302670 Eliminate Hotspot __fabsf dependency
// All fabs() callers should call this function instead, which will implicitly
// convert the operand to double, avoiding a dependency on __fabsf which
// doesn't exist in early versions of Solaris 8.
inline double fabsd(double value) {
  return fabs(value);
}

inline jint low (jlong value)                    { return jint(value); }
inline jint high(jlong value)                    { return jint(value >> 32); }

// the fancy casts are a hopefully portable way
// to do unsigned 32 to 64 bit type conversion
inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
                                                   *value |= (jlong)(julong)(juint)low; }

inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
                                                   *value |= (jlong)high       << 32; }

inline jlong jlong_from(jint h, jint l) {
  jlong result = 0; // initialization to avoid warning
  set_high(&result, h);
  set_low(&result,  l);
  return result;
}

union jlong_accessor {
  jint  words[2];
  jlong long_value;
};

461
void basic_types_init(); // cannot define here; uses assert
D
duke 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477


// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
enum BasicType {
  T_BOOLEAN  =  4,
  T_CHAR     =  5,
  T_FLOAT    =  6,
  T_DOUBLE   =  7,
  T_BYTE     =  8,
  T_SHORT    =  9,
  T_INT      = 10,
  T_LONG     = 11,
  T_OBJECT   = 12,
  T_ARRAY    = 13,
  T_VOID     = 14,
  T_ADDRESS  = 15,
478 479
  T_NARROWOOP= 16,
  T_CONFLICT = 17, // for stack value type with conflicting contents
D
duke 已提交
480 481 482
  T_ILLEGAL  = 99
};

483 484 485 486
inline bool is_java_primitive(BasicType t) {
  return T_BOOLEAN <= t && t <= T_LONG;
}

487 488 489 490 491 492 493 494 495
inline bool is_subword_type(BasicType t) {
  // these guys are processed exactly like T_INT in calling sequences:
  return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
}

inline bool is_signed_subword_type(BasicType t) {
  return (t == T_BYTE || t == T_SHORT);
}

D
duke 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
// Convert a char from a classfile signature to a BasicType
inline BasicType char2type(char c) {
  switch( c ) {
  case 'B': return T_BYTE;
  case 'C': return T_CHAR;
  case 'D': return T_DOUBLE;
  case 'F': return T_FLOAT;
  case 'I': return T_INT;
  case 'J': return T_LONG;
  case 'S': return T_SHORT;
  case 'Z': return T_BOOLEAN;
  case 'V': return T_VOID;
  case 'L': return T_OBJECT;
  case '[': return T_ARRAY;
  }
  return T_ILLEGAL;
}

extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
extern BasicType name2type(const char* name);

// Auxilary math routines
// least common multiple
extern size_t lcm(size_t a, size_t b);


// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
enum BasicTypeSize {
  T_BOOLEAN_size = 1,
  T_CHAR_size    = 1,
  T_FLOAT_size   = 1,
  T_DOUBLE_size  = 2,
  T_BYTE_size    = 1,
  T_SHORT_size   = 1,
  T_INT_size     = 1,
  T_LONG_size    = 2,
  T_OBJECT_size  = 1,
  T_ARRAY_size   = 1,
538
  T_NARROWOOP_size = 1,
D
duke 已提交
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
  T_VOID_size    = 0
};


// maps a BasicType to its instance field storage type:
// all sub-word integral types are widened to T_INT
extern BasicType type2field[T_CONFLICT+1];
extern BasicType type2wfield[T_CONFLICT+1];


// size in bytes
enum ArrayElementSize {
  T_BOOLEAN_aelem_bytes = 1,
  T_CHAR_aelem_bytes    = 2,
  T_FLOAT_aelem_bytes   = 4,
  T_DOUBLE_aelem_bytes  = 8,
  T_BYTE_aelem_bytes    = 1,
  T_SHORT_aelem_bytes   = 2,
  T_INT_aelem_bytes     = 4,
  T_LONG_aelem_bytes    = 8,
#ifdef _LP64
  T_OBJECT_aelem_bytes  = 8,
  T_ARRAY_aelem_bytes   = 8,
#else
  T_OBJECT_aelem_bytes  = 4,
  T_ARRAY_aelem_bytes   = 4,
#endif
566
  T_NARROWOOP_aelem_bytes = 4,
D
duke 已提交
567 568 569
  T_VOID_aelem_bytes    = 0
};

570 571 572 573
extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
#ifdef ASSERT
extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
#else
N
never 已提交
574
inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
575
#endif
D
duke 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650


// JavaValue serves as a container for arbitrary Java values.

class JavaValue {

 public:
  typedef union JavaCallValue {
    jfloat   f;
    jdouble  d;
    jint     i;
    jlong    l;
    jobject  h;
  } JavaCallValue;

 private:
  BasicType _type;
  JavaCallValue _value;

 public:
  JavaValue(BasicType t = T_ILLEGAL) { _type = t; }

  JavaValue(jfloat value) {
    _type    = T_FLOAT;
    _value.f = value;
  }

  JavaValue(jdouble value) {
    _type    = T_DOUBLE;
    _value.d = value;
  }

 jfloat get_jfloat() const { return _value.f; }
 jdouble get_jdouble() const { return _value.d; }
 jint get_jint() const { return _value.i; }
 jlong get_jlong() const { return _value.l; }
 jobject get_jobject() const { return _value.h; }
 JavaCallValue* get_value_addr() { return &_value; }
 BasicType get_type() const { return _type; }

 void set_jfloat(jfloat f) { _value.f = f;}
 void set_jdouble(jdouble d) { _value.d = d;}
 void set_jint(jint i) { _value.i = i;}
 void set_jlong(jlong l) { _value.l = l;}
 void set_jobject(jobject h) { _value.h = h;}
 void set_type(BasicType t) { _type = t; }

 jboolean get_jboolean() const { return (jboolean) (_value.i);}
 jbyte get_jbyte() const { return (jbyte) (_value.i);}
 jchar get_jchar() const { return (jchar) (_value.i);}
 jshort get_jshort() const { return (jshort) (_value.i);}

};


#define STACK_BIAS      0
// V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
// in order to extend the reach of the stack pointer.
#if defined(SPARC) && defined(_LP64)
#undef STACK_BIAS
#define STACK_BIAS      0x7ff
#endif


// TosState describes the top-of-stack state before and after the execution of
// a bytecode or method. The top-of-stack value may be cached in one or more CPU
// registers. The TosState corresponds to the 'machine represention' of this cached
// value. There's 4 states corresponding to the JAVA types int, long, float & double
// as well as a 5th state in case the top-of-stack value is actually on the top
// of stack (in memory) and thus not cached. The atos state corresponds to the itos
// state when it comes to machine representation but is used separately for (oop)
// type specific operations (e.g. verification code).

enum TosState {         // describes the tos cache contents
  btos = 0,             // byte, bool tos cached
651 652
  ctos = 1,             // char tos cached
  stos = 2,             // short tos cached
D
duke 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666
  itos = 3,             // int tos cached
  ltos = 4,             // long tos cached
  ftos = 5,             // float tos cached
  dtos = 6,             // double tos cached
  atos = 7,             // object cached
  vtos = 8,             // tos not cached
  number_of_states,
  ilgl                  // illegal state: should not occur
};


inline TosState as_TosState(BasicType type) {
  switch (type) {
    case T_BYTE   : return btos;
667
    case T_BOOLEAN: return btos; // FIXME: Add ztos
D
duke 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680
    case T_CHAR   : return ctos;
    case T_SHORT  : return stos;
    case T_INT    : return itos;
    case T_LONG   : return ltos;
    case T_FLOAT  : return ftos;
    case T_DOUBLE : return dtos;
    case T_VOID   : return vtos;
    case T_ARRAY  : // fall through
    case T_OBJECT : return atos;
  }
  return ilgl;
}

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
inline BasicType as_BasicType(TosState state) {
  switch (state) {
    //case ztos: return T_BOOLEAN;//FIXME
    case btos : return T_BYTE;
    case ctos : return T_CHAR;
    case stos : return T_SHORT;
    case itos : return T_INT;
    case ltos : return T_LONG;
    case ftos : return T_FLOAT;
    case dtos : return T_DOUBLE;
    case atos : return T_OBJECT;
    case vtos : return T_VOID;
  }
  return T_ILLEGAL;
}

D
duke 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754

// Helper function to convert BasicType info into TosState
// Note: Cannot define here as it uses global constant at the time being.
TosState as_TosState(BasicType type);


// ReferenceType is used to distinguish between java/lang/ref/Reference subclasses

enum ReferenceType {
 REF_NONE,      // Regular class
 REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
 REF_SOFT,      // Subclass of java/lang/ref/SoftReference
 REF_WEAK,      // Subclass of java/lang/ref/WeakReference
 REF_FINAL,     // Subclass of java/lang/ref/FinalReference
 REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
};


// JavaThreadState keeps track of which part of the code a thread is executing in. This
// information is needed by the safepoint code.
//
// There are 4 essential states:
//
//  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
//  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
//  _thread_in_vm       : Executing in the vm
//  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
//
// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
// a transition from one state to another. These extra states makes it possible for the safepoint code to
// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
//
// Given a state, the xxx_trans state can always be found by adding 1.
//
enum JavaThreadState {
  _thread_uninitialized     =  0, // should never happen (missing initialization)
  _thread_new               =  2, // just starting up, i.e., in process of being initialized
  _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
  _thread_in_native         =  4, // running in native code
  _thread_in_native_trans   =  5, // corresponding transition state
  _thread_in_vm             =  6, // running in VM
  _thread_in_vm_trans       =  7, // corresponding transition state
  _thread_in_Java           =  8, // running in Java or in stub code
  _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
  _thread_blocked           = 10, // blocked in vm
  _thread_blocked_trans     = 11, // corresponding transition state
  _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
};


// Handy constants for deciding which compiler mode to use.
enum MethodCompilation {
  InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
  InvalidOSREntryBci = -2
};

// Enumeration to distinguish tiers of compilation
enum CompLevel {
I
iveresov 已提交
755 756 757 758 759 760
  CompLevel_any               = -1,
  CompLevel_all               = -1,
  CompLevel_none              = 0,         // Interpreter
  CompLevel_simple            = 1,         // C1
  CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
  CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
T
twisti 已提交
761
  CompLevel_full_optimization = 4,         // C2 or Shark
I
iveresov 已提交
762

T
twisti 已提交
763
#if defined(COMPILER2) || defined(SHARK)
I
iveresov 已提交
764 765 766 767 768 769
  CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
#elif defined(COMPILER1)
  CompLevel_highest_tier      = CompLevel_simple,             // pure C1
#else
  CompLevel_highest_tier      = CompLevel_none,
#endif
D
duke 已提交
770

I
iveresov 已提交
771 772 773 774
#if defined(TIERED)
  CompLevel_initial_compile   = CompLevel_full_profile        // tiered
#elif defined(COMPILER1)
  CompLevel_initial_compile   = CompLevel_simple              // pure C1
T
twisti 已提交
775
#elif defined(COMPILER2) || defined(SHARK)
I
iveresov 已提交
776
  CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
D
duke 已提交
777
#else
I
iveresov 已提交
778 779
  CompLevel_initial_compile   = CompLevel_none
#endif
D
duke 已提交
780 781
};

I
iveresov 已提交
782 783
inline bool is_c1_compile(int comp_level) {
  return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
D
duke 已提交
784
}
I
iveresov 已提交
785 786

inline bool is_c2_compile(int comp_level) {
D
duke 已提交
787 788
  return comp_level == CompLevel_full_optimization;
}
I
iveresov 已提交
789

D
duke 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
inline bool is_highest_tier_compile(int comp_level) {
  return comp_level == CompLevel_highest_tier;
}

//----------------------------------------------------------------------------------------------------
// 'Forward' declarations of frequently used classes
// (in order to reduce interface dependencies & reduce
// number of unnecessary compilations after changes)

class symbolTable;
class ClassFileStream;

class Event;

class Thread;
class  VMThread;
class  JavaThread;
class Threads;

class VM_Operation;
class VMOperationQueue;

class CodeBlob;
class  nmethod;
class  OSRAdapter;
class  I2CAdapter;
class  C2IAdapter;
class CompiledIC;
class relocInfo;
class ScopeDesc;
class PcDesc;

class Recompiler;
class Recompilee;
class RecompilationPolicy;
class RFrame;
class  CompiledRFrame;
class  InterpretedRFrame;

class frame;

class vframe;
class   javaVFrame;
class     interpretedVFrame;
class     compiledVFrame;
class     deoptimizedVFrame;
class   externalVFrame;
class     entryVFrame;

class RegisterMap;

class Mutex;
class Monitor;
class BasicLock;
class BasicObjectLock;

class PeriodicTask;

class JavaCallWrapper;

class   oopDesc;

class NativeCall;

class zone;

class StubQueue;

class outputStream;

class ResourceArea;

class DebugInformationRecorder;
class ScopeValue;
class CompressedStream;
class   DebugInfoReadStream;
class   DebugInfoWriteStream;
class LocationValue;
class ConstantValue;
class IllegalValue;

class PrivilegedElement;
class MonitorArray;

class MonitorInfo;

class OffsetClosure;
class OopMapCache;
class InterpreterOopMap;
class OopMapCacheEntry;
class OSThread;

typedef int (*OSThreadStartFunc)(void*);

class Space;

class JavaValue;
class methodHandle;
class JavaCallArguments;

// Basic support for errors (general debug facilities not defined at this point fo the include phase)

extern void basic_fatal(const char* msg);


//----------------------------------------------------------------------------------------------------
// Special constants for debugging

const jint     badInt           = -3;                       // generic "bad int" value
const long     badAddressVal    = -2;                       // generic "bad address" value
const long     badOopVal        = -1;                       // generic "bad oop" value
const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
const int      badResourceValue = 0xAB;                     // value used to zap resource area
const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation


// (These must be implemented as #defines because C++ compilers are
// not obligated to inline non-integral constants!)
#define       badAddress        ((address)::badAddressVal)
#define       badOop            ((oop)::badOopVal)
#define       badHeapWord       (::badHeapWordVal)
#define       badJNIHandle      ((oop)::badJNIHandleVal)

919 920
// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
D
duke 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

//----------------------------------------------------------------------------------------------------
// Utility functions for bitfield manipulations

const intptr_t AllBits    = ~0; // all bits set in a word
const intptr_t NoBits     =  0; // no bits set in a word
const jlong    NoLongBits =  0; // no bits set in a long
const intptr_t OneBit     =  1; // only right_most bit set in a word

// get a word with the n.th or the right-most or left-most n bits set
// (note: #define used only so that they can be used in enum constant definitions)
#define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
#define right_n_bits(n)   (nth_bit(n) - 1)
#define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))

// bit-operations using a mask m
inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }

// bit-operations using the n.th bit
inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }

// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
  return mask_bits(x >> start_bit_no, right_n_bits(field_length));
}


//----------------------------------------------------------------------------------------------------
// Utility functions for integers

// Avoid use of global min/max macros which may cause unwanted double
// evaluation of arguments.
#ifdef max
#undef max
#endif

#ifdef min
#undef min
#endif

#define max(a,b) Do_not_use_max_use_MAX2_instead
#define min(a,b) Do_not_use_min_use_MIN2_instead

// It is necessary to use templates here. Having normal overloaded
// functions does not work because it is necessary to provide both 32-
// and 64-bit overloaded functions, which does not work, and having
// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
// will be even more error-prone than macros.
template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }

template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }

// true if x is a power of 2, false otherwise
inline bool is_power_of_2(intptr_t x) {
  return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
}

// long version of is_power_of_2
inline bool is_power_of_2_long(jlong x) {
  return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
}

//* largest i such that 2^i <= x
//  A negative value of 'x' will return '31'
inline int log2_intptr(intptr_t x) {
  int i = -1;
  uintptr_t p =  1;
  while (p != 0 && p <= (uintptr_t)x) {
    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
    i++; p *= 2;
  }
  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
T
twisti 已提交
1004
  // (if p = 0 then overflow occurred and i = 31)
D
duke 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
  return i;
}

//* largest i such that 2^i <= x
//  A negative value of 'x' will return '63'
inline int log2_long(jlong x) {
  int i = -1;
  julong p =  1;
  while (p != 0 && p <= (julong)x) {
    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
    i++; p *= 2;
  }
  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
T
twisti 已提交
1018
  // (if p = 0 then overflow occurred and i = 63)
D
duke 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
  return i;
}

//* the argument must be exactly a power of 2
inline int exact_log2(intptr_t x) {
  #ifdef ASSERT
    if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
  #endif
  return log2_intptr(x);
}

1030 1031 1032 1033 1034 1035 1036 1037
//* the argument must be exactly a power of 2
inline int exact_log2_long(jlong x) {
  #ifdef ASSERT
    if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
  #endif
  return log2_long(x);
}

D
duke 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

// returns integer round-up to the nearest multiple of s (s must be a power of two)
inline intptr_t round_to(intptr_t x, uintx s) {
  #ifdef ASSERT
    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  #endif
  const uintx m = s - 1;
  return mask_bits(x + m, ~m);
}

// returns integer round-down to the nearest multiple of s (s must be a power of two)
inline intptr_t round_down(intptr_t x, uintx s) {
  #ifdef ASSERT
    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
  #endif
  const uintx m = s - 1;
  return mask_bits(x, ~m);
}


inline bool is_odd (intx x) { return x & 1;      }
inline bool is_even(intx x) { return !is_odd(x); }

// "to" should be greater than "from."
inline intx byte_size(void* from, void* to) {
  return (address)to - (address)from;
}

//----------------------------------------------------------------------------------------------------
// Avoid non-portable casts with these routines (DEPRECATED)

// NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
//       Bytes is optimized machine-specifically and may be much faster then the portable routines below.

// Given sequence of four bytes, build into a 32-bit word
// following the conventions used in class files.
// On the 386, this could be realized with a simple address cast.
//

// This routine takes eight bytes:
inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1079 1080 1081 1082 1083 1084 1085 1086
  return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
       |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
       |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
       |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
       |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
       |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
       |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
       |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
D
duke 已提交
1087 1088 1089 1090
}

// This routine takes four bytes:
inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1091 1092 1093 1094
  return  (( u4(c1) << 24 )  &  0xff000000)
       |  (( u4(c2) << 16 )  &  0x00ff0000)
       |  (( u4(c3) <<  8 )  &  0x0000ff00)
       |  (( u4(c4) <<  0 )  &  0x000000ff);
D
duke 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103
}

// And this one works if the four bytes are contiguous in memory:
inline u4 build_u4_from( u1* p ) {
  return  build_u4_from( p[0], p[1], p[2], p[3] );
}

// Ditto for two-byte ints:
inline u2 build_u2_from( u1 c1, u1 c2 ) {
1104 1105
  return  u2((( u2(c1) <<  8 )  &  0xff00)
          |  (( u2(c2) <<  0 )  &  0x00ff));
D
duke 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
}

// And this one works if the two bytes are contiguous in memory:
inline u2 build_u2_from( u1* p ) {
  return  build_u2_from( p[0], p[1] );
}

// Ditto for floats:
inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
  u4 u = build_u4_from( c1, c2, c3, c4 );
  return  *(jfloat*)&u;
}

inline jfloat build_float_from( u1* p ) {
  u4 u = build_u4_from( p );
  return  *(jfloat*)&u;
}


// now (64-bit) longs

inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1128 1129 1130 1131 1132 1133 1134 1135
  return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
       |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
       |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
       |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
       |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
       |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
       |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
       |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
D
duke 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
}

inline jlong build_long_from( u1* p ) {
  return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
}


// Doubles, too!
inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  return  *(jdouble*)&u;
}

inline jdouble build_double_from( u1* p ) {
  jlong u = build_long_from( p );
  return  *(jdouble*)&u;
}


// Portable routines to go the other way:

inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  c1 = u1(x >> 8);
  c2 = u1(x);
}

inline void explode_short_to( u2 x, u1* p ) {
  explode_short_to( x, p[0], p[1]);
}

inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  c1 = u1(x >> 24);
  c2 = u1(x >> 16);
  c3 = u1(x >>  8);
  c4 = u1(x);
}

inline void explode_int_to( u4 x, u1* p ) {
  explode_int_to( x, p[0], p[1], p[2], p[3]);
}


// Pack and extract shorts to/from ints:

inline int extract_low_short_from_int(jint x) {
  return x & 0xffff;
}

inline int extract_high_short_from_int(jint x) {
  return (x >> 16) & 0xffff;
}

inline int build_int_from_shorts( jushort low, jushort high ) {
  return ((int)((unsigned int)high << 16) | (unsigned int)low);
}

// Printf-style formatters for fixed- and variable-width types as pointers and
N
never 已提交
1193 1194 1195
// integers.  These are derived from the definitions in inttypes.h.  If the platform
// doesn't provide appropriate definitions, they should be provided in
// the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
D
duke 已提交
1196

T
tonyp 已提交
1197
#define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1198

D
duke 已提交
1199
// Format 32-bit quantities.
N
never 已提交
1200 1201 1202 1203
#define INT32_FORMAT           "%" PRId32
#define UINT32_FORMAT          "%" PRIu32
#define INT32_FORMAT_W(width)  "%" #width PRId32
#define UINT32_FORMAT_W(width) "%" #width PRIu32
D
duke 已提交
1204

N
never 已提交
1205
#define PTR32_FORMAT           "0x%08" PRIx32
D
duke 已提交
1206 1207

// Format 64-bit quantities.
N
never 已提交
1208 1209 1210 1211
#define INT64_FORMAT           "%" PRId64
#define UINT64_FORMAT          "%" PRIu64
#define INT64_FORMAT_W(width)  "%" #width PRId64
#define UINT64_FORMAT_W(width) "%" #width PRIu64
D
duke 已提交
1212

N
never 已提交
1213
#define PTR64_FORMAT           "0x%016" PRIx64
D
duke 已提交
1214

N
never 已提交
1215
// Format pointers which change size between 32- and 64-bit.
D
duke 已提交
1216
#ifdef  _LP64
N
never 已提交
1217 1218
#define INTPTR_FORMAT "0x%016" PRIxPTR
#define PTR_FORMAT    "0x%016" PRIxPTR
D
duke 已提交
1219
#else   // !_LP64
N
never 已提交
1220 1221
#define INTPTR_FORMAT "0x%08"  PRIxPTR
#define PTR_FORMAT    "0x%08"  PRIxPTR
D
duke 已提交
1222 1223
#endif  // _LP64

N
never 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
#define SSIZE_FORMAT          "%" PRIdPTR
#define SIZE_FORMAT           "%" PRIuPTR
#define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
#define SIZE_FORMAT_W(width)  "%" #width PRIuPTR

#define INTX_FORMAT           "%" PRIdPTR
#define UINTX_FORMAT          "%" PRIuPTR
#define INTX_FORMAT_W(width)  "%" #width PRIdPTR
#define UINTX_FORMAT_W(width) "%" #width PRIuPTR

D
duke 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

// Enable zap-a-lot if in debug version.

# ifdef ASSERT
# ifdef COMPILER2
#   define ENABLE_ZAP_DEAD_LOCALS
#endif /* COMPILER2 */
# endif /* ASSERT */

#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1244 1245

#endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP