assembler_x86.cpp 274.6 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include "precompiled.hpp"
#include "assembler_x86.inline.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/cardTableModRefBS.hpp"
#include "memory/resourceArea.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#ifndef SERIALGC
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#endif
D
duke 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

// Implementation of AddressLiteral

AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  _is_lval = false;
  _target = target;
  switch (rtype) {
  case relocInfo::oop_type:
    // Oops are a special case. Normally they would be their own section
    // but in cases like icBuffer they are literals in the code stream that
    // we don't have a section for. We use none so that we get a literal address
    // which is always patchable.
    break;
  case relocInfo::external_word_type:
    _rspec = external_word_Relocation::spec(target);
    break;
  case relocInfo::internal_word_type:
    _rspec = internal_word_Relocation::spec(target);
    break;
  case relocInfo::opt_virtual_call_type:
    _rspec = opt_virtual_call_Relocation::spec();
    break;
  case relocInfo::static_call_type:
    _rspec = static_call_Relocation::spec();
    break;
  case relocInfo::runtime_call_type:
    _rspec = runtime_call_Relocation::spec();
    break;
71 72 73 74
  case relocInfo::poll_type:
  case relocInfo::poll_return_type:
    _rspec = Relocation::spec_simple(rtype);
    break;
D
duke 已提交
75 76 77 78 79 80 81 82 83 84 85
  case relocInfo::none:
    break;
  default:
    ShouldNotReachHere();
    break;
  }
}

// Implementation of Address

#ifdef _LP64
86 87

Address Address::make_array(ArrayAddress adr) {
D
duke 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  // Not implementable on 64bit machines
  // Should have been handled higher up the call chain.
  ShouldNotReachHere();
  return Address();
}

// exceedingly dangerous constructor
Address::Address(int disp, address loc, relocInfo::relocType rtype) {
  _base  = noreg;
  _index = noreg;
  _scale = no_scale;
  _disp  = disp;
  switch (rtype) {
    case relocInfo::external_word_type:
      _rspec = external_word_Relocation::spec(loc);
      break;
    case relocInfo::internal_word_type:
      _rspec = internal_word_Relocation::spec(loc);
      break;
    case relocInfo::runtime_call_type:
      // HMM
      _rspec = runtime_call_Relocation::spec();
      break;
111 112 113 114
    case relocInfo::poll_type:
    case relocInfo::poll_return_type:
      _rspec = Relocation::spec_simple(rtype);
      break;
D
duke 已提交
115 116 117 118 119 120
    case relocInfo::none:
      break;
    default:
      ShouldNotReachHere();
  }
}
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#else // LP64

Address Address::make_array(ArrayAddress adr) {
  AddressLiteral base = adr.base();
  Address index = adr.index();
  assert(index._disp == 0, "must not have disp"); // maybe it can?
  Address array(index._base, index._index, index._scale, (intptr_t) base.target());
  array._rspec = base._rspec;
  return array;
}

// exceedingly dangerous constructor
Address::Address(address loc, RelocationHolder spec) {
  _base  = noreg;
  _index = noreg;
  _scale = no_scale;
  _disp  = (intptr_t) loc;
  _rspec = spec;
}

#endif // _LP64


D
duke 已提交
144 145 146 147

// Convert the raw encoding form into the form expected by the constructor for
// Address.  An index of 4 (rsp) corresponds to having no index, so convert
// that to noreg for the Address constructor.
148 149 150 151 152
Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
  RelocationHolder rspec;
  if (disp_is_oop) {
    rspec = Relocation::spec_simple(relocInfo::oop_type);
  }
D
duke 已提交
153 154 155
  bool valid_index = index != rsp->encoding();
  if (valid_index) {
    Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
156
    madr._rspec = rspec;
D
duke 已提交
157 158 159
    return madr;
  } else {
    Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
160
    madr._rspec = rspec;
D
duke 已提交
161 162 163 164 165
    return madr;
  }
}

// Implementation of Assembler
166

D
duke 已提交
167 168 169 170
int AbstractAssembler::code_fill_byte() {
  return (u_char)'\xF4'; // hlt
}

171 172 173 174 175
// make this go away someday
void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
  if (rtype == relocInfo::none)
        emit_long(data);
  else  emit_data(data, Relocation::spec_simple(rtype), format);
D
duke 已提交
176 177
}

178 179
void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
  assert(imm_operand == 0, "default format must be immediate in this file");
D
duke 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  assert(inst_mark() != NULL, "must be inside InstructionMark");
  if (rspec.type() !=  relocInfo::none) {
    #ifdef ASSERT
      check_relocation(rspec, format);
    #endif
    // Do not use AbstractAssembler::relocate, which is not intended for
    // embedded words.  Instead, relocate to the enclosing instruction.

    // hack. call32 is too wide for mask so use disp32
    if (format == call32_operand)
      code_section()->relocate(inst_mark(), rspec, disp32_operand);
    else
      code_section()->relocate(inst_mark(), rspec, format);
  }
  emit_long(data);
}

197 198 199 200
static int encode(Register r) {
  int enc = r->encoding();
  if (enc >= 8) {
    enc -= 8;
D
duke 已提交
201
  }
202
  return enc;
D
duke 已提交
203 204
}

205 206 207 208 209 210
static int encode(XMMRegister r) {
  int enc = r->encoding();
  if (enc >= 8) {
    enc -= 8;
  }
  return enc;
D
duke 已提交
211 212 213
}

void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
214
  assert(dst->has_byte_register(), "must have byte register");
D
duke 已提交
215 216 217 218
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert(isByte(imm8), "not a byte");
  assert((op1 & 0x01) == 0, "should be 8bit operation");
  emit_byte(op1);
219
  emit_byte(op2 | encode(dst));
D
duke 已提交
220 221 222
  emit_byte(imm8);
}

223 224

void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
D
duke 已提交
225 226 227 228 229
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
  if (is8bit(imm32)) {
    emit_byte(op1 | 0x02); // set sign bit
230
    emit_byte(op2 | encode(dst));
D
duke 已提交
231 232 233
    emit_byte(imm32 & 0xFF);
  } else {
    emit_byte(op1);
234
    emit_byte(op2 | encode(dst));
D
duke 已提交
235 236 237 238 239
    emit_long(imm32);
  }
}

// immediate-to-memory forms
240
void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
D
duke 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
  if (is8bit(imm32)) {
    emit_byte(op1 | 0x02); // set sign bit
    emit_operand(rm, adr, 1);
    emit_byte(imm32 & 0xFF);
  } else {
    emit_byte(op1);
    emit_operand(rm, adr, 4);
    emit_long(imm32);
  }
}

254 255 256 257 258 259 260 261 262 263 264
void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
  LP64_ONLY(ShouldNotReachHere());
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  assert((op1 & 0x01) == 1, "should be 32bit operation");
  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
  InstructionMark im(this);
  emit_byte(op1);
  emit_byte(op2 | encode(dst));
  emit_data((intptr_t)obj, relocInfo::oop_type, 0);
}

D
duke 已提交
265 266 267 268

void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
  assert(isByte(op1) && isByte(op2), "wrong opcode");
  emit_byte(op1);
269
  emit_byte(op2 | encode(dst) << 3 | encode(src));
D
duke 已提交
270 271
}

272

D
duke 已提交
273 274 275 276 277
void Assembler::emit_operand(Register reg, Register base, Register index,
                             Address::ScaleFactor scale, int disp,
                             RelocationHolder const& rspec,
                             int rip_relative_correction) {
  relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
278 279 280 281 282 283 284

  // Encode the registers as needed in the fields they are used in

  int regenc = encode(reg) << 3;
  int indexenc = index->is_valid() ? encode(index) << 3 : 0;
  int baseenc = base->is_valid() ? encode(base) : 0;

D
duke 已提交
285 286 287 288 289
  if (base->is_valid()) {
    if (index->is_valid()) {
      assert(scale != Address::no_scale, "inconsistent address");
      // [base + index*scale + disp]
      if (disp == 0 && rtype == relocInfo::none  &&
290
          base != rbp LP64_ONLY(&& base != r13)) {
D
duke 已提交
291 292 293
        // [base + index*scale]
        // [00 reg 100][ss index base]
        assert(index != rsp, "illegal addressing mode");
294 295
        emit_byte(0x04 | regenc);
        emit_byte(scale << 6 | indexenc | baseenc);
D
duke 已提交
296 297 298 299
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [base + index*scale + imm8]
        // [01 reg 100][ss index base] imm8
        assert(index != rsp, "illegal addressing mode");
300 301
        emit_byte(0x44 | regenc);
        emit_byte(scale << 6 | indexenc | baseenc);
D
duke 已提交
302 303 304 305 306
        emit_byte(disp & 0xFF);
      } else {
        // [base + index*scale + disp32]
        // [10 reg 100][ss index base] disp32
        assert(index != rsp, "illegal addressing mode");
307 308
        emit_byte(0x84 | regenc);
        emit_byte(scale << 6 | indexenc | baseenc);
D
duke 已提交
309 310
        emit_data(disp, rspec, disp32_operand);
      }
311
    } else if (base == rsp LP64_ONLY(|| base == r12)) {
D
duke 已提交
312 313 314 315
      // [rsp + disp]
      if (disp == 0 && rtype == relocInfo::none) {
        // [rsp]
        // [00 reg 100][00 100 100]
316
        emit_byte(0x04 | regenc);
D
duke 已提交
317 318 319 320
        emit_byte(0x24);
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [rsp + imm8]
        // [01 reg 100][00 100 100] disp8
321
        emit_byte(0x44 | regenc);
D
duke 已提交
322 323 324 325 326
        emit_byte(0x24);
        emit_byte(disp & 0xFF);
      } else {
        // [rsp + imm32]
        // [10 reg 100][00 100 100] disp32
327
        emit_byte(0x84 | regenc);
D
duke 已提交
328 329 330 331 332
        emit_byte(0x24);
        emit_data(disp, rspec, disp32_operand);
      }
    } else {
      // [base + disp]
333
      assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
D
duke 已提交
334
      if (disp == 0 && rtype == relocInfo::none &&
335
          base != rbp LP64_ONLY(&& base != r13)) {
D
duke 已提交
336 337
        // [base]
        // [00 reg base]
338
        emit_byte(0x00 | regenc | baseenc);
D
duke 已提交
339 340 341
      } else if (is8bit(disp) && rtype == relocInfo::none) {
        // [base + disp8]
        // [01 reg base] disp8
342
        emit_byte(0x40 | regenc | baseenc);
D
duke 已提交
343 344 345 346
        emit_byte(disp & 0xFF);
      } else {
        // [base + disp32]
        // [10 reg base] disp32
347
        emit_byte(0x80 | regenc | baseenc);
D
duke 已提交
348 349 350 351 352 353 354 355 356
        emit_data(disp, rspec, disp32_operand);
      }
    }
  } else {
    if (index->is_valid()) {
      assert(scale != Address::no_scale, "inconsistent address");
      // [index*scale + disp]
      // [00 reg 100][ss index 101] disp32
      assert(index != rsp, "illegal addressing mode");
357 358
      emit_byte(0x04 | regenc);
      emit_byte(scale << 6 | indexenc | 0x05);
D
duke 已提交
359 360
      emit_data(disp, rspec, disp32_operand);
    } else if (rtype != relocInfo::none ) {
361
      // [disp] (64bit) RIP-RELATIVE (32bit) abs
D
duke 已提交
362 363
      // [00 000 101] disp32

364
      emit_byte(0x05 | regenc);
D
duke 已提交
365 366 367 368 369 370 371 372
      // Note that the RIP-rel. correction applies to the generated
      // disp field, but _not_ to the target address in the rspec.

      // disp was created by converting the target address minus the pc
      // at the start of the instruction. That needs more correction here.
      // intptr_t disp = target - next_ip;
      assert(inst_mark() != NULL, "must be inside InstructionMark");
      address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
373 374 375
      int64_t adjusted = disp;
      // Do rip-rel adjustment for 64bit
      LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
D
duke 已提交
376 377
      assert(is_simm32(adjusted),
             "must be 32bit offset (RIP relative address)");
378
      emit_data((int32_t) adjusted, rspec, disp32_operand);
D
duke 已提交
379 380

    } else {
381
      // 32bit never did this, did everything as the rip-rel/disp code above
D
duke 已提交
382 383
      // [disp] ABSOLUTE
      // [00 reg 100][00 100 101] disp32
384
      emit_byte(0x04 | regenc);
D
duke 已提交
385 386 387 388 389 390 391 392
      emit_byte(0x25);
      emit_data(disp, rspec, disp32_operand);
    }
  }
}

void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
                             Address::ScaleFactor scale, int disp,
393 394
                             RelocationHolder const& rspec) {
  emit_operand((Register)reg, base, index, scale, disp, rspec);
D
duke 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
}

// Secret local extension to Assembler::WhichOperand:
#define end_pc_operand (_WhichOperand_limit)

address Assembler::locate_operand(address inst, WhichOperand which) {
  // Decode the given instruction, and return the address of
  // an embedded 32-bit operand word.

  // If "which" is disp32_operand, selects the displacement portion
  // of an effective address specifier.
  // If "which" is imm64_operand, selects the trailing immediate constant.
  // If "which" is call32_operand, selects the displacement of a call or jump.
  // Caller is responsible for ensuring that there is such an operand,
  // and that it is 32/64 bits wide.

  // If "which" is end_pc_operand, find the end of the instruction.

  address ip = inst;
  bool is_64bit = false;

  debug_only(bool has_disp32 = false);
  int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn

  again_after_prefix:
  switch (0xFF & *ip++) {

  // These convenience macros generate groups of "case" labels for the switch.
#define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
#define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
             case (x)+4: case (x)+5: case (x)+6: case (x)+7
#define REP16(x) REP8((x)+0): \
              case REP8((x)+8)

  case CS_segment:
  case SS_segment:
  case DS_segment:
  case ES_segment:
  case FS_segment:
  case GS_segment:
435 436 437
    // Seems dubious
    LP64_ONLY(assert(false, "shouldn't have that prefix"));
    assert(ip == inst+1, "only one prefix allowed");
D
duke 已提交
438 439 440 441 442 443 444 445 446 447 448
    goto again_after_prefix;

  case 0x67:
  case REX:
  case REX_B:
  case REX_X:
  case REX_XB:
  case REX_R:
  case REX_RB:
  case REX_RX:
  case REX_RXB:
449
    NOT_LP64(assert(false, "64bit prefixes"));
D
duke 已提交
450 451 452 453 454 455 456 457 458 459
    goto again_after_prefix;

  case REX_W:
  case REX_WB:
  case REX_WX:
  case REX_WXB:
  case REX_WR:
  case REX_WRB:
  case REX_WRX:
  case REX_WRXB:
460
    NOT_LP64(assert(false, "64bit prefixes"));
D
duke 已提交
461 462 463 464 465 466 467 468 469
    is_64bit = true;
    goto again_after_prefix;

  case 0xFF: // pushq a; decl a; incl a; call a; jmp a
  case 0x88: // movb a, r
  case 0x89: // movl a, r
  case 0x8A: // movb r, a
  case 0x8B: // movl r, a
  case 0x8F: // popl a
470
    debug_only(has_disp32 = true);
D
duke 已提交
471 472 473 474 475 476
    break;

  case 0x68: // pushq #32
    if (which == end_pc_operand) {
      return ip + 4;
    }
477 478
    assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
    return ip;                  // not produced by emit_operand
D
duke 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

  case 0x66: // movw ... (size prefix)
    again_after_size_prefix2:
    switch (0xFF & *ip++) {
    case REX:
    case REX_B:
    case REX_X:
    case REX_XB:
    case REX_R:
    case REX_RB:
    case REX_RX:
    case REX_RXB:
    case REX_W:
    case REX_WB:
    case REX_WX:
    case REX_WXB:
    case REX_WR:
    case REX_WRB:
    case REX_WRX:
    case REX_WRXB:
499
      NOT_LP64(assert(false, "64bit prefix found"));
D
duke 已提交
500 501 502
      goto again_after_size_prefix2;
    case 0x8B: // movw r, a
    case 0x89: // movw a, r
503
      debug_only(has_disp32 = true);
D
duke 已提交
504 505
      break;
    case 0xC7: // movw a, #16
506
      debug_only(has_disp32 = true);
D
duke 已提交
507 508 509 510 511 512 513 514 515 516 517 518
      tail_size = 2;  // the imm16
      break;
    case 0x0F: // several SSE/SSE2 variants
      ip--;    // reparse the 0x0F
      goto again_after_prefix;
    default:
      ShouldNotReachHere();
    }
    break;

  case REP8(0xB8): // movl/q r, #32/#64(oop?)
    if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
519 520 521 522 523
    // these asserts are somewhat nonsensical
#ifndef _LP64
    assert(which == imm_operand || which == disp32_operand, "");
#else
    assert((which == call32_operand || which == imm_operand) && is_64bit ||
524
           which == narrow_oop_operand && !is_64bit, "");
525
#endif // _LP64
D
duke 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
    return ip;

  case 0x69: // imul r, a, #32
  case 0xC7: // movl a, #32(oop?)
    tail_size = 4;
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0x0F: // movx..., etc.
    switch (0xFF & *ip++) {
    case 0x12: // movlps
    case 0x28: // movaps
    case 0x2E: // ucomiss
    case 0x2F: // comiss
    case 0x54: // andps
541 542
    case 0x55: // andnps
    case 0x56: // orps
D
duke 已提交
543 544 545 546
    case 0x57: // xorps
    case 0x6E: // movd
    case 0x7E: // movd
    case 0xAE: // ldmxcsr   a
547 548 549
      // 64bit side says it these have both operands but that doesn't
      // appear to be true
      debug_only(has_disp32 = true);
D
duke 已提交
550
      break;
551

D
duke 已提交
552 553
    case 0xAD: // shrd r, a, %cl
    case 0xAF: // imul r, a
554 555 556 557
    case 0xBE: // movsbl r, a (movsxb)
    case 0xBF: // movswl r, a (movsxw)
    case 0xB6: // movzbl r, a (movzxb)
    case 0xB7: // movzwl r, a (movzxw)
D
duke 已提交
558 559 560 561 562 563 564 565 566
    case REP16(0x40): // cmovl cc, r, a
    case 0xB0: // cmpxchgb
    case 0xB1: // cmpxchg
    case 0xC1: // xaddl
    case 0xC7: // cmpxchg8
    case REP16(0x90): // setcc a
      debug_only(has_disp32 = true);
      // fall out of the switch to decode the address
      break;
567

D
duke 已提交
568 569 570 571
    case 0xAC: // shrd r, a, #8
      debug_only(has_disp32 = true);
      tail_size = 1;  // the imm8
      break;
572

D
duke 已提交
573 574
    case REP16(0x80): // jcc rdisp32
      if (which == end_pc_operand)  return ip + 4;
575
      assert(which == call32_operand, "jcc has no disp32 or imm");
D
duke 已提交
576 577 578 579 580 581 582 583
      return ip;
    default:
      ShouldNotReachHere();
    }
    break;

  case 0x81: // addl a, #32; addl r, #32
    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
584
    // on 32bit in the case of cmpl, the imm might be an oop
D
duke 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
    tail_size = 4;
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0x83: // addl a, #8; addl r, #8
    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
    debug_only(has_disp32 = true); // has both kinds of operands!
    tail_size = 1;
    break;

  case 0x9B:
    switch (0xFF & *ip++) {
    case 0xD9: // fnstcw a
      debug_only(has_disp32 = true);
      break;
    default:
      ShouldNotReachHere();
    }
    break;

  case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
  case REP4(0x10): // adc...
  case REP4(0x20): // and...
  case REP4(0x30): // xor...
  case REP4(0x08): // or...
  case REP4(0x18): // sbb...
  case REP4(0x28): // sub...
  case 0xF7: // mull a
613
  case 0x8D: // lea r, a
D
duke 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
  case 0x87: // xchg r, a
  case REP4(0x38): // cmp...
  case 0x85: // test r, a
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
  case 0xC6: // movb a, #8
  case 0x80: // cmpb a, #8
  case 0x6B: // imul r, a, #8
    debug_only(has_disp32 = true); // has both kinds of operands!
    tail_size = 1; // the imm8
    break;

  case 0xE8: // call rdisp32
  case 0xE9: // jmp  rdisp32
    if (which == end_pc_operand)  return ip + 4;
631
    assert(which == call32_operand, "call has no disp32 or imm");
D
duke 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645
    return ip;

  case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
  case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
  case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
  case 0xDD: // fld_d a; fst_d a; fstp_d a
  case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
  case 0xDF: // fild_d a; fistp_d a
  case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
  case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
  case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
    debug_only(has_disp32 = true);
    break;

646 647 648 649
  case 0xF0:                    // Lock
    assert(os::is_MP(), "only on MP");
    goto again_after_prefix;

D
duke 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
  case 0xF3:                    // For SSE
  case 0xF2:                    // For SSE2
    switch (0xFF & *ip++) {
    case REX:
    case REX_B:
    case REX_X:
    case REX_XB:
    case REX_R:
    case REX_RB:
    case REX_RX:
    case REX_RXB:
    case REX_W:
    case REX_WB:
    case REX_WX:
    case REX_WXB:
    case REX_WR:
    case REX_WRB:
    case REX_WRX:
    case REX_WRXB:
669
      NOT_LP64(assert(false, "found 64bit prefix"));
D
duke 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
      ip++;
    default:
      ip++;
    }
    debug_only(has_disp32 = true); // has both kinds of operands!
    break;

  default:
    ShouldNotReachHere();

#undef REP8
#undef REP16
  }

  assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
685 686 687 688 689 690
#ifdef _LP64
  assert(which != imm_operand, "instruction is not a movq reg, imm64");
#else
  // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
  assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
#endif // LP64
D
duke 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
  assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");

  // parse the output of emit_operand
  int op2 = 0xFF & *ip++;
  int base = op2 & 0x07;
  int op3 = -1;
  const int b100 = 4;
  const int b101 = 5;
  if (base == b100 && (op2 >> 6) != 3) {
    op3 = 0xFF & *ip++;
    base = op3 & 0x07;   // refetch the base
  }
  // now ip points at the disp (if any)

  switch (op2 >> 6) {
  case 0:
    // [00 reg  100][ss index base]
    // [00 reg  100][00   100  esp]
    // [00 reg base]
    // [00 reg  100][ss index  101][disp32]
    // [00 reg  101]               [disp32]

    if (base == b101) {
      if (which == disp32_operand)
        return ip;              // caller wants the disp32
      ip += 4;                  // skip the disp32
    }
    break;

  case 1:
    // [01 reg  100][ss index base][disp8]
    // [01 reg  100][00   100  esp][disp8]
    // [01 reg base]               [disp8]
    ip += 1;                    // skip the disp8
    break;

  case 2:
    // [10 reg  100][ss index base][disp32]
    // [10 reg  100][00   100  esp][disp32]
    // [10 reg base]               [disp32]
    if (which == disp32_operand)
      return ip;                // caller wants the disp32
    ip += 4;                    // skip the disp32
    break;

  case 3:
    // [11 reg base]  (not a memory addressing mode)
    break;
  }

  if (which == end_pc_operand) {
    return ip + tail_size;
  }

745
#ifdef _LP64
746
  assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
747 748 749
#else
  assert(which == imm_operand, "instruction has only an imm field");
#endif // LP64
D
duke 已提交
750 751 752 753 754 755 756 757
  return ip;
}

address Assembler::locate_next_instruction(address inst) {
  // Secretly share code with locate_operand:
  return locate_operand(inst, end_pc_operand);
}

758

D
duke 已提交
759 760 761
#ifdef ASSERT
void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
  address inst = inst_mark();
762
  assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
D
duke 已提交
763 764 765 766 767 768
  address opnd;

  Relocation* r = rspec.reloc();
  if (r->type() == relocInfo::none) {
    return;
  } else if (r->is_call() || format == call32_operand) {
769
    // assert(format == imm32_operand, "cannot specify a nonzero format");
D
duke 已提交
770 771
    opnd = locate_operand(inst, call32_operand);
  } else if (r->is_data()) {
772 773 774
    assert(format == imm_operand || format == disp32_operand
           LP64_ONLY(|| format == narrow_oop_operand), "format ok");
    opnd = locate_operand(inst, (WhichOperand)format);
D
duke 已提交
775
  } else {
776
    assert(format == imm_operand, "cannot specify a format");
D
duke 已提交
777 778 779 780
    return;
  }
  assert(opnd == pc(), "must put operand where relocs can find it");
}
781
#endif // ASSERT
D
duke 已提交
782

783 784 785 786 787
void Assembler::emit_operand32(Register reg, Address adr) {
  assert(reg->encoding() < 8, "no extended registers");
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
               adr._rspec);
D
duke 已提交
788 789 790 791 792 793 794 795 796
}

void Assembler::emit_operand(Register reg, Address adr,
                             int rip_relative_correction) {
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
               adr._rspec,
               rip_relative_correction);
}

797
void Assembler::emit_operand(XMMRegister reg, Address adr) {
D
duke 已提交
798
  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
799 800 801 802 803 804 805 806 807 808 809 810 811
               adr._rspec);
}

// MMX operations
void Assembler::emit_operand(MMXRegister reg, Address adr) {
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
}

// work around gcc (3.2.1-7a) bug
void Assembler::emit_operand(Address adr, MMXRegister reg) {
  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
D
duke 已提交
812 813
}

814

D
duke 已提交
815 816 817 818 819 820 821 822
void Assembler::emit_farith(int b1, int b2, int i) {
  assert(isByte(b1) && isByte(b2), "wrong opcode");
  assert(0 <= i &&  i < 8, "illegal stack offset");
  emit_byte(b1);
  emit_byte(b2 + i);
}


823 824 825 826 827 828 829 830 831 832 833 834 835 836
// Now the Assembler instructions (identical for 32/64 bits)

void Assembler::adcl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rdx, dst, imm32);
}

void Assembler::adcl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
  emit_byte(0x11);
  emit_operand(src, dst);
}
D
duke 已提交
837

838 839 840
void Assembler::adcl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xD0, dst, imm32);
D
duke 已提交
841 842
}

843 844 845 846 847
void Assembler::adcl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x13);
  emit_operand(dst, src);
D
duke 已提交
848 849
}

850 851 852
void Assembler::adcl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x13, 0xC0, dst, src);
D
duke 已提交
853 854
}

855 856 857 858
void Assembler::addl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rax, dst, imm32);
D
duke 已提交
859 860
}

861 862 863 864 865
void Assembler::addl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
  emit_byte(0x01);
  emit_operand(src, dst);
D
duke 已提交
866 867
}

868 869 870 871
void Assembler::addl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xC0, dst, imm32);
}
D
duke 已提交
872

873 874 875 876 877
void Assembler::addl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x03);
  emit_operand(dst, src);
D
duke 已提交
878 879
}

880 881 882
void Assembler::addl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x03, 0xC0, dst, src);
D
duke 已提交
883 884
}

885 886 887 888 889 890
void Assembler::addr_nop_4() {
  // 4 bytes: NOP DWORD PTR [EAX+0]
  emit_byte(0x0F);
  emit_byte(0x1F);
  emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
  emit_byte(0);    // 8-bits offset (1 byte)
D
duke 已提交
891 892
}

893 894 895 896 897 898 899
void Assembler::addr_nop_5() {
  // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
  emit_byte(0x0F);
  emit_byte(0x1F);
  emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
  emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
  emit_byte(0);    // 8-bits offset (1 byte)
D
duke 已提交
900 901
}

902 903 904 905 906 907
void Assembler::addr_nop_7() {
  // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
  emit_byte(0x0F);
  emit_byte(0x1F);
  emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
  emit_long(0);    // 32-bits offset (4 bytes)
D
duke 已提交
908 909
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
void Assembler::addr_nop_8() {
  // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
  emit_byte(0x0F);
  emit_byte(0x1F);
  emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
  emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
  emit_long(0);    // 32-bits offset (4 bytes)
}

void Assembler::addsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x58);
  emit_byte(0xC0 | encode);
}

void Assembler::addsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
930
  InstructionMark im(this);
931 932 933 934
  emit_byte(0xF2);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x58);
D
duke 已提交
935 936 937
  emit_operand(dst, src);
}

938 939 940 941 942 943 944 945 946 947 948
void Assembler::addss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x58);
  emit_byte(0xC0 | encode);
}

void Assembler::addss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
949
  InstructionMark im(this);
950 951 952 953 954 955 956 957
  emit_byte(0xF3);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x58);
  emit_operand(dst, src);
}

void Assembler::andl(Register dst, int32_t imm32) {
D
duke 已提交
958
  prefix(dst);
959
  emit_arith(0x81, 0xE0, dst, imm32);
D
duke 已提交
960 961
}

962
void Assembler::andl(Register dst, Address src) {
D
duke 已提交
963
  InstructionMark im(this);
964 965 966
  prefix(src, dst);
  emit_byte(0x23);
  emit_operand(dst, src);
D
duke 已提交
967 968
}

969 970 971
void Assembler::andl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x23, 0xC0, dst, src);
D
duke 已提交
972 973
}

974 975
void Assembler::andpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
976 977 978
  InstructionMark im(this);
  emit_byte(0x66);
  prefix(src, dst);
979 980
  emit_byte(0x0F);
  emit_byte(0x54);
D
duke 已提交
981 982 983
  emit_operand(dst, src);
}

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
void Assembler::bsfl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xBC);
  emit_byte(0xC0 | encode);
}

void Assembler::bsrl(Register dst, Register src) {
  assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xBD);
  emit_byte(0xC0 | encode);
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
void Assembler::bswapl(Register reg) { // bswap
  int encode = prefix_and_encode(reg->encoding());
  emit_byte(0x0F);
  emit_byte(0xC8 | encode);
}

void Assembler::call(Label& L, relocInfo::relocType rtype) {
  // suspect disp32 is always good
  int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);

  if (L.is_bound()) {
    const int long_size = 5;
    int offs = (int)( target(L) - pc() );
    assert(offs <= 0, "assembler error");
    InstructionMark im(this);
    // 1110 1000 #32-bit disp
    emit_byte(0xE8);
    emit_data(offs - long_size, rtype, operand);
  } else {
    InstructionMark im(this);
    // 1110 1000 #32-bit disp
    L.add_patch_at(code(), locator());

    emit_byte(0xE8);
    emit_data(int(0), rtype, operand);
  }
}

void Assembler::call(Register dst) {
  // This was originally using a 32bit register encoding
  // and surely we want 64bit!
  // this is a 32bit encoding but in 64bit mode the default
  // operand size is 64bit so there is no need for the
  // wide prefix. So prefix only happens if we use the
  // new registers. Much like push/pop.
  int x = offset();
  // this may be true but dbx disassembles it as if it
  // were 32bits...
  // int encode = prefix_and_encode(dst->encoding());
  // if (offset() != x) assert(dst->encoding() >= 8, "what?");
  int encode = prefixq_and_encode(dst->encoding());

  emit_byte(0xFF);
  emit_byte(0xD0 | encode);
}


void Assembler::call(Address adr) {
D
duke 已提交
1047
  InstructionMark im(this);
1048 1049 1050
  prefix(adr);
  emit_byte(0xFF);
  emit_operand(rdx, adr);
D
duke 已提交
1051 1052
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  assert(entry != NULL, "call most probably wrong");
  InstructionMark im(this);
  emit_byte(0xE8);
  intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  assert(is_simm32(disp), "must be 32bit offset (call2)");
  // Technically, should use call32_operand, but this format is
  // implied by the fact that we're emitting a call instruction.

  int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  emit_data((int) disp, rspec, operand);
D
duke 已提交
1064 1065
}

1066 1067 1068 1069 1070 1071
void Assembler::cdql() {
  emit_byte(0x99);
}

void Assembler::cmovl(Condition cc, Register dst, Register src) {
  NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
D
duke 已提交
1072
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1073 1074
  emit_byte(0x0F);
  emit_byte(0x40 | cc);
D
duke 已提交
1075 1076 1077
  emit_byte(0xC0 | encode);
}

1078 1079 1080

void Assembler::cmovl(Condition cc, Register dst, Address src) {
  NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
D
duke 已提交
1081
  prefix(src, dst);
1082 1083
  emit_byte(0x0F);
  emit_byte(0x40 | cc);
D
duke 已提交
1084 1085 1086
  emit_operand(dst, src);
}

1087
void Assembler::cmpb(Address dst, int imm8) {
D
duke 已提交
1088 1089
  InstructionMark im(this);
  prefix(dst);
1090 1091 1092
  emit_byte(0x80);
  emit_operand(rdi, dst, 1);
  emit_byte(imm8);
D
duke 已提交
1093 1094
}

1095
void Assembler::cmpl(Address dst, int32_t imm32) {
D
duke 已提交
1096
  InstructionMark im(this);
1097 1098 1099 1100
  prefix(dst);
  emit_byte(0x81);
  emit_operand(rdi, dst, 4);
  emit_long(imm32);
D
duke 已提交
1101 1102
}

1103 1104 1105
void Assembler::cmpl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xF8, dst, imm32);
D
duke 已提交
1106 1107
}

1108 1109 1110
void Assembler::cmpl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x3B, 0xC0, dst, src);
D
duke 已提交
1111 1112 1113
}


1114
void Assembler::cmpl(Register dst, Address  src) {
D
duke 已提交
1115
  InstructionMark im(this);
1116 1117
  prefix(src, dst);
  emit_byte(0x3B);
D
duke 已提交
1118 1119 1120
  emit_operand(dst, src);
}

1121
void Assembler::cmpw(Address dst, int imm16) {
D
duke 已提交
1122
  InstructionMark im(this);
1123 1124 1125 1126 1127
  assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  emit_byte(0x66);
  emit_byte(0x81);
  emit_operand(rdi, dst, 2);
  emit_word(imm16);
D
duke 已提交
1128 1129
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
// The 32-bit cmpxchg compares the value at adr with the contents of rax,
// and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
// The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  if (Atomics & 2) {
     // caveat: no instructionmark, so this isn't relocatable.
     // Emit a synthetic, non-atomic, CAS equivalent.
     // Beware.  The synthetic form sets all ICCs, not just ZF.
     // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
     cmpl(rax, adr);
     movl(rax, adr);
     if (reg != rax) {
        Label L ;
        jcc(Assembler::notEqual, L);
        movl(adr, reg);
        bind(L);
     }
  } else {
     InstructionMark im(this);
     prefix(adr, reg);
     emit_byte(0x0F);
     emit_byte(0xB1);
     emit_operand(reg, adr);
  }
D
duke 已提交
1154 1155
}

1156 1157 1158 1159 1160 1161
void Assembler::comisd(XMMRegister dst, Address src) {
  // NOTE: dbx seems to decode this as comiss even though the
  // 0x66 is there. Strangly ucomisd comes out correct
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  comiss(dst, src);
D
duke 已提交
1162 1163
}

1164 1165
void Assembler::comiss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
1166 1167 1168 1169

  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x0F);
1170
  emit_byte(0x2F);
D
duke 已提交
1171 1172 1173
  emit_operand(dst, src);
}

1174 1175 1176
void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF3);
D
duke 已提交
1177 1178
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1179
  emit_byte(0xE6);
D
duke 已提交
1180 1181 1182
  emit_byte(0xC0 | encode);
}

1183 1184 1185
void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
D
duke 已提交
1186
  emit_byte(0x0F);
1187
  emit_byte(0x5B);
D
duke 已提交
1188 1189 1190
  emit_byte(0xC0 | encode);
}

1191 1192 1193
void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
D
duke 已提交
1194 1195
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1196
  emit_byte(0x5A);
D
duke 已提交
1197 1198 1199
  emit_byte(0xC0 | encode);
}

1200 1201 1202
void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
D
duke 已提交
1203 1204
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1205
  emit_byte(0x2A);
D
duke 已提交
1206 1207 1208
  emit_byte(0xC0 | encode);
}

1209 1210
void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
1211
  emit_byte(0xF3);
1212
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
D
duke 已提交
1213
  emit_byte(0x0F);
1214 1215
  emit_byte(0x2A);
  emit_byte(0xC0 | encode);
D
duke 已提交
1216 1217
}

1218 1219
void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1220 1221 1222
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1223
  emit_byte(0x5A);
D
duke 已提交
1224 1225 1226
  emit_byte(0xC0 | encode);
}

1227 1228
void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1229 1230 1231
  emit_byte(0xF2);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1232
  emit_byte(0x2C);
D
duke 已提交
1233 1234 1235
  emit_byte(0xC0 | encode);
}

1236 1237 1238 1239
void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
D
duke 已提交
1240
  emit_byte(0x0F);
1241
  emit_byte(0x2C);
D
duke 已提交
1242 1243 1244
  emit_byte(0xC0 | encode);
}

1245 1246 1247 1248 1249 1250
void Assembler::decl(Address dst) {
  // Don't use it directly. Use MacroAssembler::decrement() instead.
  InstructionMark im(this);
  prefix(dst);
  emit_byte(0xFF);
  emit_operand(rcx, dst);
D
duke 已提交
1251 1252
}

1253 1254
void Assembler::divsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1255
  InstructionMark im(this);
1256
  emit_byte(0xF2);
D
duke 已提交
1257 1258
  prefix(src, dst);
  emit_byte(0x0F);
1259
  emit_byte(0x5E);
D
duke 已提交
1260 1261 1262
  emit_operand(dst, src);
}

1263 1264 1265
void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
D
duke 已提交
1266 1267
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1268
  emit_byte(0x5E);
D
duke 已提交
1269 1270 1271
  emit_byte(0xC0 | encode);
}

1272 1273
void Assembler::divss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
1274
  InstructionMark im(this);
1275
  emit_byte(0xF3);
D
duke 已提交
1276 1277
  prefix(src, dst);
  emit_byte(0x0F);
1278
  emit_byte(0x5E);
D
duke 已提交
1279 1280 1281
  emit_operand(dst, src);
}

1282 1283 1284 1285
void Assembler::divss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
D
duke 已提交
1286
  emit_byte(0x0F);
1287
  emit_byte(0x5E);
D
duke 已提交
1288 1289 1290
  emit_byte(0xC0 | encode);
}

1291 1292
void Assembler::emms() {
  NOT_LP64(assert(VM_Version::supports_mmx(), ""));
D
duke 已提交
1293
  emit_byte(0x0F);
1294
  emit_byte(0x77);
D
duke 已提交
1295 1296
}

1297 1298
void Assembler::hlt() {
  emit_byte(0xF4);
D
duke 已提交
1299 1300
}

1301 1302 1303 1304
void Assembler::idivl(Register src) {
  int encode = prefix_and_encode(src->encoding());
  emit_byte(0xF7);
  emit_byte(0xF8 | encode);
D
duke 已提交
1305 1306
}

1307 1308 1309 1310 1311 1312
void Assembler::divl(Register src) { // Unsigned
  int encode = prefix_and_encode(src->encoding());
  emit_byte(0xF7);
  emit_byte(0xF0 | encode);
}

1313
void Assembler::imull(Register dst, Register src) {
D
duke 已提交
1314 1315
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1316
  emit_byte(0xAF);
D
duke 已提交
1317 1318 1319 1320
  emit_byte(0xC0 | encode);
}


1321
void Assembler::imull(Register dst, Register src, int value) {
D
duke 已提交
1322
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
1323 1324 1325
  if (is8bit(value)) {
    emit_byte(0x6B);
    emit_byte(0xC0 | encode);
1326
    emit_byte(value & 0xFF);
1327 1328 1329 1330 1331
  } else {
    emit_byte(0x69);
    emit_byte(0xC0 | encode);
    emit_long(value);
  }
D
duke 已提交
1332 1333
}

1334 1335
void Assembler::incl(Address dst) {
  // Don't use it directly. Use MacroAssembler::increment() instead.
D
duke 已提交
1336
  InstructionMark im(this);
1337 1338 1339
  prefix(dst);
  emit_byte(0xFF);
  emit_operand(rax, dst);
D
duke 已提交
1340 1341
}

1342
void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
D
duke 已提交
1343
  InstructionMark im(this);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
  relocate(rtype);
  assert((0 <= cc) && (cc < 16), "illegal cc");
  if (L.is_bound()) {
    address dst = target(L);
    assert(dst != NULL, "jcc most probably wrong");

    const int short_size = 2;
    const int long_size = 6;
    intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
    if (rtype == relocInfo::none && is8bit(offs - short_size)) {
      // 0111 tttn #8-bit disp
      emit_byte(0x70 | cc);
      emit_byte((offs - short_size) & 0xFF);
    } else {
      // 0000 1111 1000 tttn #32-bit disp
      assert(is_simm32(offs - long_size),
             "must be 32bit offset (call4)");
      emit_byte(0x0F);
      emit_byte(0x80 | cc);
      emit_long(offs - long_size);
    }
  } else {
    // Note: could eliminate cond. jumps to this jump if condition
    //       is the same however, seems to be rather unlikely case.
    // Note: use jccb() if label to be bound is very close to get
    //       an 8-bit displacement
    L.add_patch_at(code(), locator());
    emit_byte(0x0F);
    emit_byte(0x80 | cc);
    emit_long(0);
  }
D
duke 已提交
1375 1376
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
void Assembler::jccb(Condition cc, Label& L) {
  if (L.is_bound()) {
    const int short_size = 2;
    address entry = target(L);
    assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
           "Dispacement too large for a short jmp");
    intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
    // 0111 tttn #8-bit disp
    emit_byte(0x70 | cc);
    emit_byte((offs - short_size) & 0xFF);
  } else {
    InstructionMark im(this);
    L.add_patch_at(code(), locator());
    emit_byte(0x70 | cc);
    emit_byte(0);
  }
D
duke 已提交
1393 1394
}

1395
void Assembler::jmp(Address adr) {
D
duke 已提交
1396
  InstructionMark im(this);
1397 1398 1399
  prefix(adr);
  emit_byte(0xFF);
  emit_operand(rsp, adr);
D
duke 已提交
1400 1401
}

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
  if (L.is_bound()) {
    address entry = target(L);
    assert(entry != NULL, "jmp most probably wrong");
    InstructionMark im(this);
    const int short_size = 2;
    const int long_size = 5;
    intptr_t offs = entry - _code_pos;
    if (rtype == relocInfo::none && is8bit(offs - short_size)) {
      emit_byte(0xEB);
      emit_byte((offs - short_size) & 0xFF);
    } else {
      emit_byte(0xE9);
      emit_long(offs - long_size);
    }
  } else {
    // By default, forward jumps are always 32-bit displacements, since
    // we can't yet know where the label will be bound.  If you're sure that
    // the forward jump will not run beyond 256 bytes, use jmpb to
    // force an 8-bit displacement.
    InstructionMark im(this);
    relocate(rtype);
    L.add_patch_at(code(), locator());
    emit_byte(0xE9);
    emit_long(0);
  }
D
duke 已提交
1428 1429
}

1430 1431 1432 1433
void Assembler::jmp(Register entry) {
  int encode = prefix_and_encode(entry->encoding());
  emit_byte(0xFF);
  emit_byte(0xE0 | encode);
D
duke 已提交
1434 1435
}

1436
void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
D
duke 已提交
1437
  InstructionMark im(this);
1438 1439 1440 1441 1442
  emit_byte(0xE9);
  assert(dest != NULL, "must have a target");
  intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  assert(is_simm32(disp), "must be 32bit offset (jmp)");
  emit_data(disp, rspec.reloc(), call32_operand);
D
duke 已提交
1443 1444
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
void Assembler::jmpb(Label& L) {
  if (L.is_bound()) {
    const int short_size = 2;
    address entry = target(L);
    assert(is8bit((entry - _code_pos) + short_size),
           "Dispacement too large for a short jmp");
    assert(entry != NULL, "jmp most probably wrong");
    intptr_t offs = entry - _code_pos;
    emit_byte(0xEB);
    emit_byte((offs - short_size) & 0xFF);
  } else {
    InstructionMark im(this);
    L.add_patch_at(code(), locator());
    emit_byte(0xEB);
    emit_byte(0);
  }
D
duke 已提交
1461 1462
}

1463 1464
void Assembler::ldmxcsr( Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
1465
  InstructionMark im(this);
1466 1467 1468 1469
  prefix(src);
  emit_byte(0x0F);
  emit_byte(0xAE);
  emit_operand(as_Register(2), src);
D
duke 已提交
1470 1471
}

1472
void Assembler::leal(Register dst, Address src) {
D
duke 已提交
1473
  InstructionMark im(this);
1474 1475 1476 1477 1478 1479
#ifdef _LP64
  emit_byte(0x67); // addr32
  prefix(src, dst);
#endif // LP64
  emit_byte(0x8D);
  emit_operand(dst, src);
D
duke 已提交
1480 1481
}

1482 1483 1484 1485 1486 1487 1488
void Assembler::lock() {
  if (Atomics & 1) {
     // Emit either nothing, a NOP, or a NOP: prefix
     emit_byte(0x90) ;
  } else {
     emit_byte(0xF0);
  }
D
duke 已提交
1489 1490
}

1491 1492 1493 1494 1495 1496 1497 1498 1499
void Assembler::lzcntl(Register dst, Register src) {
  assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xBD);
  emit_byte(0xC0 | encode);
}

1500
// Emit mfence instruction
1501
void Assembler::mfence() {
1502 1503 1504 1505
  NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  emit_byte( 0x0F );
  emit_byte( 0xAE );
  emit_byte( 0xF0 );
D
duke 已提交
1506 1507
}

1508 1509
void Assembler::mov(Register dst, Register src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
D
duke 已提交
1510 1511
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  int dstenc = dst->encoding();
  int srcenc = src->encoding();
  emit_byte(0x66);
  if (dstenc < 8) {
    if (srcenc >= 8) {
      prefix(REX_B);
      srcenc -= 8;
    }
  } else {
    if (srcenc < 8) {
      prefix(REX_R);
    } else {
      prefix(REX_RB);
      srcenc -= 8;
    }
    dstenc -= 8;
  }
  emit_byte(0x0F);
  emit_byte(0x28);
  emit_byte(0xC0 | dstenc << 3 | srcenc);
D
duke 已提交
1534 1535
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  int dstenc = dst->encoding();
  int srcenc = src->encoding();
  if (dstenc < 8) {
    if (srcenc >= 8) {
      prefix(REX_B);
      srcenc -= 8;
    }
  } else {
    if (srcenc < 8) {
      prefix(REX_R);
    } else {
      prefix(REX_RB);
      srcenc -= 8;
    }
    dstenc -= 8;
  }
  emit_byte(0x0F);
  emit_byte(0x28);
  emit_byte(0xC0 | dstenc << 3 | srcenc);
}

void Assembler::movb(Register dst, Address src) {
  NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
D
duke 已提交
1561
  InstructionMark im(this);
1562 1563
  prefix(src, dst, true);
  emit_byte(0x8A);
D
duke 已提交
1564 1565 1566 1567
  emit_operand(dst, src);
}


1568
void Assembler::movb(Address dst, int imm8) {
D
duke 已提交
1569
  InstructionMark im(this);
1570 1571 1572 1573
   prefix(dst);
  emit_byte(0xC6);
  emit_operand(rax, dst, 1);
  emit_byte(imm8);
D
duke 已提交
1574 1575
}

1576 1577 1578

void Assembler::movb(Address dst, Register src) {
  assert(src->has_byte_register(), "must have byte register");
D
duke 已提交
1579
  InstructionMark im(this);
1580 1581
  prefix(dst, src, true);
  emit_byte(0x88);
D
duke 已提交
1582 1583 1584
  emit_operand(src, dst);
}

1585 1586 1587 1588 1589 1590 1591
void Assembler::movdl(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x6E);
  emit_byte(0xC0 | encode);
D
duke 已提交
1592 1593
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
void Assembler::movdl(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  // swap src/dst to get correct prefix
  int encode = prefix_and_encode(src->encoding(), dst->encoding());
  emit_byte(0x0F);
  emit_byte(0x7E);
  emit_byte(0xC0 | encode);
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
void Assembler::movdl(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  emit_byte(0x66);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x6E);
  emit_operand(dst, src);
}


1615 1616
void Assembler::movdqa(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1617
  InstructionMark im(this);
1618
  emit_byte(0x66);
D
duke 已提交
1619
  prefix(src, dst);
1620 1621
  emit_byte(0x0F);
  emit_byte(0x6F);
D
duke 已提交
1622 1623 1624
  emit_operand(dst, src);
}

1625 1626 1627 1628 1629 1630 1631
void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x6F);
  emit_byte(0xC0 | encode);
D
duke 已提交
1632 1633
}

1634 1635
void Assembler::movdqa(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1636
  InstructionMark im(this);
1637 1638 1639 1640 1641
  emit_byte(0x66);
  prefix(dst, src);
  emit_byte(0x0F);
  emit_byte(0x7F);
  emit_operand(src, dst);
D
duke 已提交
1642 1643
}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
void Assembler::movdqu(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  emit_byte(0xF3);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x6F);
  emit_operand(dst, src);
}

void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF3);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x6F);
  emit_byte(0xC0 | encode);
}

void Assembler::movdqu(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  emit_byte(0xF3);
  prefix(dst, src);
  emit_byte(0x0F);
  emit_byte(0x7F);
  emit_operand(src, dst);
}

1673 1674 1675 1676 1677 1678
// Uses zero extension on 64bit

void Assembler::movl(Register dst, int32_t imm32) {
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xB8 | encode);
  emit_long(imm32);
D
duke 已提交
1679 1680
}

1681 1682 1683 1684
void Assembler::movl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x8B);
  emit_byte(0xC0 | encode);
D
duke 已提交
1685 1686
}

1687
void Assembler::movl(Register dst, Address src) {
D
duke 已提交
1688
  InstructionMark im(this);
1689 1690
  prefix(src, dst);
  emit_byte(0x8B);
D
duke 已提交
1691 1692 1693
  emit_operand(dst, src);
}

1694 1695 1696 1697 1698 1699
void Assembler::movl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_byte(0xC7);
  emit_operand(rax, dst, 4);
  emit_long(imm32);
D
duke 已提交
1700 1701
}

1702 1703 1704 1705 1706
void Assembler::movl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
  emit_byte(0x89);
  emit_operand(src, dst);
D
duke 已提交
1707 1708
}

1709 1710 1711 1712 1713
// New cpus require to use movsd and movss to avoid partial register stall
// when loading from memory. But for old Opteron use movlpd instead of movsd.
// The selection is done in MacroAssembler::movdbl() and movflt().
void Assembler::movlpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1714
  InstructionMark im(this);
1715
  emit_byte(0x66);
D
duke 已提交
1716
  prefix(src, dst);
1717 1718
  emit_byte(0x0F);
  emit_byte(0x12);
D
duke 已提交
1719 1720 1721
  emit_operand(dst, src);
}

1722 1723 1724 1725 1726
void Assembler::movq( MMXRegister dst, Address src ) {
  assert( VM_Version::supports_mmx(), "" );
  emit_byte(0x0F);
  emit_byte(0x6F);
  emit_operand(dst, src);
D
duke 已提交
1727 1728
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
void Assembler::movq( Address dst, MMXRegister src ) {
  assert( VM_Version::supports_mmx(), "" );
  emit_byte(0x0F);
  emit_byte(0x7F);
  // workaround gcc (3.2.1-7a) bug
  // In that version of gcc with only an emit_operand(MMX, Address)
  // gcc will tail jump and try and reverse the parameters completely
  // obliterating dst in the process. By having a version available
  // that doesn't need to swap the args at the tail jump the bug is
  // avoided.
  emit_operand(dst, src);
D
duke 已提交
1740 1741
}

1742 1743
void Assembler::movq(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1744
  InstructionMark im(this);
1745 1746 1747 1748
  emit_byte(0xF3);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x7E);
D
duke 已提交
1749 1750 1751
  emit_operand(dst, src);
}

1752 1753
void Assembler::movq(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1754
  InstructionMark im(this);
1755 1756 1757 1758 1759
  emit_byte(0x66);
  prefix(dst, src);
  emit_byte(0x0F);
  emit_byte(0xD6);
  emit_operand(src, dst);
D
duke 已提交
1760 1761
}

1762
void Assembler::movsbl(Register dst, Address src) { // movsxb
D
duke 已提交
1763
  InstructionMark im(this);
1764 1765 1766 1767
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0xBE);
  emit_operand(dst, src);
D
duke 已提交
1768 1769
}

1770 1771 1772 1773 1774 1775
void Assembler::movsbl(Register dst, Register src) { // movsxb
  NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  emit_byte(0x0F);
  emit_byte(0xBE);
  emit_byte(0xC0 | encode);
D
duke 已提交
1776 1777
}

1778 1779 1780 1781 1782 1783 1784
void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x10);
  emit_byte(0xC0 | encode);
D
duke 已提交
1785 1786
}

1787 1788
void Assembler::movsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1789
  InstructionMark im(this);
1790
  emit_byte(0xF2);
D
duke 已提交
1791
  prefix(src, dst);
1792 1793
  emit_byte(0x0F);
  emit_byte(0x10);
D
duke 已提交
1794 1795 1796
  emit_operand(dst, src);
}

1797 1798
void Assembler::movsd(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1799
  InstructionMark im(this);
1800 1801 1802 1803 1804
  emit_byte(0xF2);
  prefix(dst, src);
  emit_byte(0x0F);
  emit_byte(0x11);
  emit_operand(src, dst);
D
duke 已提交
1805 1806
}

1807 1808 1809 1810 1811 1812 1813
void Assembler::movss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x10);
  emit_byte(0xC0 | encode);
D
duke 已提交
1814 1815
}

1816 1817 1818 1819 1820 1821 1822 1823
void Assembler::movss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  emit_byte(0xF3);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x10);
  emit_operand(dst, src);
D
duke 已提交
1824 1825
}

1826 1827 1828 1829 1830 1831 1832 1833
void Assembler::movss(Address dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  emit_byte(0xF3);
  prefix(dst, src);
  emit_byte(0x0F);
  emit_byte(0x11);
  emit_operand(src, dst);
D
duke 已提交
1834 1835
}

1836
void Assembler::movswl(Register dst, Address src) { // movsxw
D
duke 已提交
1837
  InstructionMark im(this);
1838 1839 1840
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0xBF);
D
duke 已提交
1841 1842 1843
  emit_operand(dst, src);
}

1844
void Assembler::movswl(Register dst, Register src) { // movsxw
D
duke 已提交
1845 1846
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1847
  emit_byte(0xBF);
D
duke 已提交
1848 1849 1850
  emit_byte(0xC0 | encode);
}

1851 1852
void Assembler::movw(Address dst, int imm16) {
  InstructionMark im(this);
D
duke 已提交
1853

1854 1855 1856 1857 1858
  emit_byte(0x66); // switch to 16-bit mode
  prefix(dst);
  emit_byte(0xC7);
  emit_operand(rax, dst, 2);
  emit_word(imm16);
D
duke 已提交
1859 1860
}

1861
void Assembler::movw(Register dst, Address src) {
D
duke 已提交
1862
  InstructionMark im(this);
1863 1864 1865 1866
  emit_byte(0x66);
  prefix(src, dst);
  emit_byte(0x8B);
  emit_operand(dst, src);
D
duke 已提交
1867 1868
}

1869 1870 1871 1872 1873 1874
void Assembler::movw(Address dst, Register src) {
  InstructionMark im(this);
  emit_byte(0x66);
  prefix(dst, src);
  emit_byte(0x89);
  emit_operand(src, dst);
D
duke 已提交
1875 1876
}

1877
void Assembler::movzbl(Register dst, Address src) { // movzxb
D
duke 已提交
1878
  InstructionMark im(this);
1879 1880 1881 1882
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0xB6);
  emit_operand(dst, src);
D
duke 已提交
1883 1884
}

1885 1886 1887 1888 1889 1890
void Assembler::movzbl(Register dst, Register src) { // movzxb
  NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  emit_byte(0x0F);
  emit_byte(0xB6);
  emit_byte(0xC0 | encode);
D
duke 已提交
1891 1892
}

1893 1894 1895
void Assembler::movzwl(Register dst, Address src) { // movzxw
  InstructionMark im(this);
  prefix(src, dst);
D
duke 已提交
1896
  emit_byte(0x0F);
1897 1898
  emit_byte(0xB7);
  emit_operand(dst, src);
D
duke 已提交
1899 1900
}

1901
void Assembler::movzwl(Register dst, Register src) { // movzxw
D
duke 已提交
1902 1903
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
1904
  emit_byte(0xB7);
D
duke 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
  emit_byte(0xC0 | encode);
}

void Assembler::mull(Address src) {
  InstructionMark im(this);
  prefix(src);
  emit_byte(0xF7);
  emit_operand(rsp, src);
}

void Assembler::mull(Register src) {
  int encode = prefix_and_encode(src->encoding());
  emit_byte(0xF7);
  emit_byte(0xE0 | encode);
}

1921 1922
void Assembler::mulsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
1923
  InstructionMark im(this);
1924
  emit_byte(0xF2);
D
duke 已提交
1925
  prefix(src, dst);
1926 1927
  emit_byte(0x0F);
  emit_byte(0x59);
D
duke 已提交
1928 1929 1930
  emit_operand(dst, src);
}

1931 1932 1933 1934 1935 1936 1937
void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x59);
  emit_byte(0xC0 | encode);
D
duke 已提交
1938 1939
}

1940 1941
void Assembler::mulss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
1942
  InstructionMark im(this);
1943 1944 1945 1946
  emit_byte(0xF3);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x59);
D
duke 已提交
1947 1948 1949
  emit_operand(dst, src);
}

1950 1951 1952 1953 1954 1955 1956
void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x59);
  emit_byte(0xC0 | encode);
D
duke 已提交
1957 1958
}

1959
void Assembler::negl(Register dst) {
D
duke 已提交
1960
  int encode = prefix_and_encode(dst->encoding());
1961 1962
  emit_byte(0xF7);
  emit_byte(0xD8 | encode);
D
duke 已提交
1963 1964
}

1965 1966 1967 1968 1969 1970 1971
void Assembler::nop(int i) {
#ifdef ASSERT
  assert(i > 0, " ");
  // The fancy nops aren't currently recognized by debuggers making it a
  // pain to disassemble code while debugging. If asserts are on clearly
  // speed is not an issue so simply use the single byte traditional nop
  // to do alignment.
D
duke 已提交
1972

1973 1974
  for (; i > 0 ; i--) emit_byte(0x90);
  return;
D
duke 已提交
1975

1976
#endif // ASSERT
D
duke 已提交
1977

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
  if (UseAddressNop && VM_Version::is_intel()) {
    //
    // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
    //  1: 0x90
    //  2: 0x66 0x90
    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
    //  4: 0x0F 0x1F 0x40 0x00
    //  5: 0x0F 0x1F 0x44 0x00 0x00
    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
D
duke 已提交
1992

1993
    // The rest coding is Intel specific - don't use consecutive address nops
D
duke 已提交
1994

1995 1996 1997 1998
    // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
    // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
D
duke 已提交
1999

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
    while(i >= 15) {
      // For Intel don't generate consecutive addess nops (mix with regular nops)
      i -= 15;
      emit_byte(0x66);   // size prefix
      emit_byte(0x66);   // size prefix
      emit_byte(0x66);   // size prefix
      addr_nop_8();
      emit_byte(0x66);   // size prefix
      emit_byte(0x66);   // size prefix
      emit_byte(0x66);   // size prefix
      emit_byte(0x90);   // nop
    }
    switch (i) {
      case 14:
        emit_byte(0x66); // size prefix
      case 13:
        emit_byte(0x66); // size prefix
      case 12:
        addr_nop_8();
        emit_byte(0x66); // size prefix
        emit_byte(0x66); // size prefix
        emit_byte(0x66); // size prefix
        emit_byte(0x90); // nop
        break;
      case 11:
        emit_byte(0x66); // size prefix
      case 10:
        emit_byte(0x66); // size prefix
      case 9:
        emit_byte(0x66); // size prefix
      case 8:
        addr_nop_8();
        break;
      case 7:
        addr_nop_7();
        break;
      case 6:
        emit_byte(0x66); // size prefix
      case 5:
        addr_nop_5();
        break;
      case 4:
        addr_nop_4();
        break;
      case 3:
        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
        emit_byte(0x66); // size prefix
      case 2:
        emit_byte(0x66); // size prefix
      case 1:
        emit_byte(0x90); // nop
        break;
      default:
        assert(i == 0, " ");
    }
    return;
  }
  if (UseAddressNop && VM_Version::is_amd()) {
    //
    // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
    //  1: 0x90
    //  2: 0x66 0x90
    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
    //  4: 0x0F 0x1F 0x40 0x00
    //  5: 0x0F 0x1F 0x44 0x00 0x00
    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00

    // The rest coding is AMD specific - use consecutive address nops

    // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
    // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
    // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
    // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
    //     Size prefixes (0x66) are added for larger sizes

    while(i >= 22) {
      i -= 11;
      emit_byte(0x66); // size prefix
      emit_byte(0x66); // size prefix
      emit_byte(0x66); // size prefix
      addr_nop_8();
    }
    // Generate first nop for size between 21-12
    switch (i) {
      case 21:
        i -= 1;
        emit_byte(0x66); // size prefix
      case 20:
      case 19:
        i -= 1;
        emit_byte(0x66); // size prefix
      case 18:
      case 17:
        i -= 1;
        emit_byte(0x66); // size prefix
      case 16:
      case 15:
        i -= 8;
        addr_nop_8();
        break;
      case 14:
      case 13:
        i -= 7;
        addr_nop_7();
        break;
      case 12:
        i -= 6;
        emit_byte(0x66); // size prefix
        addr_nop_5();
        break;
      default:
        assert(i < 12, " ");
    }

    // Generate second nop for size between 11-1
    switch (i) {
      case 11:
        emit_byte(0x66); // size prefix
      case 10:
        emit_byte(0x66); // size prefix
      case 9:
        emit_byte(0x66); // size prefix
      case 8:
        addr_nop_8();
        break;
      case 7:
        addr_nop_7();
        break;
      case 6:
        emit_byte(0x66); // size prefix
      case 5:
        addr_nop_5();
        break;
      case 4:
        addr_nop_4();
        break;
      case 3:
        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
        emit_byte(0x66); // size prefix
      case 2:
        emit_byte(0x66); // size prefix
      case 1:
        emit_byte(0x90); // nop
        break;
      default:
        assert(i == 0, " ");
    }
    return;
  }

  // Using nops with size prefixes "0x66 0x90".
  // From AMD Optimization Guide:
  //  1: 0x90
  //  2: 0x66 0x90
  //  3: 0x66 0x66 0x90
  //  4: 0x66 0x66 0x66 0x90
  //  5: 0x66 0x66 0x90 0x66 0x90
  //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  //
  while(i > 12) {
    i -= 4;
    emit_byte(0x66); // size prefix
    emit_byte(0x66);
    emit_byte(0x66);
    emit_byte(0x90); // nop
  }
  // 1 - 12 nops
  if(i > 8) {
    if(i > 9) {
      i -= 1;
      emit_byte(0x66);
    }
    i -= 3;
    emit_byte(0x66);
    emit_byte(0x66);
    emit_byte(0x90);
  }
  // 1 - 8 nops
  if(i > 4) {
    if(i > 6) {
      i -= 1;
      emit_byte(0x66);
    }
    i -= 3;
    emit_byte(0x66);
    emit_byte(0x66);
    emit_byte(0x90);
  }
  switch (i) {
    case 4:
      emit_byte(0x66);
    case 3:
      emit_byte(0x66);
    case 2:
      emit_byte(0x66);
    case 1:
      emit_byte(0x90);
      break;
    default:
      assert(i == 0, " ");
  }
D
duke 已提交
2211 2212
}

2213 2214 2215 2216
void Assembler::notl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xF7);
  emit_byte(0xD0 | encode );
D
duke 已提交
2217 2218
}

2219
void Assembler::orl(Address dst, int32_t imm32) {
D
duke 已提交
2220
  InstructionMark im(this);
2221
  prefix(dst);
2222
  emit_arith_operand(0x81, rcx, dst, imm32);
D
duke 已提交
2223 2224
}

2225 2226 2227
void Assembler::orl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xC8, dst, imm32);
D
duke 已提交
2228 2229
}

2230
void Assembler::orl(Register dst, Address src) {
D
duke 已提交
2231
  InstructionMark im(this);
2232 2233
  prefix(src, dst);
  emit_byte(0x0B);
D
duke 已提交
2234 2235 2236
  emit_operand(dst, src);
}

2237 2238 2239
void Assembler::orl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x0B, 0xC0, dst, src);
D
duke 已提交
2240 2241
}

C
cfang 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  assert(VM_Version::supports_sse4_2(), "");

  InstructionMark im(this);
  emit_byte(0x66);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x3A);
  emit_byte(0x61);
  emit_operand(dst, src);
  emit_byte(imm8);
}

void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  assert(VM_Version::supports_sse4_2(), "");

  emit_byte(0x66);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x3A);
  emit_byte(0x61);
  emit_byte(0xC0 | encode);
  emit_byte(imm8);
}

2267 2268
// generic
void Assembler::pop(Register dst) {
D
duke 已提交
2269
  int encode = prefix_and_encode(dst->encoding());
2270
  emit_byte(0x58 | encode);
D
duke 已提交
2271 2272
}

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
void Assembler::popcntl(Register dst, Address src) {
  assert(VM_Version::supports_popcnt(), "must support");
  InstructionMark im(this);
  emit_byte(0xF3);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0xB8);
  emit_operand(dst, src);
}

void Assembler::popcntl(Register dst, Register src) {
  assert(VM_Version::supports_popcnt(), "must support");
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xB8);
  emit_byte(0xC0 | encode);
}

2292 2293
void Assembler::popf() {
  emit_byte(0x9D);
D
duke 已提交
2294 2295
}

R
roland 已提交
2296
#ifndef _LP64 // no 32bit push/pop on amd64
2297 2298 2299 2300 2301 2302
void Assembler::popl(Address dst) {
  // NOTE: this will adjust stack by 8byte on 64bits
  InstructionMark im(this);
  prefix(dst);
  emit_byte(0x8F);
  emit_operand(rax, dst);
D
duke 已提交
2303
}
R
roland 已提交
2304
#endif
D
duke 已提交
2305

2306 2307 2308
void Assembler::prefetch_prefix(Address src) {
  prefix(src);
  emit_byte(0x0F);
D
duke 已提交
2309 2310
}

2311 2312 2313 2314 2315 2316
void Assembler::prefetchnta(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
  emit_byte(0x18);
  emit_operand(rax, src); // 0, src
D
duke 已提交
2317 2318
}

2319 2320 2321 2322 2323 2324
void Assembler::prefetchr(Address src) {
  NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
  emit_byte(0x0D);
  emit_operand(rax, src); // 0, src
D
duke 已提交
2325 2326
}

2327 2328 2329 2330 2331 2332
void Assembler::prefetcht0(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
  emit_byte(0x18);
  emit_operand(rcx, src); // 1, src
D
duke 已提交
2333 2334
}

2335 2336
void Assembler::prefetcht1(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
D
duke 已提交
2337
  InstructionMark im(this);
2338 2339 2340
  prefetch_prefix(src);
  emit_byte(0x18);
  emit_operand(rdx, src); // 2, src
D
duke 已提交
2341 2342
}

2343 2344 2345 2346 2347 2348
void Assembler::prefetcht2(Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  InstructionMark im(this);
  prefetch_prefix(src);
  emit_byte(0x18);
  emit_operand(rbx, src); // 3, src
D
duke 已提交
2349 2350
}

2351 2352
void Assembler::prefetchw(Address src) {
  NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
D
duke 已提交
2353
  InstructionMark im(this);
2354 2355 2356
  prefetch_prefix(src);
  emit_byte(0x0D);
  emit_operand(rcx, src); // 1, src
D
duke 已提交
2357 2358
}

2359 2360
void Assembler::prefix(Prefix p) {
  a_byte(p);
D
duke 已提交
2361 2362
}

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
void Assembler::por(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));

  emit_byte(0x66);
  int  encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);

  emit_byte(0xEB);
  emit_byte(0xC0 | encode);
}

2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));

  emit_byte(0x66);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x70);
  emit_byte(0xC0 | encode);
  emit_byte(mode & 0xFF);

D
duke 已提交
2385 2386
}

2387 2388 2389 2390
void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));

D
duke 已提交
2391
  InstructionMark im(this);
2392 2393 2394 2395 2396 2397
  emit_byte(0x66);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x70);
  emit_operand(dst, src);
  emit_byte(mode & 0xFF);
D
duke 已提交
2398 2399
}

2400 2401 2402
void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
2403

2404 2405 2406 2407 2408 2409
  emit_byte(0xF2);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x70);
  emit_byte(0xC0 | encode);
  emit_byte(mode & 0xFF);
D
duke 已提交
2410 2411
}

2412 2413 2414 2415
void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  assert(isByte(mode), "invalid value");
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));

D
duke 已提交
2416
  InstructionMark im(this);
2417 2418 2419 2420
  emit_byte(0xF2);
  prefix(src, dst); // QQ new
  emit_byte(0x0F);
  emit_byte(0x70);
D
duke 已提交
2421
  emit_operand(dst, src);
2422
  emit_byte(mode & 0xFF);
D
duke 已提交
2423 2424
}

2425
void Assembler::psrlq(XMMRegister dst, int shift) {
2426 2427 2428 2429
  // Shift 64 bit value logically right by specified number of bits.
  // HMM Table D-1 says sse2 or mmx.
  // Do not confuse it with psrldq SSE2 instruction which
  // shifts 128 bit value in xmm register by number of bytes.
2430 2431 2432 2433 2434 2435 2436 2437
  NOT_LP64(assert(VM_Version::supports_sse(), ""));

  int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
  emit_byte(0x66);
  emit_byte(0x0F);
  emit_byte(0x73);
  emit_byte(0xC0 | encode);
  emit_byte(shift);
D
duke 已提交
2438 2439
}

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
void Assembler::psrldq(XMMRegister dst, int shift) {
  // Shift 128 bit value in xmm register by number of bytes.
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));

  int encode = prefixq_and_encode(xmm3->encoding(), dst->encoding());
  emit_byte(0x66);
  emit_byte(0x0F);
  emit_byte(0x73);
  emit_byte(0xC0 | encode);
  emit_byte(shift);
}

C
cfang 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
void Assembler::ptest(XMMRegister dst, Address src) {
  assert(VM_Version::supports_sse4_1(), "");

  InstructionMark im(this);
  emit_byte(0x66);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x38);
  emit_byte(0x17);
  emit_operand(dst, src);
}

void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  assert(VM_Version::supports_sse4_1(), "");

  emit_byte(0x66);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x38);
  emit_byte(0x17);
  emit_byte(0xC0 | encode);
}

2475 2476 2477 2478 2479 2480 2481
void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x60);
  emit_byte(0xC0 | encode);
D
duke 已提交
2482 2483
}

2484 2485 2486 2487
void Assembler::push(int32_t imm32) {
  // in 64bits we push 64bits onto the stack but only
  // take a 32bit immediate
  emit_byte(0x68);
D
duke 已提交
2488 2489 2490
  emit_long(imm32);
}

2491 2492 2493 2494
void Assembler::push(Register src) {
  int encode = prefix_and_encode(src->encoding());

  emit_byte(0x50 | encode);
D
duke 已提交
2495 2496
}

2497 2498
void Assembler::pushf() {
  emit_byte(0x9C);
D
duke 已提交
2499 2500
}

R
roland 已提交
2501
#ifndef _LP64 // no 32bit push/pop on amd64
2502 2503 2504 2505 2506 2507
void Assembler::pushl(Address src) {
  // Note this will push 64bit on 64bit
  InstructionMark im(this);
  prefix(src);
  emit_byte(0xFF);
  emit_operand(rsi, src);
D
duke 已提交
2508
}
R
roland 已提交
2509
#endif
D
duke 已提交
2510

2511 2512
void Assembler::pxor(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
2513
  InstructionMark im(this);
2514 2515
  emit_byte(0x66);
  prefix(src, dst);
D
duke 已提交
2516
  emit_byte(0x0F);
2517 2518
  emit_byte(0xEF);
  emit_operand(dst, src);
D
duke 已提交
2519 2520
}

2521 2522
void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
2523
  InstructionMark im(this);
2524 2525
  emit_byte(0x66);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
D
duke 已提交
2526
  emit_byte(0x0F);
2527 2528
  emit_byte(0xEF);
  emit_byte(0xC0 | encode);
D
duke 已提交
2529 2530
}

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
void Assembler::rcll(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
  if (imm8 == 1) {
    emit_byte(0xD1);
    emit_byte(0xD0 | encode);
  } else {
    emit_byte(0xC1);
    emit_byte(0xD0 | encode);
    emit_byte(imm8);
  }
D
duke 已提交
2542 2543
}

2544 2545 2546 2547 2548 2549 2550
// copies data from [esi] to [edi] using rcx pointer sized words
// generic
void Assembler::rep_mov() {
  emit_byte(0xF3);
  // MOVSQ
  LP64_ONLY(prefix(REX_W));
  emit_byte(0xA5);
D
duke 已提交
2551 2552
}

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
// sets rcx pointer sized words with rax, value at [edi]
// generic
void Assembler::rep_set() { // rep_set
  emit_byte(0xF3);
  // STOSQ
  LP64_ONLY(prefix(REX_W));
  emit_byte(0xAB);
}

// scans rcx pointer sized words at [edi] for occurance of rax,
// generic
void Assembler::repne_scan() { // repne_scan
  emit_byte(0xF2);
  // SCASQ
  LP64_ONLY(prefix(REX_W));
  emit_byte(0xAF);
}

#ifdef _LP64
// scans rcx 4 byte words at [edi] for occurance of rax,
// generic
void Assembler::repne_scanl() { // repne_scan
  emit_byte(0xF2);
  // SCASL
  emit_byte(0xAF);
}
#endif

void Assembler::ret(int imm16) {
  if (imm16 == 0) {
    emit_byte(0xC3);
  } else {
    emit_byte(0xC2);
    emit_word(imm16);
  }
}

void Assembler::sahf() {
#ifdef _LP64
  // Not supported in 64bit mode
  ShouldNotReachHere();
#endif
  emit_byte(0x9E);
}

void Assembler::sarl(Register dst, int imm8) {
  int encode = prefix_and_encode(dst->encoding());
  assert(isShiftCount(imm8), "illegal shift count");
  if (imm8 == 1) {
    emit_byte(0xD1);
    emit_byte(0xF8 | encode);
  } else {
    emit_byte(0xC1);
    emit_byte(0xF8 | encode);
    emit_byte(imm8);
  }
}

void Assembler::sarl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xD3);
  emit_byte(0xF8 | encode);
}

void Assembler::sbbl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
  emit_arith_operand(0x81, rbx, dst, imm32);
}

void Assembler::sbbl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xD8, dst, imm32);
}


void Assembler::sbbl(Register dst, Address src) {
D
duke 已提交
2630 2631
  InstructionMark im(this);
  prefix(src, dst);
2632
  emit_byte(0x1B);
D
duke 已提交
2633 2634 2635
  emit_operand(dst, src);
}

2636 2637 2638
void Assembler::sbbl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x1B, 0xC0, dst, src);
D
duke 已提交
2639 2640
}

2641 2642 2643 2644 2645 2646
void Assembler::setb(Condition cc, Register dst) {
  assert(0 <= cc && cc < 16, "illegal cc");
  int encode = prefix_and_encode(dst->encoding(), true);
  emit_byte(0x0F);
  emit_byte(0x90 | cc);
  emit_byte(0xC0 | encode);
D
duke 已提交
2647 2648
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
void Assembler::shll(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
  if (imm8 == 1 ) {
    emit_byte(0xD1);
    emit_byte(0xE0 | encode);
  } else {
    emit_byte(0xC1);
    emit_byte(0xE0 | encode);
    emit_byte(imm8);
  }
D
duke 已提交
2660 2661
}

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
void Assembler::shll(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xD3);
  emit_byte(0xE0 | encode);
}

void Assembler::shrl(Register dst, int imm8) {
  assert(isShiftCount(imm8), "illegal shift count");
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xC1);
  emit_byte(0xE8 | encode);
  emit_byte(imm8);
}

void Assembler::shrl(Register dst) {
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xD3);
  emit_byte(0xE8 | encode);
}

// copies a single word from [esi] to [edi]
void Assembler::smovl() {
  emit_byte(0xA5);
}

void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  // HMM Table D-1 says sse2
  // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
D
duke 已提交
2693
  emit_byte(0x0F);
2694 2695
  emit_byte(0x51);
  emit_byte(0xC0 | encode);
D
duke 已提交
2696 2697
}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
void Assembler::sqrtsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  emit_byte(0xF2);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x51);
  emit_operand(dst, src);
}

void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  // HMM Table D-1 says sse2
  // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x51);
  emit_byte(0xC0 | encode);
}

void Assembler::sqrtss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  emit_byte(0xF3);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x51);
  emit_operand(dst, src);
}

2729 2730 2731 2732
void Assembler::stmxcsr( Address dst) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  prefix(dst);
D
duke 已提交
2733
  emit_byte(0x0F);
2734 2735
  emit_byte(0xAE);
  emit_operand(as_Register(3), dst);
D
duke 已提交
2736 2737
}

2738 2739 2740
void Assembler::subl(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefix(dst);
2741
  emit_arith_operand(0x81, rbp, dst, imm32);
2742 2743 2744 2745 2746 2747 2748 2749 2750
}

void Assembler::subl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
  emit_byte(0x29);
  emit_operand(src, dst);
}

2751 2752 2753 2754 2755
void Assembler::subl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xE8, dst, imm32);
}

2756
void Assembler::subl(Register dst, Address src) {
D
duke 已提交
2757 2758
  InstructionMark im(this);
  prefix(src, dst);
2759
  emit_byte(0x2B);
D
duke 已提交
2760 2761 2762
  emit_operand(dst, src);
}

2763 2764 2765 2766 2767 2768 2769 2770
void Assembler::subl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x2B, 0xC0, dst, src);
}

void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
D
duke 已提交
2771
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
2772 2773 2774
  emit_byte(0x0F);
  emit_byte(0x5C);
  emit_byte(0xC0 | encode);
D
duke 已提交
2775 2776
}

2777 2778
void Assembler::subsd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
D
duke 已提交
2779
  InstructionMark im(this);
2780 2781 2782 2783
  emit_byte(0xF2);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x5C);
D
duke 已提交
2784 2785 2786
  emit_operand(dst, src);
}

2787 2788 2789 2790 2791 2792 2793
void Assembler::subss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x5C);
  emit_byte(0xC0 | encode);
D
duke 已提交
2794 2795
}

2796 2797
void Assembler::subss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
D
duke 已提交
2798
  InstructionMark im(this);
2799 2800
  emit_byte(0xF3);
  prefix(src, dst);
D
duke 已提交
2801
  emit_byte(0x0F);
2802 2803
  emit_byte(0x5C);
  emit_operand(dst, src);
D
duke 已提交
2804 2805
}

2806 2807 2808 2809
void Assembler::testb(Register dst, int imm8) {
  NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  (void) prefix_and_encode(dst->encoding(), true);
  emit_arith_b(0xF6, 0xC0, dst, imm8);
D
duke 已提交
2810 2811
}

2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
void Assembler::testl(Register dst, int32_t imm32) {
  // not using emit_arith because test
  // doesn't support sign-extension of
  // 8bit operands
  int encode = dst->encoding();
  if (encode == 0) {
    emit_byte(0xA9);
  } else {
    encode = prefix_and_encode(encode);
    emit_byte(0xF7);
    emit_byte(0xC0 | encode);
  }
  emit_long(imm32);
D
duke 已提交
2825 2826
}

2827 2828 2829 2830
void Assembler::testl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x85, 0xC0, dst, src);
}
D
duke 已提交
2831

2832 2833 2834 2835 2836
void Assembler::testl(Register dst, Address  src) {
  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x85);
  emit_operand(dst, src);
D
duke 已提交
2837 2838
}

2839 2840 2841 2842
void Assembler::ucomisd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  ucomiss(dst, src);
D
duke 已提交
2843 2844
}

2845 2846 2847 2848
void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  ucomiss(dst, src);
D
duke 已提交
2849 2850
}

2851 2852 2853 2854 2855
void Assembler::ucomiss(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));

  InstructionMark im(this);
  prefix(src, dst);
D
duke 已提交
2856
  emit_byte(0x0F);
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
  emit_byte(0x2E);
  emit_operand(dst, src);
}

void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x2E);
  emit_byte(0xC0 | encode);
}


void Assembler::xaddl(Address dst, Register src) {
  InstructionMark im(this);
  prefix(dst, src);
  emit_byte(0x0F);
  emit_byte(0xC1);
  emit_operand(src, dst);
}

void Assembler::xchgl(Register dst, Address src) { // xchg
  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x87);
  emit_operand(dst, src);
}

void Assembler::xchgl(Register dst, Register src) {
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x87);
  emit_byte(0xc0 | encode);
}

void Assembler::xorl(Register dst, int32_t imm32) {
  prefix(dst);
  emit_arith(0x81, 0xF0, dst, imm32);
}

void Assembler::xorl(Register dst, Address src) {
  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x33);
  emit_operand(dst, src);
}

void Assembler::xorl(Register dst, Register src) {
  (void) prefix_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x33, 0xC0, dst, src);
}

void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0x66);
  xorps(dst, src);
}

void Assembler::xorpd(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  InstructionMark im(this);
  emit_byte(0x66);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x57);
  emit_operand(dst, src);
}


void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  int encode = prefix_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x57);
  emit_byte(0xC0 | encode);
}

void Assembler::xorps(XMMRegister dst, Address src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  InstructionMark im(this);
  prefix(src, dst);
  emit_byte(0x0F);
  emit_byte(0x57);
  emit_operand(dst, src);
}

#ifndef _LP64
// 32bit only pieces of the assembler

void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  // NO PREFIX AS NEVER 64BIT
  InstructionMark im(this);
  emit_byte(0x81);
  emit_byte(0xF8 | src1->encoding());
  emit_data(imm32, rspec, 0);
}

void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  InstructionMark im(this);
  emit_byte(0x81);
  emit_operand(rdi, src1);
  emit_data(imm32, rspec, 0);
}

// The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
// and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
// into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
void Assembler::cmpxchg8(Address adr) {
  InstructionMark im(this);
  emit_byte(0x0F);
  emit_byte(0xc7);
  emit_operand(rcx, adr);
}

void Assembler::decl(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementl() instead.
 emit_byte(0x48 | dst->encoding());
}

#endif // _LP64

// 64bit typically doesn't use the x87 but needs to for the trig funcs

void Assembler::fabs() {
  emit_byte(0xD9);
  emit_byte(0xE1);
}

void Assembler::fadd(int i) {
  emit_farith(0xD8, 0xC0, i);
}

void Assembler::fadd_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rax, src);
}

void Assembler::fadd_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rax, src);
}

void Assembler::fadda(int i) {
  emit_farith(0xDC, 0xC0, i);
}

void Assembler::faddp(int i) {
  emit_farith(0xDE, 0xC0, i);
}

void Assembler::fchs() {
  emit_byte(0xD9);
  emit_byte(0xE0);
}

void Assembler::fcom(int i) {
  emit_farith(0xD8, 0xD0, i);
}

void Assembler::fcomp(int i) {
  emit_farith(0xD8, 0xD8, i);
}

void Assembler::fcomp_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rbx, src);
}

void Assembler::fcomp_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rbx, src);
}

void Assembler::fcompp() {
  emit_byte(0xDE);
  emit_byte(0xD9);
}

void Assembler::fcos() {
  emit_byte(0xD9);
  emit_byte(0xFF);
}

void Assembler::fdecstp() {
  emit_byte(0xD9);
  emit_byte(0xF6);
}

void Assembler::fdiv(int i) {
  emit_farith(0xD8, 0xF0, i);
}

void Assembler::fdiv_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rsi, src);
}

void Assembler::fdiv_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rsi, src);
}

void Assembler::fdiva(int i) {
  emit_farith(0xDC, 0xF8, i);
}

// Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
//       is erroneous for some of the floating-point instructions below.

void Assembler::fdivp(int i) {
  emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
}

void Assembler::fdivr(int i) {
  emit_farith(0xD8, 0xF8, i);
}

void Assembler::fdivr_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rdi, src);
}

void Assembler::fdivr_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rdi, src);
}

void Assembler::fdivra(int i) {
  emit_farith(0xDC, 0xF0, i);
}

void Assembler::fdivrp(int i) {
  emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
}

void Assembler::ffree(int i) {
  emit_farith(0xDD, 0xC0, i);
}

void Assembler::fild_d(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDF);
  emit_operand32(rbp, adr);
}

void Assembler::fild_s(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDB);
  emit_operand32(rax, adr);
}

void Assembler::fincstp() {
  emit_byte(0xD9);
  emit_byte(0xF7);
}

void Assembler::finit() {
  emit_byte(0x9B);
  emit_byte(0xDB);
  emit_byte(0xE3);
}

void Assembler::fist_s(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDB);
  emit_operand32(rdx, adr);
}

void Assembler::fistp_d(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDF);
  emit_operand32(rdi, adr);
}

void Assembler::fistp_s(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDB);
  emit_operand32(rbx, adr);
}

void Assembler::fld1() {
  emit_byte(0xD9);
  emit_byte(0xE8);
}

void Assembler::fld_d(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDD);
  emit_operand32(rax, adr);
}

void Assembler::fld_s(Address adr) {
  InstructionMark im(this);
  emit_byte(0xD9);
  emit_operand32(rax, adr);
}


void Assembler::fld_s(int index) {
  emit_farith(0xD9, 0xC0, index);
}

void Assembler::fld_x(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDB);
  emit_operand32(rbp, adr);
}

void Assembler::fldcw(Address src) {
  InstructionMark im(this);
  emit_byte(0xd9);
  emit_operand32(rbp, src);
}

void Assembler::fldenv(Address src) {
  InstructionMark im(this);
  emit_byte(0xD9);
  emit_operand32(rsp, src);
}

void Assembler::fldlg2() {
  emit_byte(0xD9);
  emit_byte(0xEC);
}

void Assembler::fldln2() {
  emit_byte(0xD9);
  emit_byte(0xED);
}

void Assembler::fldz() {
  emit_byte(0xD9);
  emit_byte(0xEE);
}

void Assembler::flog() {
  fldln2();
  fxch();
  fyl2x();
}

void Assembler::flog10() {
  fldlg2();
  fxch();
  fyl2x();
}

void Assembler::fmul(int i) {
  emit_farith(0xD8, 0xC8, i);
}

void Assembler::fmul_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rcx, src);
}

void Assembler::fmul_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rcx, src);
}

void Assembler::fmula(int i) {
  emit_farith(0xDC, 0xC8, i);
}

void Assembler::fmulp(int i) {
  emit_farith(0xDE, 0xC8, i);
}

void Assembler::fnsave(Address dst) {
  InstructionMark im(this);
  emit_byte(0xDD);
  emit_operand32(rsi, dst);
}

void Assembler::fnstcw(Address src) {
  InstructionMark im(this);
  emit_byte(0x9B);
  emit_byte(0xD9);
  emit_operand32(rdi, src);
}

void Assembler::fnstsw_ax() {
  emit_byte(0xdF);
  emit_byte(0xE0);
}

void Assembler::fprem() {
  emit_byte(0xD9);
  emit_byte(0xF8);
}

void Assembler::fprem1() {
  emit_byte(0xD9);
  emit_byte(0xF5);
}

void Assembler::frstor(Address src) {
  InstructionMark im(this);
  emit_byte(0xDD);
  emit_operand32(rsp, src);
}

void Assembler::fsin() {
  emit_byte(0xD9);
  emit_byte(0xFE);
}

void Assembler::fsqrt() {
  emit_byte(0xD9);
  emit_byte(0xFA);
}

void Assembler::fst_d(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDD);
  emit_operand32(rdx, adr);
}

void Assembler::fst_s(Address adr) {
  InstructionMark im(this);
  emit_byte(0xD9);
  emit_operand32(rdx, adr);
}

void Assembler::fstp_d(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDD);
  emit_operand32(rbx, adr);
}

void Assembler::fstp_d(int index) {
  emit_farith(0xDD, 0xD8, index);
}

void Assembler::fstp_s(Address adr) {
  InstructionMark im(this);
  emit_byte(0xD9);
  emit_operand32(rbx, adr);
}

void Assembler::fstp_x(Address adr) {
  InstructionMark im(this);
  emit_byte(0xDB);
  emit_operand32(rdi, adr);
}

void Assembler::fsub(int i) {
  emit_farith(0xD8, 0xE0, i);
}

void Assembler::fsub_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rsp, src);
}

void Assembler::fsub_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rsp, src);
}

void Assembler::fsuba(int i) {
  emit_farith(0xDC, 0xE8, i);
}

void Assembler::fsubp(int i) {
  emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
}

void Assembler::fsubr(int i) {
  emit_farith(0xD8, 0xE8, i);
}

void Assembler::fsubr_d(Address src) {
  InstructionMark im(this);
  emit_byte(0xDC);
  emit_operand32(rbp, src);
}

void Assembler::fsubr_s(Address src) {
  InstructionMark im(this);
  emit_byte(0xD8);
  emit_operand32(rbp, src);
}

void Assembler::fsubra(int i) {
  emit_farith(0xDC, 0xE0, i);
}

void Assembler::fsubrp(int i) {
  emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
}

void Assembler::ftan() {
  emit_byte(0xD9);
  emit_byte(0xF2);
  emit_byte(0xDD);
  emit_byte(0xD8);
}

void Assembler::ftst() {
  emit_byte(0xD9);
  emit_byte(0xE4);
}

void Assembler::fucomi(int i) {
  // make sure the instruction is supported (introduced for P6, together with cmov)
  guarantee(VM_Version::supports_cmov(), "illegal instruction");
  emit_farith(0xDB, 0xE8, i);
}

void Assembler::fucomip(int i) {
  // make sure the instruction is supported (introduced for P6, together with cmov)
  guarantee(VM_Version::supports_cmov(), "illegal instruction");
  emit_farith(0xDF, 0xE8, i);
}

void Assembler::fwait() {
  emit_byte(0x9B);
}

void Assembler::fxch(int i) {
  emit_farith(0xD9, 0xC8, i);
}

void Assembler::fyl2x() {
  emit_byte(0xD9);
  emit_byte(0xF1);
}


#ifndef _LP64

void Assembler::incl(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementl() instead.
 emit_byte(0x40 | dst->encoding());
}

void Assembler::lea(Register dst, Address src) {
  leal(dst, src);
}

void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  InstructionMark im(this);
  emit_byte(0xC7);
  emit_operand(rax, dst);
  emit_data((int)imm32, rspec, 0);
}

3418 3419 3420 3421 3422 3423
void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xB8 | encode);
  emit_data((int)imm32, rspec, 0);
}
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458

void Assembler::popa() { // 32bit
  emit_byte(0x61);
}

void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  emit_byte(0x68);
  emit_data(imm32, rspec, 0);
}

void Assembler::pusha() { // 32bit
  emit_byte(0x60);
}

void Assembler::set_byte_if_not_zero(Register dst) {
  emit_byte(0x0F);
  emit_byte(0x95);
  emit_byte(0xE0 | dst->encoding());
}

void Assembler::shldl(Register dst, Register src) {
  emit_byte(0x0F);
  emit_byte(0xA5);
  emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
}

void Assembler::shrdl(Register dst, Register src) {
  emit_byte(0x0F);
  emit_byte(0xAD);
  emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
}

#else // LP64

I
iveresov 已提交
3459 3460 3461 3462 3463 3464 3465
void Assembler::set_byte_if_not_zero(Register dst) {
  int enc = prefix_and_encode(dst->encoding(), true);
  emit_byte(0x0F);
  emit_byte(0x95);
  emit_byte(0xE0 | enc);
}

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
// 64bit only pieces of the assembler
// This should only be used by 64bit instructions that can use rip-relative
// it cannot be used by instructions that want an immediate value.

bool Assembler::reachable(AddressLiteral adr) {
  int64_t disp;
  // None will force a 64bit literal to the code stream. Likely a placeholder
  // for something that will be patched later and we need to certain it will
  // always be reachable.
  if (adr.reloc() == relocInfo::none) {
    return false;
  }
  if (adr.reloc() == relocInfo::internal_word_type) {
    // This should be rip relative and easily reachable.
    return true;
  }
  if (adr.reloc() == relocInfo::virtual_call_type ||
      adr.reloc() == relocInfo::opt_virtual_call_type ||
      adr.reloc() == relocInfo::static_call_type ||
      adr.reloc() == relocInfo::static_stub_type ) {
    // This should be rip relative within the code cache and easily
    // reachable until we get huge code caches. (At which point
    // ic code is going to have issues).
    return true;
  }
  if (adr.reloc() != relocInfo::external_word_type &&
      adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
      adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
      adr.reloc() != relocInfo::runtime_call_type ) {
    return false;
  }

  // Stress the correction code
  if (ForceUnreachable) {
    // Must be runtimecall reloc, see if it is in the codecache
    // Flipping stuff in the codecache to be unreachable causes issues
    // with things like inline caches where the additional instructions
    // are not handled.
    if (CodeCache::find_blob(adr._target) == NULL) {
      return false;
    }
  }
  // For external_word_type/runtime_call_type if it is reachable from where we
  // are now (possibly a temp buffer) and where we might end up
  // anywhere in the codeCache then we are always reachable.
  // This would have to change if we ever save/restore shared code
  // to be more pessimistic.
  disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  if (!is_simm32(disp)) return false;
  disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  if (!is_simm32(disp)) return false;

  disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));

  // Because rip relative is a disp + address_of_next_instruction and we
  // don't know the value of address_of_next_instruction we apply a fudge factor
  // to make sure we will be ok no matter the size of the instruction we get placed into.
  // We don't have to fudge the checks above here because they are already worst case.

  // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  // + 4 because better safe than sorry.
  const int fudge = 12 + 4;
  if (disp < 0) {
    disp -= fudge;
  } else {
    disp += fudge;
  }
  return is_simm32(disp);
}

3536 3537 3538 3539 3540 3541 3542 3543
// Check if the polling page is not reachable from the code cache using rip-relative
// addressing.
bool Assembler::is_polling_page_far() {
  intptr_t addr = (intptr_t)os::get_polling_page();
  return !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
         !is_simm32(addr - (intptr_t)CodeCache::high_bound());
}

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
void Assembler::emit_data64(jlong data,
                            relocInfo::relocType rtype,
                            int format) {
  if (rtype == relocInfo::none) {
    emit_long64(data);
  } else {
    emit_data64(data, Relocation::spec_simple(rtype), format);
  }
}

void Assembler::emit_data64(jlong data,
                            RelocationHolder const& rspec,
                            int format) {
  assert(imm_operand == 0, "default format must be immediate in this file");
  assert(imm_operand == format, "must be immediate");
  assert(inst_mark() != NULL, "must be inside InstructionMark");
  // Do not use AbstractAssembler::relocate, which is not intended for
  // embedded words.  Instead, relocate to the enclosing instruction.
  code_section()->relocate(inst_mark(), rspec, format);
#ifdef ASSERT
  check_relocation(rspec, format);
#endif
  emit_long64(data);
}

int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  if (reg_enc >= 8) {
    prefix(REX_B);
    reg_enc -= 8;
  } else if (byteinst && reg_enc >= 4) {
    prefix(REX);
  }
  return reg_enc;
}

int Assembler::prefixq_and_encode(int reg_enc) {
  if (reg_enc < 8) {
    prefix(REX_W);
  } else {
    prefix(REX_WB);
    reg_enc -= 8;
  }
  return reg_enc;
}

int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  if (dst_enc < 8) {
    if (src_enc >= 8) {
      prefix(REX_B);
      src_enc -= 8;
    } else if (byteinst && src_enc >= 4) {
      prefix(REX);
    }
  } else {
    if (src_enc < 8) {
      prefix(REX_R);
    } else {
      prefix(REX_RB);
      src_enc -= 8;
    }
    dst_enc -= 8;
  }
  return dst_enc << 3 | src_enc;
}

int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  if (dst_enc < 8) {
    if (src_enc < 8) {
      prefix(REX_W);
    } else {
      prefix(REX_WB);
      src_enc -= 8;
    }
  } else {
    if (src_enc < 8) {
      prefix(REX_WR);
    } else {
      prefix(REX_WRB);
      src_enc -= 8;
    }
    dst_enc -= 8;
  }
  return dst_enc << 3 | src_enc;
}

void Assembler::prefix(Register reg) {
  if (reg->encoding() >= 8) {
    prefix(REX_B);
  }
}

void Assembler::prefix(Address adr) {
  if (adr.base_needs_rex()) {
    if (adr.index_needs_rex()) {
      prefix(REX_XB);
    } else {
      prefix(REX_B);
    }
  } else {
    if (adr.index_needs_rex()) {
      prefix(REX_X);
    }
  }
}

void Assembler::prefixq(Address adr) {
  if (adr.base_needs_rex()) {
    if (adr.index_needs_rex()) {
      prefix(REX_WXB);
    } else {
      prefix(REX_WB);
    }
  } else {
    if (adr.index_needs_rex()) {
      prefix(REX_WX);
    } else {
      prefix(REX_W);
    }
  }
}


void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  if (reg->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_XB);
      } else {
        prefix(REX_B);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_X);
      } else if (reg->encoding() >= 4 ) {
        prefix(REX);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_RXB);
      } else {
        prefix(REX_RB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_RX);
      } else {
        prefix(REX_R);
      }
    }
  }
}

void Assembler::prefixq(Address adr, Register src) {
  if (src->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_WXB);
      } else {
        prefix(REX_WB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_WX);
      } else {
        prefix(REX_W);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_WRXB);
      } else {
        prefix(REX_WRB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_WRX);
      } else {
        prefix(REX_WR);
      }
    }
  }
}

void Assembler::prefix(Address adr, XMMRegister reg) {
  if (reg->encoding() < 8) {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_XB);
      } else {
        prefix(REX_B);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_X);
      }
    }
  } else {
    if (adr.base_needs_rex()) {
      if (adr.index_needs_rex()) {
        prefix(REX_RXB);
      } else {
        prefix(REX_RB);
      }
    } else {
      if (adr.index_needs_rex()) {
        prefix(REX_RX);
      } else {
        prefix(REX_R);
      }
    }
  }
}

void Assembler::adcq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xD0, dst, imm32);
}

void Assembler::adcq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x13);
  emit_operand(dst, src);
}

void Assembler::adcq(Register dst, Register src) {
  (int) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x13, 0xC0, dst, src);
}

void Assembler::addq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_arith_operand(0x81, rax, dst,imm32);
}

void Assembler::addq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
  emit_byte(0x01);
  emit_operand(src, dst);
}

void Assembler::addq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xC0, dst, imm32);
}

void Assembler::addq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x03);
  emit_operand(dst, src);
}

void Assembler::addq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x03, 0xC0, dst, src);
}

void Assembler::andq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xE0, dst, imm32);
}

void Assembler::andq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x23);
  emit_operand(dst, src);
}

void Assembler::andq(Register dst, Register src) {
  (int) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x23, 0xC0, dst, src);
}

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
void Assembler::bsfq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xBC);
  emit_byte(0xC0 | encode);
}

void Assembler::bsrq(Register dst, Register src) {
  assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xBD);
  emit_byte(0xC0 | encode);
}

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003
void Assembler::bswapq(Register reg) {
  int encode = prefixq_and_encode(reg->encoding());
  emit_byte(0x0F);
  emit_byte(0xC8 | encode);
}

void Assembler::cdqq() {
  prefix(REX_W);
  emit_byte(0x99);
}

void Assembler::clflush(Address adr) {
  prefix(adr);
  emit_byte(0x0F);
  emit_byte(0xAE);
  emit_operand(rdi, adr);
}

void Assembler::cmovq(Condition cc, Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x40 | cc);
  emit_byte(0xC0 | encode);
}

void Assembler::cmovq(Condition cc, Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x0F);
  emit_byte(0x40 | cc);
  emit_operand(dst, src);
}

void Assembler::cmpq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_byte(0x81);
  emit_operand(rdi, dst, 4);
  emit_long(imm32);
}

void Assembler::cmpq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xF8, dst, imm32);
}

void Assembler::cmpq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
  emit_byte(0x3B);
  emit_operand(src, dst);
}

void Assembler::cmpq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x3B, 0xC0, dst, src);
}

void Assembler::cmpq(Register dst, Address  src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x3B);
  emit_operand(dst, src);
}

void Assembler::cmpxchgq(Register reg, Address adr) {
  InstructionMark im(this);
  prefixq(adr, reg);
  emit_byte(0x0F);
  emit_byte(0xB1);
  emit_operand(reg, adr);
}

void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x2A);
  emit_byte(0xC0 | encode);
}

void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x2A);
  emit_byte(0xC0 | encode);
}

void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  emit_byte(0xF2);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x2C);
  emit_byte(0xC0 | encode);
}

void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  NOT_LP64(assert(VM_Version::supports_sse(), ""));
  emit_byte(0xF3);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x2C);
  emit_byte(0xC0 | encode);
}

void Assembler::decl(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementl() instead.
  // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xFF);
  emit_byte(0xC8 | encode);
}

void Assembler::decq(Register dst) {
  // Don't use it directly. Use MacroAssembler::decrementq() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xFF);
  emit_byte(0xC8 | encode);
}

void Assembler::decq(Address dst) {
  // Don't use it directly. Use MacroAssembler::decrementq() instead.
  InstructionMark im(this);
  prefixq(dst);
  emit_byte(0xFF);
  emit_operand(rcx, dst);
}

void Assembler::fxrstor(Address src) {
  prefixq(src);
  emit_byte(0x0F);
  emit_byte(0xAE);
  emit_operand(as_Register(1), src);
}

void Assembler::fxsave(Address dst) {
  prefixq(dst);
  emit_byte(0x0F);
  emit_byte(0xAE);
  emit_operand(as_Register(0), dst);
}

void Assembler::idivq(Register src) {
  int encode = prefixq_and_encode(src->encoding());
  emit_byte(0xF7);
  emit_byte(0xF8 | encode);
}

void Assembler::imulq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xAF);
  emit_byte(0xC0 | encode);
}

void Assembler::imulq(Register dst, Register src, int value) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  if (is8bit(value)) {
    emit_byte(0x6B);
    emit_byte(0xC0 | encode);
4004
    emit_byte(value & 0xFF);
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
  } else {
    emit_byte(0x69);
    emit_byte(0xC0 | encode);
    emit_long(value);
  }
}

void Assembler::incl(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementl() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xFF);
  emit_byte(0xC0 | encode);
}

void Assembler::incq(Register dst) {
  // Don't use it directly. Use MacroAssembler::incrementq() instead.
  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xFF);
  emit_byte(0xC0 | encode);
}

void Assembler::incq(Address dst) {
  // Don't use it directly. Use MacroAssembler::incrementq() instead.
  InstructionMark im(this);
  prefixq(dst);
  emit_byte(0xFF);
  emit_operand(rax, dst);
}

void Assembler::lea(Register dst, Address src) {
  leaq(dst, src);
}

void Assembler::leaq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x8D);
  emit_operand(dst, src);
}

void Assembler::mov64(Register dst, int64_t imm64) {
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xB8 | encode);
  emit_long64(imm64);
}

void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xB8 | encode);
  emit_data64(imm64, rspec);
}

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(dst->encoding());
  emit_byte(0xB8 | encode);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  InstructionMark im(this);
  prefix(dst);
  emit_byte(0xC7);
  emit_operand(rax, dst, 4);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  int encode = prefix_and_encode(src1->encoding());
  emit_byte(0x81);
  emit_byte(0xF8 | encode);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  InstructionMark im(this);
  prefix(src1);
  emit_byte(0x81);
  emit_operand(rax, src1, 4);
  emit_data((int)imm32, rspec, narrow_oop_operand);
}

4092 4093 4094 4095 4096 4097 4098 4099 4100
void Assembler::lzcntq(Register dst, Register src) {
  assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  emit_byte(0xF3);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xBD);
  emit_byte(0xC0 | encode);
}

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
void Assembler::movdq(XMMRegister dst, Register src) {
  // table D-1 says MMX/SSE2
  NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  emit_byte(0x66);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0x6E);
  emit_byte(0xC0 | encode);
}

void Assembler::movdq(Register dst, XMMRegister src) {
  // table D-1 says MMX/SSE2
  NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  emit_byte(0x66);
  // swap src/dst to get correct prefix
  int encode = prefixq_and_encode(src->encoding(), dst->encoding());
  emit_byte(0x0F);
  emit_byte(0x7E);
  emit_byte(0xC0 | encode);
D
duke 已提交
4120 4121
}

4122 4123 4124 4125 4126
void Assembler::movq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x8B);
  emit_byte(0xC0 | encode);
}
D
duke 已提交
4127

4128 4129 4130 4131 4132 4133
void Assembler::movq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x8B);
  emit_operand(dst, src);
}
D
duke 已提交
4134

4135 4136 4137 4138 4139 4140
void Assembler::movq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
  emit_byte(0x89);
  emit_operand(src, dst);
}
D
duke 已提交
4141

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
void Assembler::movsbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x0F);
  emit_byte(0xBE);
  emit_operand(dst, src);
}

void Assembler::movsbq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xBE);
  emit_byte(0xC0 | encode);
}

4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
void Assembler::movslq(Register dst, int32_t imm32) {
  // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  // as a result we shouldn't use until tested at runtime...
  ShouldNotReachHere();
  InstructionMark im(this);
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xC7 | encode);
  emit_long(imm32);
}

void Assembler::movslq(Address dst, int32_t imm32) {
  assert(is_simm32(imm32), "lost bits");
  InstructionMark im(this);
  prefixq(dst);
  emit_byte(0xC7);
  emit_operand(rax, dst, 4);
  emit_long(imm32);
}

void Assembler::movslq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x63);
  emit_operand(dst, src);
}

void Assembler::movslq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x63);
  emit_byte(0xC0 | encode);
}

4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
void Assembler::movswq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x0F);
  emit_byte(0xBF);
  emit_operand(dst, src);
}

void Assembler::movswq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xBF);
  emit_byte(0xC0 | encode);
}

void Assembler::movzbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x0F);
  emit_byte(0xB6);
  emit_operand(dst, src);
}

void Assembler::movzbq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xB6);
  emit_byte(0xC0 | encode);
}

void Assembler::movzwq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x0F);
  emit_byte(0xB7);
  emit_operand(dst, src);
}

void Assembler::movzwq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xB7);
  emit_byte(0xC0 | encode);
}

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
void Assembler::negq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xF7);
  emit_byte(0xD8 | encode);
}

void Assembler::notq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xF7);
  emit_byte(0xD0 | encode);
}

void Assembler::orq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_byte(0x81);
  emit_operand(rcx, dst, 4);
  emit_long(imm32);
}

void Assembler::orq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xC8, dst, imm32);
}

void Assembler::orq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x0B);
  emit_operand(dst, src);
}

void Assembler::orq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x0B, 0xC0, dst, src);
}

void Assembler::popa() { // 64bit
  movq(r15, Address(rsp, 0));
  movq(r14, Address(rsp, wordSize));
  movq(r13, Address(rsp, 2 * wordSize));
  movq(r12, Address(rsp, 3 * wordSize));
  movq(r11, Address(rsp, 4 * wordSize));
  movq(r10, Address(rsp, 5 * wordSize));
  movq(r9,  Address(rsp, 6 * wordSize));
  movq(r8,  Address(rsp, 7 * wordSize));
  movq(rdi, Address(rsp, 8 * wordSize));
  movq(rsi, Address(rsp, 9 * wordSize));
  movq(rbp, Address(rsp, 10 * wordSize));
  // skip rsp
  movq(rbx, Address(rsp, 12 * wordSize));
  movq(rdx, Address(rsp, 13 * wordSize));
  movq(rcx, Address(rsp, 14 * wordSize));
  movq(rax, Address(rsp, 15 * wordSize));

  addq(rsp, 16 * wordSize);
}

4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
void Assembler::popcntq(Register dst, Address src) {
  assert(VM_Version::supports_popcnt(), "must support");
  InstructionMark im(this);
  emit_byte(0xF3);
  prefixq(src, dst);
  emit_byte(0x0F);
  emit_byte(0xB8);
  emit_operand(dst, src);
}

void Assembler::popcntq(Register dst, Register src) {
  assert(VM_Version::supports_popcnt(), "must support");
  emit_byte(0xF3);
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x0F);
  emit_byte(0xB8);
  emit_byte(0xC0 | encode);
}

4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
void Assembler::popq(Address dst) {
  InstructionMark im(this);
  prefixq(dst);
  emit_byte(0x8F);
  emit_operand(rax, dst);
}

void Assembler::pusha() { // 64bit
  // we have to store original rsp.  ABI says that 128 bytes
  // below rsp are local scratch.
  movq(Address(rsp, -5 * wordSize), rsp);

  subq(rsp, 16 * wordSize);

  movq(Address(rsp, 15 * wordSize), rax);
  movq(Address(rsp, 14 * wordSize), rcx);
  movq(Address(rsp, 13 * wordSize), rdx);
  movq(Address(rsp, 12 * wordSize), rbx);
  // skip rsp
  movq(Address(rsp, 10 * wordSize), rbp);
  movq(Address(rsp, 9 * wordSize), rsi);
  movq(Address(rsp, 8 * wordSize), rdi);
  movq(Address(rsp, 7 * wordSize), r8);
  movq(Address(rsp, 6 * wordSize), r9);
  movq(Address(rsp, 5 * wordSize), r10);
  movq(Address(rsp, 4 * wordSize), r11);
  movq(Address(rsp, 3 * wordSize), r12);
  movq(Address(rsp, 2 * wordSize), r13);
  movq(Address(rsp, wordSize), r14);
  movq(Address(rsp, 0), r15);
}

void Assembler::pushq(Address src) {
  InstructionMark im(this);
  prefixq(src);
  emit_byte(0xFF);
  emit_operand(rsi, src);
}

void Assembler::rclq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
    emit_byte(0xD1);
    emit_byte(0xD0 | encode);
  } else {
    emit_byte(0xC1);
    emit_byte(0xD0 | encode);
    emit_byte(imm8);
D
duke 已提交
4361
  }
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
}
void Assembler::sarq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
    emit_byte(0xD1);
    emit_byte(0xF8 | encode);
  } else {
    emit_byte(0xC1);
    emit_byte(0xF8 | encode);
    emit_byte(imm8);
  }
}
D
duke 已提交
4375

4376 4377 4378 4379 4380
void Assembler::sarq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xD3);
  emit_byte(0xF8 | encode);
}
4381

4382 4383 4384 4385 4386
void Assembler::sbbq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
  emit_arith_operand(0x81, rbx, dst, imm32);
}
D
duke 已提交
4387

4388 4389 4390 4391
void Assembler::sbbq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xD8, dst, imm32);
}
D
duke 已提交
4392

4393 4394 4395 4396 4397 4398
void Assembler::sbbq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x1B);
  emit_operand(dst, src);
}
D
duke 已提交
4399

4400 4401 4402 4403
void Assembler::sbbq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x1B, 0xC0, dst, src);
}
D
duke 已提交
4404

4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
void Assembler::shlq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  if (imm8 == 1) {
    emit_byte(0xD1);
    emit_byte(0xE0 | encode);
  } else {
    emit_byte(0xC1);
    emit_byte(0xE0 | encode);
    emit_byte(imm8);
D
duke 已提交
4415
  }
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
}

void Assembler::shlq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xD3);
  emit_byte(0xE0 | encode);
}

void Assembler::shrq(Register dst, int imm8) {
  assert(isShiftCount(imm8 >> 1), "illegal shift count");
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xC1);
  emit_byte(0xE8 | encode);
  emit_byte(imm8);
}

void Assembler::shrq(Register dst) {
  int encode = prefixq_and_encode(dst->encoding());
  emit_byte(0xD3);
  emit_byte(0xE8 | encode);
}

void Assembler::subq(Address dst, int32_t imm32) {
  InstructionMark im(this);
  prefixq(dst);
4441
  emit_arith_operand(0x81, rbp, dst, imm32);
4442 4443 4444 4445 4446 4447 4448 4449 4450
}

void Assembler::subq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
  emit_byte(0x29);
  emit_operand(src, dst);
}

4451 4452 4453 4454 4455
void Assembler::subq(Register dst, int32_t imm32) {
  (void) prefixq_and_encode(dst->encoding());
  emit_arith(0x81, 0xE8, dst, imm32);
}

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
void Assembler::subq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x2B);
  emit_operand(dst, src);
}

void Assembler::subq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x2B, 0xC0, dst, src);
}

void Assembler::testq(Register dst, int32_t imm32) {
  // not using emit_arith because test
  // doesn't support sign-extension of
  // 8bit operands
  int encode = dst->encoding();
  if (encode == 0) {
    prefix(REX_W);
    emit_byte(0xA9);
D
duke 已提交
4476
  } else {
4477 4478 4479
    encode = prefixq_and_encode(encode);
    emit_byte(0xF7);
    emit_byte(0xC0 | encode);
D
duke 已提交
4480
  }
4481
  emit_long(imm32);
D
duke 已提交
4482 4483
}

4484 4485 4486
void Assembler::testq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x85, 0xC0, dst, src);
D
duke 已提交
4487 4488
}

4489 4490 4491 4492 4493 4494
void Assembler::xaddq(Address dst, Register src) {
  InstructionMark im(this);
  prefixq(dst, src);
  emit_byte(0x0F);
  emit_byte(0xC1);
  emit_operand(src, dst);
D
duke 已提交
4495 4496
}

4497 4498 4499 4500 4501
void Assembler::xchgq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x87);
  emit_operand(dst, src);
D
duke 已提交
4502 4503
}

4504 4505 4506 4507
void Assembler::xchgq(Register dst, Register src) {
  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  emit_byte(0x87);
  emit_byte(0xc0 | encode);
D
duke 已提交
4508 4509
}

4510 4511 4512
void Assembler::xorq(Register dst, Register src) {
  (void) prefixq_and_encode(dst->encoding(), src->encoding());
  emit_arith(0x33, 0xC0, dst, src);
D
duke 已提交
4513 4514
}

4515 4516 4517 4518 4519
void Assembler::xorq(Register dst, Address src) {
  InstructionMark im(this);
  prefixq(src, dst);
  emit_byte(0x33);
  emit_operand(dst, src);
4520 4521
}

4522
#endif // !LP64
4523

4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
static Assembler::Condition reverse[] = {
    Assembler::noOverflow     /* overflow      = 0x0 */ ,
    Assembler::overflow       /* noOverflow    = 0x1 */ ,
    Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
    Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
    Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
    Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
    Assembler::above          /* belowEqual    = 0x6 */ ,
    Assembler::belowEqual     /* above         = 0x7 */ ,
    Assembler::positive       /* negative      = 0x8 */ ,
    Assembler::negative       /* positive      = 0x9 */ ,
    Assembler::noParity       /* parity        = 0xa */ ,
    Assembler::parity         /* noParity      = 0xb */ ,
    Assembler::greaterEqual   /* less          = 0xc */ ,
    Assembler::less           /* greaterEqual  = 0xd */ ,
    Assembler::greater        /* lessEqual     = 0xe */ ,
    Assembler::lessEqual      /* greater       = 0xf, */
D
duke 已提交
4541

4542
};
D
duke 已提交
4543 4544


4545
// Implementation of MacroAssembler
D
duke 已提交
4546

4547 4548
// First all the versions that have distinct versions depending on 32/64 bit
// Unless the difference is trivial (1 line or so).
D
duke 已提交
4549

4550
#ifndef _LP64
D
duke 已提交
4551

4552
// 32bit versions
D
duke 已提交
4553

4554 4555
Address MacroAssembler::as_Address(AddressLiteral adr) {
  return Address(adr.target(), adr.rspec());
D
duke 已提交
4556 4557
}

4558 4559
Address MacroAssembler::as_Address(ArrayAddress adr) {
  return Address::make_array(adr);
D
duke 已提交
4560 4561
}

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
int MacroAssembler::biased_locking_enter(Register lock_reg,
                                         Register obj_reg,
                                         Register swap_reg,
                                         Register tmp_reg,
                                         bool swap_reg_contains_mark,
                                         Label& done,
                                         Label* slow_case,
                                         BiasedLockingCounters* counters) {
  assert(UseBiasedLocking, "why call this otherwise?");
  assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  assert_different_registers(lock_reg, obj_reg, swap_reg);
D
duke 已提交
4573

4574 4575
  if (PrintBiasedLockingStatistics && counters == NULL)
    counters = BiasedLocking::counters();
D
duke 已提交
4576

4577 4578 4579 4580
  bool need_tmp_reg = false;
  if (tmp_reg == noreg) {
    need_tmp_reg = true;
    tmp_reg = lock_reg;
D
duke 已提交
4581
  } else {
4582
    assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
D
duke 已提交
4583
  }
4584 4585 4586 4587
  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  Address saved_mark_addr(lock_reg, 0);
D
duke 已提交
4588

4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
  // Biased locking
  // See whether the lock is currently biased toward our thread and
  // whether the epoch is still valid
  // Note that the runtime guarantees sufficient alignment of JavaThread
  // pointers to allow age to be placed into low bits
  // First check to see whether biasing is even enabled for this object
  Label cas_label;
  int null_check_offset = -1;
  if (!swap_reg_contains_mark) {
    null_check_offset = offset();
    movl(swap_reg, mark_addr);
D
duke 已提交
4600
  }
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
  if (need_tmp_reg) {
    push(tmp_reg);
  }
  movl(tmp_reg, swap_reg);
  andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  jcc(Assembler::notEqual, cas_label);
  // The bias pattern is present in the object's header. Need to check
  // whether the bias owner and the epoch are both still current.
  // Note that because there is no current thread register on x86 we
  // need to store off the mark word we read out of the object to
  // avoid reloading it and needing to recheck invariants below. This
  // store is unfortunate but it makes the overall code shorter and
  // simpler.
  movl(saved_mark_addr, swap_reg);
  if (need_tmp_reg) {
    push(tmp_reg);
  }
  get_thread(tmp_reg);
  xorl(swap_reg, tmp_reg);
  if (swap_reg_contains_mark) {
    null_check_offset = offset();
  }
  movl(tmp_reg, klass_addr);
  xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  }
  jcc(Assembler::equal, done);
D
duke 已提交
4638

4639 4640
  Label try_revoke_bias;
  Label try_rebias;
D
duke 已提交
4641

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
  // At this point we know that the header has the bias pattern and
  // that we are not the bias owner in the current epoch. We need to
  // figure out more details about the state of the header in order to
  // know what operations can be legally performed on the object's
  // header.

  // If the low three bits in the xor result aren't clear, that means
  // the prototype header is no longer biased and we have to revoke
  // the bias on this object.
  testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  jcc(Assembler::notZero, try_revoke_bias);

  // Biasing is still enabled for this data type. See whether the
  // epoch of the current bias is still valid, meaning that the epoch
  // bits of the mark word are equal to the epoch bits of the
  // prototype header. (Note that the prototype header's epoch bits
  // only change at a safepoint.) If not, attempt to rebias the object
  // toward the current thread. Note that we must be absolutely sure
  // that the current epoch is invalid in order to do this because
  // otherwise the manipulations it performs on the mark word are
  // illegal.
  testl(swap_reg, markOopDesc::epoch_mask_in_place);
  jcc(Assembler::notZero, try_rebias);

  // The epoch of the current bias is still valid but we know nothing
  // about the owner; it might be set or it might be clear. Try to
  // acquire the bias of the object using an atomic operation. If this
  // fails we will go in to the runtime to revoke the object's bias.
  // Note that we first construct the presumed unbiased header so we
  // don't accidentally blow away another thread's valid bias.
  movl(swap_reg, saved_mark_addr);
  andl(swap_reg,
       markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  if (need_tmp_reg) {
    push(tmp_reg);
D
duke 已提交
4677
  }
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
  get_thread(tmp_reg);
  orl(tmp_reg, swap_reg);
  if (os::is_MP()) {
    lock();
  }
  cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  // If the biasing toward our thread failed, this means that
  // another thread succeeded in biasing it toward itself and we
  // need to revoke that bias. The revocation will occur in the
  // interpreter runtime in the slow case.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  }
  if (slow_case != NULL) {
    jcc(Assembler::notZero, *slow_case);
  }
  jmp(done);
D
duke 已提交
4699

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
  bind(try_rebias);
  // At this point we know the epoch has expired, meaning that the
  // current "bias owner", if any, is actually invalid. Under these
  // circumstances _only_, we are allowed to use the current header's
  // value as the comparison value when doing the cas to acquire the
  // bias in the current epoch. In other words, we allow transfer of
  // the bias from one thread to another directly in this situation.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
  if (need_tmp_reg) {
    push(tmp_reg);
D
duke 已提交
4712
  }
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
  get_thread(tmp_reg);
  movl(swap_reg, klass_addr);
  orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  movl(swap_reg, saved_mark_addr);
  if (os::is_MP()) {
    lock();
  }
  cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  // If the biasing toward our thread failed, then another thread
  // succeeded in biasing it toward itself and we need to revoke that
  // bias. The revocation will occur in the runtime in the slow case.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  }
  if (slow_case != NULL) {
    jcc(Assembler::notZero, *slow_case);
  }
  jmp(done);
D
duke 已提交
4735

4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
  bind(try_revoke_bias);
  // The prototype mark in the klass doesn't have the bias bit set any
  // more, indicating that objects of this data type are not supposed
  // to be biased any more. We are going to try to reset the mark of
  // this object to the prototype value and fall through to the
  // CAS-based locking scheme. Note that if our CAS fails, it means
  // that another thread raced us for the privilege of revoking the
  // bias of this particular object, so it's okay to continue in the
  // normal locking code.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
  movl(swap_reg, saved_mark_addr);
  if (need_tmp_reg) {
    push(tmp_reg);
  }
  movl(tmp_reg, klass_addr);
  movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  if (os::is_MP()) {
    lock();
  }
  cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  if (need_tmp_reg) {
    pop(tmp_reg);
  }
  // Fall through to the normal CAS-based lock, because no matter what
  // the result of the above CAS, some thread must have succeeded in
  // removing the bias bit from the object's header.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  }
D
duke 已提交
4768

4769
  bind(cas_label);
D
duke 已提交
4770

4771
  return null_check_offset;
D
duke 已提交
4772
}
4773 4774 4775 4776
void MacroAssembler::call_VM_leaf_base(address entry_point,
                                       int number_of_arguments) {
  call(RuntimeAddress(entry_point));
  increment(rsp, number_of_arguments * wordSize);
D
duke 已提交
4777 4778
}

4779 4780
void MacroAssembler::cmpoop(Address src1, jobject obj) {
  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
D
duke 已提交
4781 4782
}

4783 4784
void MacroAssembler::cmpoop(Register src1, jobject obj) {
  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
D
duke 已提交
4785 4786
}

4787 4788 4789 4790 4791 4792 4793 4794
void MacroAssembler::extend_sign(Register hi, Register lo) {
  // According to Intel Doc. AP-526, "Integer Divide", p.18.
  if (VM_Version::is_P6() && hi == rdx && lo == rax) {
    cdql();
  } else {
    movl(hi, lo);
    sarl(hi, 31);
  }
D
duke 已提交
4795 4796
}

4797 4798 4799 4800 4801 4802 4803
void MacroAssembler::fat_nop() {
  // A 5 byte nop that is safe for patching (see patch_verified_entry)
  emit_byte(0x26); // es:
  emit_byte(0x2e); // cs:
  emit_byte(0x64); // fs:
  emit_byte(0x65); // gs:
  emit_byte(0x90);
D
duke 已提交
4804 4805
}

4806 4807 4808 4809 4810 4811 4812 4813
void MacroAssembler::jC2(Register tmp, Label& L) {
  // set parity bit if FPU flag C2 is set (via rax)
  save_rax(tmp);
  fwait(); fnstsw_ax();
  sahf();
  restore_rax(tmp);
  // branch
  jcc(Assembler::parity, L);
D
duke 已提交
4814 4815
}

4816 4817 4818 4819 4820 4821 4822 4823
void MacroAssembler::jnC2(Register tmp, Label& L) {
  // set parity bit if FPU flag C2 is set (via rax)
  save_rax(tmp);
  fwait(); fnstsw_ax();
  sahf();
  restore_rax(tmp);
  // branch
  jcc(Assembler::noParity, L);
D
duke 已提交
4824 4825
}

4826 4827 4828 4829
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class
void MacroAssembler::jump(ArrayAddress entry) {
  jmp(as_Address(entry));
D
duke 已提交
4830 4831
}

4832 4833 4834 4835
// Note: y_lo will be destroyed
void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  // Long compare for Java (semantics as described in JVM spec.)
  Label high, low, done;
D
duke 已提交
4836

4837 4838 4839 4840 4841 4842 4843 4844
  cmpl(x_hi, y_hi);
  jcc(Assembler::less, low);
  jcc(Assembler::greater, high);
  // x_hi is the return register
  xorl(x_hi, x_hi);
  cmpl(x_lo, y_lo);
  jcc(Assembler::below, low);
  jcc(Assembler::equal, done);
D
duke 已提交
4845

4846 4847 4848 4849
  bind(high);
  xorl(x_hi, x_hi);
  increment(x_hi);
  jmp(done);
D
duke 已提交
4850

4851 4852 4853
  bind(low);
  xorl(x_hi, x_hi);
  decrementl(x_hi);
D
duke 已提交
4854

4855
  bind(done);
D
duke 已提交
4856 4857
}

4858 4859
void MacroAssembler::lea(Register dst, AddressLiteral src) {
    mov_literal32(dst, (int32_t)src.target(), src.rspec());
D
duke 已提交
4860 4861
}

4862 4863 4864 4865
void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  // leal(dst, as_Address(adr));
  // see note in movl as to why we must use a move
  mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
D
duke 已提交
4866 4867
}

4868 4869 4870
void MacroAssembler::leave() {
  mov(rsp, rbp);
  pop(rbp);
D
duke 已提交
4871 4872
}

4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  // Multiplication of two Java long values stored on the stack
  // as illustrated below. Result is in rdx:rax.
  //
  // rsp ---> [  ??  ] \               \
  //            ....    | y_rsp_offset  |
  //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  //          [ y_hi ]                  | (in bytes)
  //            ....                    |
  //          [ x_lo ]                 /
  //          [ x_hi ]
  //            ....
  //
  // Basic idea: lo(result) = lo(x_lo * y_lo)
  //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  Label quick;
  // load x_hi, y_hi and check if quick
  // multiplication is possible
  movl(rbx, x_hi);
  movl(rcx, y_hi);
  movl(rax, rbx);
  orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  // do full multiplication
  // 1st step
  mull(y_lo);                                    // x_hi * y_lo
  movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  // 2nd step
  movl(rax, x_lo);
  mull(rcx);                                     // x_lo * y_hi
  addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  // 3rd step
  bind(quick);                                   // note: rbx, = 0 if quick multiply!
  movl(rax, x_lo);
  mull(y_lo);                                    // x_lo * y_lo
  addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
}

void MacroAssembler::lneg(Register hi, Register lo) {
  negl(lo);
  adcl(hi, 0);
  negl(hi);
}

void MacroAssembler::lshl(Register hi, Register lo) {
  // Java shift left long support (semantics as described in JVM spec., p.305)
  // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  // shift value is in rcx !
  assert(hi != rcx, "must not use rcx");
  assert(lo != rcx, "must not use rcx");
  const Register s = rcx;                        // shift count
  const int      n = BitsPerWord;
  Label L;
  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  cmpl(s, n);                                    // if (s < n)
  jcc(Assembler::less, L);                       // else (s >= n)
  movl(hi, lo);                                  // x := x << n
  xorl(lo, lo);
  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  bind(L);                                       // s (mod n) < n
  shldl(hi, lo);                                 // x := x << s
  shll(lo);
}


void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  assert(hi != rcx, "must not use rcx");
  assert(lo != rcx, "must not use rcx");
  const Register s = rcx;                        // shift count
  const int      n = BitsPerWord;
  Label L;
  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  cmpl(s, n);                                    // if (s < n)
  jcc(Assembler::less, L);                       // else (s >= n)
  movl(lo, hi);                                  // x := x >> n
  if (sign_extension) sarl(hi, 31);
  else                xorl(hi, hi);
  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  bind(L);                                       // s (mod n) < n
  shrdl(lo, hi);                                 // x := x >> s
  if (sign_extension) sarl(hi);
  else                shrl(hi);
D
duke 已提交
4959 4960
}

4961 4962
void MacroAssembler::movoop(Register dst, jobject obj) {
  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
D
duke 已提交
4963 4964
}

4965 4966
void MacroAssembler::movoop(Address dst, jobject obj) {
  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
D
duke 已提交
4967 4968
}

4969 4970 4971 4972 4973 4974
void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  if (src.is_lval()) {
    mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  } else {
    movl(dst, as_Address(src));
  }
D
duke 已提交
4975 4976
}

4977 4978
void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  movl(as_Address(dst), src);
D
duke 已提交
4979 4980
}

4981 4982
void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  movl(dst, as_Address(src));
D
duke 已提交
4983 4984
}

4985 4986 4987
// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Address dst, intptr_t src) {
  movl(dst, src);
D
duke 已提交
4988 4989
}

4990 4991 4992 4993 4994 4995

void MacroAssembler::pop_callee_saved_registers() {
  pop(rcx);
  pop(rdx);
  pop(rdi);
  pop(rsi);
D
duke 已提交
4996 4997
}

4998 4999 5000
void MacroAssembler::pop_fTOS() {
  fld_d(Address(rsp, 0));
  addl(rsp, 2 * wordSize);
D
duke 已提交
5001 5002
}

5003 5004 5005 5006 5007
void MacroAssembler::push_callee_saved_registers() {
  push(rsi);
  push(rdi);
  push(rdx);
  push(rcx);
D
duke 已提交
5008 5009
}

5010 5011 5012
void MacroAssembler::push_fTOS() {
  subl(rsp, 2 * wordSize);
  fstp_d(Address(rsp, 0));
D
duke 已提交
5013 5014
}

5015 5016 5017

void MacroAssembler::pushoop(jobject obj) {
  push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
D
duke 已提交
5018 5019
}

5020 5021 5022 5023 5024 5025 5026

void MacroAssembler::pushptr(AddressLiteral src) {
  if (src.is_lval()) {
    push_literal32((int32_t)src.target(), src.rspec());
  } else {
    pushl(as_Address(src));
  }
D
duke 已提交
5027 5028
}

5029 5030 5031
void MacroAssembler::set_word_if_not_zero(Register dst) {
  xorl(dst, dst);
  set_byte_if_not_zero(dst);
D
duke 已提交
5032 5033
}

5034 5035
static void pass_arg0(MacroAssembler* masm, Register arg) {
  masm->push(arg);
D
duke 已提交
5036 5037
}

5038 5039
static void pass_arg1(MacroAssembler* masm, Register arg) {
  masm->push(arg);
D
duke 已提交
5040 5041
}

5042 5043
static void pass_arg2(MacroAssembler* masm, Register arg) {
  masm->push(arg);
5044 5045
}

5046 5047
static void pass_arg3(MacroAssembler* masm, Register arg) {
  masm->push(arg);
5048 5049
}

5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
#ifndef PRODUCT
extern "C" void findpc(intptr_t x);
#endif

void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  // In order to get locks to work, we need to fake a in_VM state
  JavaThread* thread = JavaThread::current();
  JavaThreadState saved_state = thread->thread_state();
  thread->set_thread_state(_thread_in_vm);
  if (ShowMessageBoxOnError) {
    JavaThread* thread = JavaThread::current();
    JavaThreadState saved_state = thread->thread_state();
    thread->set_thread_state(_thread_in_vm);
    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
      ttyLocker ttyl;
      BytecodeCounter::print();
    }
    // To see where a verify_oop failed, get $ebx+40/X for this frame.
    // This is the value of eip which points to where verify_oop will return.
    if (os::message_box(msg, "Execution stopped, print registers?")) {
      ttyLocker ttyl;
      tty->print_cr("eip = 0x%08x", eip);
#ifndef PRODUCT
5073 5074 5075 5076 5077
      if ((WizardMode || Verbose) && PrintMiscellaneous) {
        tty->cr();
        findpc(eip);
        tty->cr();
      }
5078
#endif
5079 5080
      tty->print_cr("rax = 0x%08x", rax);
      tty->print_cr("rbx = 0x%08x", rbx);
5081 5082 5083 5084
      tty->print_cr("rcx = 0x%08x", rcx);
      tty->print_cr("rdx = 0x%08x", rdx);
      tty->print_cr("rdi = 0x%08x", rdi);
      tty->print_cr("rsi = 0x%08x", rsi);
5085
      tty->print_cr("rbp = 0x%08x", rbp);
5086 5087
      tty->print_cr("rsp = 0x%08x", rsp);
      BREAKPOINT;
5088
      assert(false, "start up GDB");
5089 5090 5091 5092 5093 5094 5095
    }
  } else {
    ttyLocker ttyl;
    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
    assert(false, "DEBUG MESSAGE");
  }
  ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
D
duke 已提交
5096 5097
}

5098 5099 5100 5101 5102 5103 5104 5105
void MacroAssembler::stop(const char* msg) {
  ExternalAddress message((address)msg);
  // push address of message
  pushptr(message.addr());
  { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  pusha();                                           // push registers
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  hlt();
D
duke 已提交
5106 5107
}

5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
void MacroAssembler::warn(const char* msg) {
  push_CPU_state();

  ExternalAddress message((address) msg);
  // push address of message
  pushptr(message.addr());

  call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  addl(rsp, wordSize);       // discard argument
  pop_CPU_state();
}

#else // _LP64

// 64 bit versions
D
duke 已提交
5123 5124

Address MacroAssembler::as_Address(AddressLiteral adr) {
5125 5126 5127
  // amd64 always does this as a pc-rel
  // we can be absolute or disp based on the instruction type
  // jmp/call are displacements others are absolute
D
duke 已提交
5128 5129
  assert(!adr.is_lval(), "must be rval");
  assert(reachable(adr), "must be");
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
  return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());

}

Address MacroAssembler::as_Address(ArrayAddress adr) {
  AddressLiteral base = adr.base();
  lea(rscratch1, base);
  Address index = adr.index();
  assert(index._disp == 0, "must not have disp"); // maybe it can?
  Address array(rscratch1, index._index, index._scale, index._disp);
  return array;
D
duke 已提交
5141 5142
}

5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
int MacroAssembler::biased_locking_enter(Register lock_reg,
                                         Register obj_reg,
                                         Register swap_reg,
                                         Register tmp_reg,
                                         bool swap_reg_contains_mark,
                                         Label& done,
                                         Label* slow_case,
                                         BiasedLockingCounters* counters) {
  assert(UseBiasedLocking, "why call this otherwise?");
  assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  assert(tmp_reg != noreg, "tmp_reg must be supplied");
  assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  Address saved_mark_addr(lock_reg, 0);

  if (PrintBiasedLockingStatistics && counters == NULL)
    counters = BiasedLocking::counters();

  // Biased locking
  // See whether the lock is currently biased toward our thread and
  // whether the epoch is still valid
  // Note that the runtime guarantees sufficient alignment of JavaThread
  // pointers to allow age to be placed into low bits
  // First check to see whether biasing is even enabled for this object
  Label cas_label;
  int null_check_offset = -1;
  if (!swap_reg_contains_mark) {
    null_check_offset = offset();
    movq(swap_reg, mark_addr);
  }
  movq(tmp_reg, swap_reg);
  andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  jcc(Assembler::notEqual, cas_label);
  // The bias pattern is present in the object's header. Need to check
  // whether the bias owner and the epoch are both still current.
  load_prototype_header(tmp_reg, obj_reg);
  orq(tmp_reg, r15_thread);
  xorq(tmp_reg, swap_reg);
  andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  }
  jcc(Assembler::equal, done);

  Label try_revoke_bias;
  Label try_rebias;

  // At this point we know that the header has the bias pattern and
  // that we are not the bias owner in the current epoch. We need to
  // figure out more details about the state of the header in order to
  // know what operations can be legally performed on the object's
  // header.

  // If the low three bits in the xor result aren't clear, that means
  // the prototype header is no longer biased and we have to revoke
  // the bias on this object.
  testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  jcc(Assembler::notZero, try_revoke_bias);

  // Biasing is still enabled for this data type. See whether the
  // epoch of the current bias is still valid, meaning that the epoch
  // bits of the mark word are equal to the epoch bits of the
  // prototype header. (Note that the prototype header's epoch bits
  // only change at a safepoint.) If not, attempt to rebias the object
  // toward the current thread. Note that we must be absolutely sure
  // that the current epoch is invalid in order to do this because
  // otherwise the manipulations it performs on the mark word are
  // illegal.
  testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  jcc(Assembler::notZero, try_rebias);

  // The epoch of the current bias is still valid but we know nothing
  // about the owner; it might be set or it might be clear. Try to
  // acquire the bias of the object using an atomic operation. If this
  // fails we will go in to the runtime to revoke the object's bias.
  // Note that we first construct the presumed unbiased header so we
  // don't accidentally blow away another thread's valid bias.
  andq(swap_reg,
       markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  movq(tmp_reg, swap_reg);
  orq(tmp_reg, r15_thread);
  if (os::is_MP()) {
    lock();
  }
  cmpxchgq(tmp_reg, Address(obj_reg, 0));
  // If the biasing toward our thread failed, this means that
  // another thread succeeded in biasing it toward itself and we
  // need to revoke that bias. The revocation will occur in the
  // interpreter runtime in the slow case.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  }
  if (slow_case != NULL) {
    jcc(Assembler::notZero, *slow_case);
  }
  jmp(done);

  bind(try_rebias);
  // At this point we know the epoch has expired, meaning that the
  // current "bias owner", if any, is actually invalid. Under these
  // circumstances _only_, we are allowed to use the current header's
  // value as the comparison value when doing the cas to acquire the
  // bias in the current epoch. In other words, we allow transfer of
  // the bias from one thread to another directly in this situation.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
  load_prototype_header(tmp_reg, obj_reg);
  orq(tmp_reg, r15_thread);
  if (os::is_MP()) {
    lock();
  }
  cmpxchgq(tmp_reg, Address(obj_reg, 0));
  // If the biasing toward our thread failed, then another thread
  // succeeded in biasing it toward itself and we need to revoke that
  // bias. The revocation will occur in the runtime in the slow case.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  }
  if (slow_case != NULL) {
    jcc(Assembler::notZero, *slow_case);
  }
  jmp(done);

  bind(try_revoke_bias);
  // The prototype mark in the klass doesn't have the bias bit set any
  // more, indicating that objects of this data type are not supposed
  // to be biased any more. We are going to try to reset the mark of
  // this object to the prototype value and fall through to the
  // CAS-based locking scheme. Note that if our CAS fails, it means
  // that another thread raced us for the privilege of revoking the
  // bias of this particular object, so it's okay to continue in the
  // normal locking code.
  //
  // FIXME: due to a lack of registers we currently blow away the age
  // bits in this situation. Should attempt to preserve them.
  load_prototype_header(tmp_reg, obj_reg);
  if (os::is_MP()) {
    lock();
  }
  cmpxchgq(tmp_reg, Address(obj_reg, 0));
  // Fall through to the normal CAS-based lock, because no matter what
  // the result of the above CAS, some thread must have succeeded in
  // removing the bias bit from the object's header.
  if (counters != NULL) {
    cond_inc32(Assembler::zero,
               ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  }
D
duke 已提交
5296

5297
  bind(cas_label);
D
duke 已提交
5298

5299
  return null_check_offset;
D
duke 已提交
5300 5301
}

5302 5303
void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  Label L, E;
D
duke 已提交
5304

5305 5306 5307 5308 5309
#ifdef _WIN64
  // Windows always allocates space for it's register args
  assert(num_args <= 4, "only register arguments supported");
  subq(rsp,  frame::arg_reg_save_area_bytes);
#endif
D
duke 已提交
5310

5311 5312 5313
  // Align stack if necessary
  testl(rsp, 15);
  jcc(Assembler::zero, L);
D
duke 已提交
5314

5315 5316 5317
  subq(rsp, 8);
  {
    call(RuntimeAddress(entry_point));
D
duke 已提交
5318
  }
5319 5320
  addq(rsp, 8);
  jmp(E);
D
duke 已提交
5321

5322 5323 5324
  bind(L);
  {
    call(RuntimeAddress(entry_point));
D
duke 已提交
5325 5326
  }

5327
  bind(E);
D
duke 已提交
5328

5329 5330 5331 5332
#ifdef _WIN64
  // restore stack pointer
  addq(rsp, frame::arg_reg_save_area_bytes);
#endif
D
duke 已提交
5333 5334 5335

}

5336 5337
void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  assert(!src2.is_lval(), "should use cmpptr");
D
duke 已提交
5338 5339 5340 5341 5342 5343 5344 5345 5346

  if (reachable(src2)) {
    cmpq(src1, as_Address(src2));
  } else {
    lea(rscratch1, src2);
    Assembler::cmpq(src1, Address(rscratch1, 0));
  }
}

5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
int MacroAssembler::corrected_idivq(Register reg) {
  // Full implementation of Java ldiv and lrem; checks for special
  // case as described in JVM spec., p.243 & p.271.  The function
  // returns the (pc) offset of the idivl instruction - may be needed
  // for implicit exceptions.
  //
  //         normal case                           special case
  //
  // input : rax: dividend                         min_long
  //         reg: divisor   (may not be eax/edx)   -1
  //
  // output: rax: quotient  (= rax idiv reg)       min_long
  //         rdx: remainder (= rax irem reg)       0
  assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  static const int64_t min_long = 0x8000000000000000;
  Label normal_case, special_case;

  // check for special case
  cmp64(rax, ExternalAddress((address) &min_long));
  jcc(Assembler::notEqual, normal_case);
  xorl(rdx, rdx); // prepare rdx for possible special case (where
                  // remainder = 0)
  cmpq(reg, -1);
  jcc(Assembler::equal, special_case);

  // handle normal case
  bind(normal_case);
  cdqq();
  int idivq_offset = offset();
  idivq(reg);

  // normal and special case exit
  bind(special_case);

  return idivq_offset;
}

void MacroAssembler::decrementq(Register reg, int value) {
  if (value == min_jint) { subq(reg, value); return; }
  if (value <  0) { incrementq(reg, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { decq(reg) ; return; }
  /* else */      { subq(reg, value)       ; return; }
D
duke 已提交
5390 5391
}

5392 5393 5394 5395 5396 5397 5398
void MacroAssembler::decrementq(Address dst, int value) {
  if (value == min_jint) { subq(dst, value); return; }
  if (value <  0) { incrementq(dst, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { decq(dst) ; return; }
  /* else */      { subq(dst, value)       ; return; }
}
D
duke 已提交
5399

5400 5401 5402 5403 5404 5405 5406 5407 5408
void MacroAssembler::fat_nop() {
  // A 5 byte nop that is safe for patching (see patch_verified_entry)
  // Recommened sequence from 'Software Optimization Guide for the AMD
  // Hammer Processor'
  emit_byte(0x66);
  emit_byte(0x66);
  emit_byte(0x90);
  emit_byte(0x66);
  emit_byte(0x90);
D
duke 已提交
5409 5410
}

5411 5412 5413 5414 5415 5416
void MacroAssembler::incrementq(Register reg, int value) {
  if (value == min_jint) { addq(reg, value); return; }
  if (value <  0) { decrementq(reg, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { incq(reg) ; return; }
  /* else */      { addq(reg, value)       ; return; }
D
duke 已提交
5417 5418
}

5419 5420 5421 5422 5423 5424
void MacroAssembler::incrementq(Address dst, int value) {
  if (value == min_jint) { addq(dst, value); return; }
  if (value <  0) { decrementq(dst, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { incq(dst) ; return; }
  /* else */      { addq(dst, value)       ; return; }
D
duke 已提交
5425 5426
}

5427 5428 5429 5430 5431 5432 5433 5434
// 32bit can do a case table jump in one instruction but we no longer allow the base
// to be installed in the Address class
void MacroAssembler::jump(ArrayAddress entry) {
  lea(rscratch1, entry.base());
  Address dispatch = entry.index();
  assert(dispatch._base == noreg, "must be");
  dispatch._base = rscratch1;
  jmp(dispatch);
D
duke 已提交
5435 5436
}

5437 5438 5439
void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  ShouldNotReachHere(); // 64bit doesn't use two regs
  cmpq(x_lo, y_lo);
D
duke 已提交
5440 5441 5442 5443 5444 5445
}

void MacroAssembler::lea(Register dst, AddressLiteral src) {
    mov_literal64(dst, (intptr_t)src.target(), src.rspec());
}

5446 5447 5448
void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  movptr(dst, rscratch1);
D
duke 已提交
5449 5450
}

5451 5452 5453
void MacroAssembler::leave() {
  // %%% is this really better? Why not on 32bit too?
  emit_byte(0xC9); // LEAVE
D
duke 已提交
5454 5455
}

5456 5457 5458
void MacroAssembler::lneg(Register hi, Register lo) {
  ShouldNotReachHere(); // 64bit doesn't use two regs
  negq(lo);
D
duke 已提交
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
}

void MacroAssembler::movoop(Register dst, jobject obj) {
  mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
}

void MacroAssembler::movoop(Address dst, jobject obj) {
  mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  movq(dst, rscratch1);
}

void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  if (src.is_lval()) {
    mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  } else {
    if (reachable(src)) {
      movq(dst, as_Address(src));
    } else {
      lea(rscratch1, src);
      movq(dst, Address(rscratch1,0));
    }
  }
}

void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  movq(as_Address(dst), src);
5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
}

void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  movq(dst, as_Address(src));
}

// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Address dst, intptr_t src) {
  mov64(rscratch1, src);
  movq(dst, rscratch1);
}

// These are mostly for initializing NULL
void MacroAssembler::movptr(Address dst, int32_t src) {
  movslq(dst, src);
}

void MacroAssembler::movptr(Register dst, int32_t src) {
  mov64(dst, (intptr_t)src);
D
duke 已提交
5504 5505 5506 5507
}

void MacroAssembler::pushoop(jobject obj) {
  movoop(rscratch1, obj);
5508
  push(rscratch1);
D
duke 已提交
5509 5510 5511 5512 5513
}

void MacroAssembler::pushptr(AddressLiteral src) {
  lea(rscratch1, src);
  if (src.is_lval()) {
5514
    push(rscratch1);
D
duke 已提交
5515 5516 5517
  } else {
    pushq(Address(rscratch1, 0));
  }
5518 5519 5520 5521 5522
}

void MacroAssembler::reset_last_Java_frame(bool clear_fp,
                                           bool clear_pc) {
  // we must set sp to zero to clear frame
5523
  movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
5524 5525 5526
  // must clear fp, so that compiled frames are not confused; it is
  // possible that we need it only for debugging
  if (clear_fp) {
5527
    movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
5528 5529 5530
  }

  if (clear_pc) {
5531
    movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
D
duke 已提交
5532 5533 5534
  }
}

5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
void MacroAssembler::set_last_Java_frame(Register last_java_sp,
                                         Register last_java_fp,
                                         address  last_java_pc) {
  // determine last_java_sp register
  if (!last_java_sp->is_valid()) {
    last_java_sp = rsp;
  }

  // last_java_fp is optional
  if (last_java_fp->is_valid()) {
    movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
           last_java_fp);
  }

  // last_java_pc is optional
  if (last_java_pc != NULL) {
    Address java_pc(r15_thread,
                    JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
    lea(rscratch1, InternalAddress(last_java_pc));
    movptr(java_pc, rscratch1);
  }

  movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
}

static void pass_arg0(MacroAssembler* masm, Register arg) {
  if (c_rarg0 != arg ) {
    masm->mov(c_rarg0, arg);
D
duke 已提交
5563 5564 5565
  }
}

5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
static void pass_arg1(MacroAssembler* masm, Register arg) {
  if (c_rarg1 != arg ) {
    masm->mov(c_rarg1, arg);
  }
}

static void pass_arg2(MacroAssembler* masm, Register arg) {
  if (c_rarg2 != arg ) {
    masm->mov(c_rarg2, arg);
  }
}

static void pass_arg3(MacroAssembler* masm, Register arg) {
  if (c_rarg3 != arg ) {
    masm->mov(c_rarg3, arg);
  }
}

void MacroAssembler::stop(const char* msg) {
  address rip = pc();
  pusha(); // get regs on stack
  lea(c_rarg0, ExternalAddress((address) msg));
  lea(c_rarg1, InternalAddress(rip));
  movq(c_rarg2, rsp); // pass pointer to regs array
  andq(rsp, -16); // align stack as required by ABI
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  hlt();
}

void MacroAssembler::warn(const char* msg) {
5596
  push(rsp);
5597 5598 5599 5600 5601 5602
  andq(rsp, -16);     // align stack as required by push_CPU_state and call

  push_CPU_state();   // keeps alignment at 16 bytes
  lea(c_rarg0, ExternalAddress((address) msg));
  call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  pop_CPU_state();
5603
  pop(rsp);
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
}

#ifndef PRODUCT
extern "C" void findpc(intptr_t x);
#endif

void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  // In order to get locks to work, we need to fake a in_VM state
  if (ShowMessageBoxOnError ) {
    JavaThread* thread = JavaThread::current();
    JavaThreadState saved_state = thread->thread_state();
    thread->set_thread_state(_thread_in_vm);
#ifndef PRODUCT
    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
      ttyLocker ttyl;
      BytecodeCounter::print();
    }
#endif
    // To see where a verify_oop failed, get $ebx+40/X for this frame.
    // XXX correct this offset for amd64
    // This is the value of eip which points to where verify_oop will return.
    if (os::message_box(msg, "Execution stopped, print registers?")) {
      ttyLocker ttyl;
      tty->print_cr("rip = 0x%016lx", pc);
#ifndef PRODUCT
      tty->cr();
      findpc(pc);
      tty->cr();
#endif
      tty->print_cr("rax = 0x%016lx", regs[15]);
      tty->print_cr("rbx = 0x%016lx", regs[12]);
      tty->print_cr("rcx = 0x%016lx", regs[14]);
      tty->print_cr("rdx = 0x%016lx", regs[13]);
      tty->print_cr("rdi = 0x%016lx", regs[8]);
      tty->print_cr("rsi = 0x%016lx", regs[9]);
      tty->print_cr("rbp = 0x%016lx", regs[10]);
      tty->print_cr("rsp = 0x%016lx", regs[11]);
      tty->print_cr("r8  = 0x%016lx", regs[7]);
      tty->print_cr("r9  = 0x%016lx", regs[6]);
      tty->print_cr("r10 = 0x%016lx", regs[5]);
      tty->print_cr("r11 = 0x%016lx", regs[4]);
      tty->print_cr("r12 = 0x%016lx", regs[3]);
      tty->print_cr("r13 = 0x%016lx", regs[2]);
      tty->print_cr("r14 = 0x%016lx", regs[1]);
      tty->print_cr("r15 = 0x%016lx", regs[0]);
      BREAKPOINT;
    }
    ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
D
duke 已提交
5652
  } else {
5653 5654 5655
    ttyLocker ttyl;
    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
                    msg);
D
duke 已提交
5656 5657 5658
  }
}

5659
#endif // _LP64
D
duke 已提交
5660

5661
// Now versions that are common to 32/64 bit
D
duke 已提交
5662

5663 5664
void MacroAssembler::addptr(Register dst, int32_t imm32) {
  LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
D
duke 已提交
5665 5666
}

5667 5668
void MacroAssembler::addptr(Register dst, Register src) {
  LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
D
duke 已提交
5669 5670
}

5671 5672
void MacroAssembler::addptr(Address dst, Register src) {
  LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
D
duke 已提交
5673 5674
}

5675 5676 5677 5678
void MacroAssembler::align(int modulus) {
  if (offset() % modulus != 0) {
    nop(modulus - (offset() % modulus));
  }
D
duke 已提交
5679 5680
}

5681
void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
R
roland 已提交
5682 5683 5684 5685 5686 5687
  if (reachable(src)) {
    andpd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    andpd(dst, Address(rscratch1, 0));
  }
D
duke 已提交
5688 5689
}

5690 5691
void MacroAssembler::andptr(Register dst, int32_t imm32) {
  LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
D
duke 已提交
5692 5693
}

5694 5695 5696 5697 5698 5699
void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  pushf();
  if (os::is_MP())
    lock();
  incrementl(counter_addr);
  popf();
D
duke 已提交
5700 5701
}

5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages.  This clobbers tmp.
void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  movptr(tmp, rsp);
  // Bang stack for total size given plus shadow page size.
  // Bang one page at a time because large size can bang beyond yellow and
  // red zones.
  Label loop;
  bind(loop);
  movl(Address(tmp, (-os::vm_page_size())), size );
  subptr(tmp, os::vm_page_size());
  subl(size, os::vm_page_size());
  jcc(Assembler::greater, loop);
D
duke 已提交
5715

5716 5717 5718 5719 5720 5721 5722
  // Bang down shadow pages too.
  // The -1 because we already subtracted 1 page.
  for (int i = 0; i< StackShadowPages-1; i++) {
    // this could be any sized move but this is can be a debugging crumb
    // so the bigger the better.
    movptr(Address(tmp, (-i*os::vm_page_size())), size );
  }
D
duke 已提交
5723 5724
}

5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  assert(UseBiasedLocking, "why call this otherwise?");

  // Check for biased locking unlock case, which is a no-op
  // Note: we do not have to check the thread ID for two reasons.
  // First, the interpreter checks for IllegalMonitorStateException at
  // a higher level. Second, if the bias was revoked while we held the
  // lock, the object could not be rebiased toward another thread, so
  // the bias bit would be clear.
  movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  jcc(Assembler::equal, done);
D
duke 已提交
5738 5739
}

5740 5741 5742 5743 5744 5745 5746
void MacroAssembler::c2bool(Register x) {
  // implements x == 0 ? 0 : 1
  // note: must only look at least-significant byte of x
  //       since C-style booleans are stored in one byte
  //       only! (was bug)
  andl(x, 0xFF);
  setb(Assembler::notZero, x);
D
duke 已提交
5747 5748
}

5749 5750 5751
// Wouldn't need if AddressLiteral version had new name
void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  Assembler::call(L, rtype);
D
duke 已提交
5752 5753
}

5754 5755
void MacroAssembler::call(Register entry) {
  Assembler::call(entry);
D
duke 已提交
5756 5757
}

5758 5759 5760 5761 5762 5763
void MacroAssembler::call(AddressLiteral entry) {
  if (reachable(entry)) {
    Assembler::call_literal(entry.target(), entry.rspec());
  } else {
    lea(rscratch1, entry);
    Assembler::call(rscratch1);
D
duke 已提交
5764 5765 5766
  }
}

5767
// Implementation of call_VM versions
D
duke 已提交
5768

5769 5770 5771 5772 5773 5774
void MacroAssembler::call_VM(Register oop_result,
                             address entry_point,
                             bool check_exceptions) {
  Label C, E;
  call(C, relocInfo::none);
  jmp(E);
D
duke 已提交
5775

5776 5777 5778
  bind(C);
  call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  ret(0);
D
duke 已提交
5779

5780
  bind(E);
D
duke 已提交
5781 5782
}

5783 5784 5785 5786 5787 5788 5789
void MacroAssembler::call_VM(Register oop_result,
                             address entry_point,
                             Register arg_1,
                             bool check_exceptions) {
  Label C, E;
  call(C, relocInfo::none);
  jmp(E);
D
duke 已提交
5790

5791 5792 5793 5794
  bind(C);
  pass_arg1(this, arg_1);
  call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  ret(0);
D
duke 已提交
5795

5796
  bind(E);
D
duke 已提交
5797 5798
}

5799 5800 5801 5802 5803 5804 5805 5806
void MacroAssembler::call_VM(Register oop_result,
                             address entry_point,
                             Register arg_1,
                             Register arg_2,
                             bool check_exceptions) {
  Label C, E;
  call(C, relocInfo::none);
  jmp(E);
D
duke 已提交
5807

5808
  bind(C);
D
duke 已提交
5809

5810
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
D
duke 已提交
5811

5812 5813 5814 5815
  pass_arg2(this, arg_2);
  pass_arg1(this, arg_1);
  call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  ret(0);
D
duke 已提交
5816

5817
  bind(E);
D
duke 已提交
5818 5819
}

5820 5821 5822 5823 5824 5825 5826 5827 5828
void MacroAssembler::call_VM(Register oop_result,
                             address entry_point,
                             Register arg_1,
                             Register arg_2,
                             Register arg_3,
                             bool check_exceptions) {
  Label C, E;
  call(C, relocInfo::none);
  jmp(E);
D
duke 已提交
5829

5830
  bind(C);
D
duke 已提交
5831

5832 5833 5834
  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  pass_arg3(this, arg_3);
D
duke 已提交
5835

5836 5837
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
D
duke 已提交
5838

5839 5840 5841
  pass_arg1(this, arg_1);
  call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  ret(0);
D
duke 已提交
5842

5843 5844
  bind(E);
}
D
duke 已提交
5845

5846 5847 5848 5849 5850 5851 5852 5853
void MacroAssembler::call_VM(Register oop_result,
                             Register last_java_sp,
                             address entry_point,
                             int number_of_arguments,
                             bool check_exceptions) {
  Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}
D
duke 已提交
5854

5855 5856 5857 5858 5859 5860 5861 5862
void MacroAssembler::call_VM(Register oop_result,
                             Register last_java_sp,
                             address entry_point,
                             Register arg_1,
                             bool check_exceptions) {
  pass_arg1(this, arg_1);
  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}
D
duke 已提交
5863

5864 5865 5866 5867 5868 5869
void MacroAssembler::call_VM(Register oop_result,
                             Register last_java_sp,
                             address entry_point,
                             Register arg_1,
                             Register arg_2,
                             bool check_exceptions) {
D
duke 已提交
5870

5871 5872 5873 5874
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
  pass_arg1(this, arg_1);
  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
D
duke 已提交
5875 5876
}

5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
void MacroAssembler::call_VM(Register oop_result,
                             Register last_java_sp,
                             address entry_point,
                             Register arg_1,
                             Register arg_2,
                             Register arg_3,
                             bool check_exceptions) {
  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  pass_arg3(this, arg_3);
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
  pass_arg1(this, arg_1);
  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}
D
duke 已提交
5892 5893 5894 5895

void MacroAssembler::call_VM_base(Register oop_result,
                                  Register java_thread,
                                  Register last_java_sp,
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907
                                  address  entry_point,
                                  int      number_of_arguments,
                                  bool     check_exceptions) {
  // determine java_thread register
  if (!java_thread->is_valid()) {
#ifdef _LP64
    java_thread = r15_thread;
#else
    java_thread = rdi;
    get_thread(java_thread);
#endif // LP64
  }
D
duke 已提交
5908 5909 5910 5911 5912
  // determine last_java_sp register
  if (!last_java_sp->is_valid()) {
    last_java_sp = rsp;
  }
  // debugging support
5913 5914
  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
5915 5916 5917 5918
#ifdef ASSERT
  LP64_ONLY(if (UseCompressedOops) verify_heapbase("call_VM_base");)
#endif // ASSERT

5919 5920
  assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
D
duke 已提交
5921

5922
  // push java thread (becomes first argument of C function)
D
duke 已提交
5923

5924 5925
  NOT_LP64(push(java_thread); number_of_arguments++);
  LP64_ONLY(mov(c_rarg0, r15_thread));
D
duke 已提交
5926

5927 5928
  // set last Java frame before call
  assert(last_java_sp != rbp, "can't use ebp/rbp");
D
duke 已提交
5929

5930 5931
  // Only interpreter should have to set fp
  set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
D
duke 已提交
5932

5933 5934
  // do the call, remove parameters
  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
D
duke 已提交
5935

5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949
  // restore the thread (cannot use the pushed argument since arguments
  // may be overwritten by C code generated by an optimizing compiler);
  // however can use the register value directly if it is callee saved.
  if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
    // rdi & rsi (also r15) are callee saved -> nothing to do
#ifdef ASSERT
    guarantee(java_thread != rax, "change this code");
    push(rax);
    { Label L;
      get_thread(rax);
      cmpptr(java_thread, rax);
      jcc(Assembler::equal, L);
      stop("MacroAssembler::call_VM_base: rdi not callee saved?");
      bind(L);
D
duke 已提交
5950
    }
5951
    pop(rax);
D
duke 已提交
5952
#endif
5953 5954
  } else {
    get_thread(java_thread);
D
duke 已提交
5955 5956
  }
  // reset last Java frame
5957 5958
  // Only interpreter should have to clear fp
  reset_last_Java_frame(java_thread, true, false);
D
duke 已提交
5959

5960 5961 5962 5963 5964
#ifndef CC_INTERP
   // C++ interp handles this in the interpreter
  check_and_handle_popframe(java_thread);
  check_and_handle_earlyret(java_thread);
#endif /* CC_INTERP */
D
duke 已提交
5965 5966

  if (check_exceptions) {
5967 5968 5969 5970 5971 5972
    // check for pending exceptions (java_thread is set upon return)
    cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
#ifndef _LP64
    jump_cc(Assembler::notEqual,
            RuntimeAddress(StubRoutines::forward_exception_entry()));
#else
D
duke 已提交
5973 5974 5975
    // This used to conditionally jump to forward_exception however it is
    // possible if we relocate that the branch will not reach. So we must jump
    // around so we can always reach
5976

D
duke 已提交
5977 5978 5979 5980
    Label ok;
    jcc(Assembler::equal, ok);
    jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
    bind(ok);
5981
#endif // LP64
D
duke 已提交
5982 5983 5984 5985
  }

  // get oop result if there is one and reset the value in the thread
  if (oop_result->is_valid()) {
5986
    movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
5987
    movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
5988
    verify_oop(oop_result, "broken oop in call_VM_base");
D
duke 已提交
5989 5990 5991
  }
}

5992
void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
D
duke 已提交
5993

5994 5995 5996 5997 5998 5999 6000 6001 6002
  // Calculate the value for last_Java_sp
  // somewhat subtle. call_VM does an intermediate call
  // which places a return address on the stack just under the
  // stack pointer as the user finsihed with it. This allows
  // use to retrieve last_Java_pc from last_Java_sp[-1].
  // On 32bit we then have to push additional args on the stack to accomplish
  // the actual requested call. On 64bit call_VM only can use register args
  // so the only extra space is the return address that call_VM created.
  // This hopefully explains the calculations here.
D
duke 已提交
6003

6004
#ifdef _LP64
D
duke 已提交
6005
  // We've pushed one address, correct last_Java_sp
6006 6007 6008 6009 6010 6011
  lea(rax, Address(rsp, wordSize));
#else
  lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
#endif // LP64

  call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
D
duke 已提交
6012 6013 6014

}

6015 6016 6017
void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  call_VM_leaf_base(entry_point, number_of_arguments);
}
D
duke 已提交
6018

6019 6020 6021 6022
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  pass_arg0(this, arg_0);
  call_VM_leaf(entry_point, 1);
}
D
duke 已提交
6023

6024
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
D
duke 已提交
6025

6026 6027 6028 6029
  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  pass_arg1(this, arg_1);
  pass_arg0(this, arg_0);
  call_VM_leaf(entry_point, 2);
D
duke 已提交
6030 6031
}

6032 6033 6034 6035 6036 6037 6038 6039 6040
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  pass_arg2(this, arg_2);
  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  pass_arg1(this, arg_1);
  pass_arg0(this, arg_0);
  call_VM_leaf(entry_point, 3);
}
D
duke 已提交
6041

6042 6043
void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
}
D
duke 已提交
6044

6045 6046
void MacroAssembler::check_and_handle_popframe(Register java_thread) {
}
D
duke 已提交
6047

6048 6049 6050 6051 6052 6053
void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  if (reachable(src1)) {
    cmpl(as_Address(src1), imm);
  } else {
    lea(rscratch1, src1);
    cmpl(Address(rscratch1, 0), imm);
D
duke 已提交
6054
  }
6055
}
D
duke 已提交
6056

6057 6058 6059 6060 6061 6062 6063 6064
void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  assert(!src2.is_lval(), "use cmpptr");
  if (reachable(src2)) {
    cmpl(src1, as_Address(src2));
  } else {
    lea(rscratch1, src2);
    cmpl(src1, Address(rscratch1, 0));
  }
D
duke 已提交
6065 6066
}

6067 6068 6069
void MacroAssembler::cmp32(Register src1, int32_t imm) {
  Assembler::cmpl(src1, imm);
}
D
duke 已提交
6070

6071 6072 6073
void MacroAssembler::cmp32(Register src1, Address src2) {
  Assembler::cmpl(src1, src2);
}
D
duke 已提交
6074

6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  ucomisd(opr1, opr2);

  Label L;
  if (unordered_is_less) {
    movl(dst, -1);
    jcc(Assembler::parity, L);
    jcc(Assembler::below , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    increment(dst);
  } else { // unordered is greater
    movl(dst, 1);
    jcc(Assembler::parity, L);
    jcc(Assembler::above , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    decrementl(dst);
D
duke 已提交
6093
  }
6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
  bind(L);
}

void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  ucomiss(opr1, opr2);

  Label L;
  if (unordered_is_less) {
    movl(dst, -1);
    jcc(Assembler::parity, L);
    jcc(Assembler::below , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    increment(dst);
  } else { // unordered is greater
    movl(dst, 1);
    jcc(Assembler::parity, L);
    jcc(Assembler::above , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    decrementl(dst);
D
duke 已提交
6115
  }
6116 6117
  bind(L);
}
D
duke 已提交
6118

6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177

void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  if (reachable(src1)) {
    cmpb(as_Address(src1), imm);
  } else {
    lea(rscratch1, src1);
    cmpb(Address(rscratch1, 0), imm);
  }
}

void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
#ifdef _LP64
  if (src2.is_lval()) {
    movptr(rscratch1, src2);
    Assembler::cmpq(src1, rscratch1);
  } else if (reachable(src2)) {
    cmpq(src1, as_Address(src2));
  } else {
    lea(rscratch1, src2);
    Assembler::cmpq(src1, Address(rscratch1, 0));
  }
#else
  if (src2.is_lval()) {
    cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  } else {
    cmpl(src1, as_Address(src2));
  }
#endif // _LP64
}

void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  assert(src2.is_lval(), "not a mem-mem compare");
#ifdef _LP64
  // moves src2's literal address
  movptr(rscratch1, src2);
  Assembler::cmpq(src1, rscratch1);
#else
  cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
#endif // _LP64
}

void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  if (reachable(adr)) {
    if (os::is_MP())
      lock();
    cmpxchgptr(reg, as_Address(adr));
  } else {
    lea(rscratch1, adr);
    if (os::is_MP())
      lock();
    cmpxchgptr(reg, Address(rscratch1, 0));
  }
}

void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
}

void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
R
roland 已提交
6178 6179 6180 6181 6182 6183
  if (reachable(src)) {
    comisd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    comisd(dst, Address(rscratch1, 0));
  }
6184 6185 6186
}

void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
R
roland 已提交
6187 6188 6189 6190 6191 6192
  if (reachable(src)) {
    comiss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    comiss(dst, Address(rscratch1, 0));
  }
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
}


void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  Condition negated_cond = negate_condition(cond);
  Label L;
  jcc(negated_cond, L);
  atomic_incl(counter_addr);
  bind(L);
}

int MacroAssembler::corrected_idivl(Register reg) {
  // Full implementation of Java idiv and irem; checks for
  // special case as described in JVM spec., p.243 & p.271.
  // The function returns the (pc) offset of the idivl
  // instruction - may be needed for implicit exceptions.
  //
  //         normal case                           special case
  //
  // input : rax,: dividend                         min_int
  //         reg: divisor   (may not be rax,/rdx)   -1
  //
  // output: rax,: quotient  (= rax, idiv reg)       min_int
  //         rdx: remainder (= rax, irem reg)       0
  assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  const int min_int = 0x80000000;
  Label normal_case, special_case;

  // check for special case
  cmpl(rax, min_int);
  jcc(Assembler::notEqual, normal_case);
  xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  cmpl(reg, -1);
  jcc(Assembler::equal, special_case);

  // handle normal case
  bind(normal_case);
  cdql();
  int idivl_offset = offset();
  idivl(reg);

  // normal and special case exit
  bind(special_case);

  return idivl_offset;
}



void MacroAssembler::decrementl(Register reg, int value) {
  if (value == min_jint) {subl(reg, value) ; return; }
  if (value <  0) { incrementl(reg, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { decl(reg) ; return; }
  /* else */      { subl(reg, value)       ; return; }
}

void MacroAssembler::decrementl(Address dst, int value) {
  if (value == min_jint) {subl(dst, value) ; return; }
  if (value <  0) { incrementl(dst, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { decl(dst) ; return; }
  /* else */      { subl(dst, value)       ; return; }
D
duke 已提交
6256 6257
}

6258 6259 6260 6261 6262 6263
void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  assert (shift_value > 0, "illegal shift value");
  Label _is_positive;
  testl (reg, reg);
  jcc (Assembler::positive, _is_positive);
  int offset = (1 << shift_value) - 1 ;
D
duke 已提交
6264

6265 6266 6267 6268
  if (offset == 1) {
    incrementl(reg);
  } else {
    addl(reg, offset);
D
duke 已提交
6269 6270
  }

6271 6272
  bind (_is_positive);
  sarl(reg, shift_value);
D
duke 已提交
6273 6274
}

6275 6276 6277 6278 6279 6280 6281 6282
// !defined(COMPILER2) is because of stupid core builds
#if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
void MacroAssembler::empty_FPU_stack() {
  if (VM_Version::supports_mmx()) {
    emms();
  } else {
    for (int i = 8; i-- > 0; ) ffree(i);
  }
D
duke 已提交
6283
}
6284
#endif // !LP64 || C1 || !C2
D
duke 已提交
6285

6286 6287 6288 6289 6290 6291 6292 6293 6294

// Defines obj, preserves var_size_in_bytes
void MacroAssembler::eden_allocate(Register obj,
                                   Register var_size_in_bytes,
                                   int con_size_in_bytes,
                                   Register t1,
                                   Label& slow_case) {
  assert(obj == rax, "obj must be in rax, for cmpxchg");
  assert_different_registers(obj, var_size_in_bytes, t1);
A
Merge  
apetrusenko 已提交
6295 6296
  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
    jmp(slow_case);
6297
  } else {
A
Merge  
apetrusenko 已提交
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317
    Register end = t1;
    Label retry;
    bind(retry);
    ExternalAddress heap_top((address) Universe::heap()->top_addr());
    movptr(obj, heap_top);
    if (var_size_in_bytes == noreg) {
      lea(end, Address(obj, con_size_in_bytes));
    } else {
      lea(end, Address(obj, var_size_in_bytes, Address::times_1));
    }
    // if end < obj then we wrapped around => object too long => slow case
    cmpptr(end, obj);
    jcc(Assembler::below, slow_case);
    cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
    jcc(Assembler::above, slow_case);
    // Compare obj with the top addr, and if still equal, store the new top addr in
    // end at the address of the top addr pointer. Sets ZF if was equal, and clears
    // it otherwise. Use lock prefix for atomicity on MPs.
    locked_cmpxchgptr(end, heap_top);
    jcc(Assembler::notEqual, retry);
D
duke 已提交
6318 6319 6320
  }
}

6321 6322 6323
void MacroAssembler::enter() {
  push(rbp);
  mov(rbp, rsp);
D
duke 已提交
6324 6325
}

6326 6327 6328
void MacroAssembler::fcmp(Register tmp) {
  fcmp(tmp, 1, true, true);
}
D
duke 已提交
6329

6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357
void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  assert(!pop_right || pop_left, "usage error");
  if (VM_Version::supports_cmov()) {
    assert(tmp == noreg, "unneeded temp");
    if (pop_left) {
      fucomip(index);
    } else {
      fucomi(index);
    }
    if (pop_right) {
      fpop();
    }
  } else {
    assert(tmp != noreg, "need temp");
    if (pop_left) {
      if (pop_right) {
        fcompp();
      } else {
        fcomp(index);
      }
    } else {
      fcom(index);
    }
    // convert FPU condition into eflags condition via rax,
    save_rax(tmp);
    fwait(); fnstsw_ax();
    sahf();
    restore_rax(tmp);
D
duke 已提交
6358
  }
6359 6360 6361 6362 6363
  // condition codes set as follows:
  //
  // CF (corresponds to C0) if x < y
  // PF (corresponds to C2) if unordered
  // ZF (corresponds to C3) if x = y
D
duke 已提交
6364 6365
}

6366 6367
void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  fcmp2int(dst, unordered_is_less, 1, true, true);
D
duke 已提交
6368 6369
}

6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  Label L;
  if (unordered_is_less) {
    movl(dst, -1);
    jcc(Assembler::parity, L);
    jcc(Assembler::below , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    increment(dst);
  } else { // unordered is greater
    movl(dst, 1);
    jcc(Assembler::parity, L);
    jcc(Assembler::above , L);
    movl(dst, 0);
    jcc(Assembler::equal , L);
    decrementl(dst);
D
duke 已提交
6387
  }
6388
  bind(L);
D
duke 已提交
6389 6390
}

6391 6392
void MacroAssembler::fld_d(AddressLiteral src) {
  fld_d(as_Address(src));
D
duke 已提交
6393 6394
}

6395 6396
void MacroAssembler::fld_s(AddressLiteral src) {
  fld_s(as_Address(src));
D
duke 已提交
6397 6398
}

6399 6400
void MacroAssembler::fld_x(AddressLiteral src) {
  Assembler::fld_x(as_Address(src));
D
duke 已提交
6401 6402
}

6403 6404
void MacroAssembler::fldcw(AddressLiteral src) {
  Assembler::fldcw(as_Address(src));
D
duke 已提交
6405 6406
}

6407 6408 6409
void MacroAssembler::fpop() {
  ffree();
  fincstp();
D
duke 已提交
6410 6411
}

6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
void MacroAssembler::fremr(Register tmp) {
  save_rax(tmp);
  { Label L;
    bind(L);
    fprem();
    fwait(); fnstsw_ax();
#ifdef _LP64
    testl(rax, 0x400);
    jcc(Assembler::notEqual, L);
#else
    sahf();
    jcc(Assembler::parity, L);
#endif // _LP64
  }
  restore_rax(tmp);
  // Result is in ST0.
  // Note: fxch & fpop to get rid of ST1
  // (otherwise FPU stack could overflow eventually)
  fxch(1);
  fpop();
}
6433 6434


6435 6436 6437
void MacroAssembler::incrementl(AddressLiteral dst) {
  if (reachable(dst)) {
    incrementl(as_Address(dst));
6438
  } else {
6439 6440
    lea(rscratch1, dst);
    incrementl(Address(rscratch1, 0));
6441
  }
D
duke 已提交
6442 6443
}

6444 6445
void MacroAssembler::incrementl(ArrayAddress dst) {
  incrementl(as_Address(dst));
D
duke 已提交
6446 6447
}

6448 6449 6450 6451 6452 6453
void MacroAssembler::incrementl(Register reg, int value) {
  if (value == min_jint) {addl(reg, value) ; return; }
  if (value <  0) { decrementl(reg, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { incl(reg) ; return; }
  /* else */      { addl(reg, value)       ; return; }
D
duke 已提交
6454 6455
}

6456 6457 6458 6459 6460 6461 6462
void MacroAssembler::incrementl(Address dst, int value) {
  if (value == min_jint) {addl(dst, value) ; return; }
  if (value <  0) { decrementl(dst, -value); return; }
  if (value == 0) {                        ; return; }
  if (value == 1 && UseIncDec) { incl(dst) ; return; }
  /* else */      { addl(dst, value)       ; return; }
}
D
duke 已提交
6463

6464 6465 6466 6467 6468 6469 6470 6471
void MacroAssembler::jump(AddressLiteral dst) {
  if (reachable(dst)) {
    jmp_literal(dst.target(), dst.rspec());
  } else {
    lea(rscratch1, dst);
    jmp(rscratch1);
  }
}
D
duke 已提交
6472

6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500
void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  if (reachable(dst)) {
    InstructionMark im(this);
    relocate(dst.reloc());
    const int short_size = 2;
    const int long_size = 6;
    int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
    if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
      // 0111 tttn #8-bit disp
      emit_byte(0x70 | cc);
      emit_byte((offs - short_size) & 0xFF);
    } else {
      // 0000 1111 1000 tttn #32-bit disp
      emit_byte(0x0F);
      emit_byte(0x80 | cc);
      emit_long(offs - long_size);
    }
  } else {
#ifdef ASSERT
    warning("reversing conditional branch");
#endif /* ASSERT */
    Label skip;
    jccb(reverse[cc], skip);
    lea(rscratch1, dst);
    Assembler::jmp(rscratch1);
    bind(skip);
  }
}
D
duke 已提交
6501

6502 6503 6504 6505 6506 6507 6508 6509
void MacroAssembler::ldmxcsr(AddressLiteral src) {
  if (reachable(src)) {
    Assembler::ldmxcsr(as_Address(src));
  } else {
    lea(rscratch1, src);
    Assembler::ldmxcsr(Address(rscratch1, 0));
  }
}
D
duke 已提交
6510

6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
int MacroAssembler::load_signed_byte(Register dst, Address src) {
  int off;
  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
    off = offset();
    movsbl(dst, src); // movsxb
  } else {
    off = load_unsigned_byte(dst, src);
    shll(dst, 24);
    sarl(dst, 24);
  }
  return off;
D
duke 已提交
6522 6523
}

6524 6525 6526 6527 6528
// Note: load_signed_short used to be called load_signed_word.
// Although the 'w' in x86 opcodes refers to the term "word" in the assembler
// manual, which means 16 bits, that usage is found nowhere in HotSpot code.
// The term "word" in HotSpot means a 32- or 64-bit machine word.
int MacroAssembler::load_signed_short(Register dst, Address src) {
6529 6530 6531 6532 6533 6534 6535 6536
  int off;
  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
    // This is dubious to me since it seems safe to do a signed 16 => 64 bit
    // version but this is what 64bit has always done. This seems to imply
    // that users are only using 32bits worth.
    off = offset();
    movswl(dst, src); // movsxw
  } else {
6537
    off = load_unsigned_short(dst, src);
6538 6539 6540 6541
    shll(dst, 16);
    sarl(dst, 16);
  }
  return off;
D
duke 已提交
6542 6543
}

6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  // and "3.9 Partial Register Penalties", p. 22).
  int off;
  if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
    off = offset();
    movzbl(dst, src); // movzxb
  } else {
    xorl(dst, dst);
    off = offset();
    movb(dst, src);
  }
  return off;
D
duke 已提交
6557 6558
}

6559 6560
// Note: load_unsigned_short used to be called load_unsigned_word.
int MacroAssembler::load_unsigned_short(Register dst, Address src) {
6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  // and "3.9 Partial Register Penalties", p. 22).
  int off;
  if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
    off = offset();
    movzwl(dst, src); // movzxw
  } else {
    xorl(dst, dst);
    off = offset();
    movw(dst, src);
  }
  return off;
D
duke 已提交
6573 6574
}

6575
void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
T
twisti 已提交
6576
  switch (size_in_bytes) {
6577
#ifndef _LP64
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
  case  8:
    assert(dst2 != noreg, "second dest register required");
    movl(dst,  src);
    movl(dst2, src.plus_disp(BytesPerInt));
    break;
#else
  case  8:  movq(dst, src); break;
#endif
  case  4:  movl(dst, src); break;
  case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  default:  ShouldNotReachHere();
  }
}

void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  switch (size_in_bytes) {
#ifndef _LP64
  case  8:
    assert(src2 != noreg, "second source register required");
    movl(dst,                        src);
    movl(dst.plus_disp(BytesPerInt), src2);
    break;
6601
#else
6602
  case  8:  movq(dst, src); break;
6603
#endif
6604 6605 6606 6607
  case  4:  movl(dst, src); break;
  case  2:  movw(dst, src); break;
  case  1:  movb(dst, src); break;
  default:  ShouldNotReachHere();
6608 6609 6610
  }
}

6611 6612 6613 6614 6615 6616 6617
void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  if (reachable(dst)) {
    movl(as_Address(dst), src);
  } else {
    lea(rscratch1, dst);
    movl(Address(rscratch1, 0), src);
  }
D
duke 已提交
6618 6619
}

6620 6621 6622 6623 6624 6625 6626
void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  if (reachable(src)) {
    movl(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    movl(dst, Address(rscratch1, 0));
  }
D
duke 已提交
6627 6628
}

6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
// C++ bool manipulation

void MacroAssembler::movbool(Register dst, Address src) {
  if(sizeof(bool) == 1)
    movb(dst, src);
  else if(sizeof(bool) == 2)
    movw(dst, src);
  else if(sizeof(bool) == 4)
    movl(dst, src);
  else
    // unsupported
    ShouldNotReachHere();
D
duke 已提交
6641 6642
}

6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
void MacroAssembler::movbool(Address dst, bool boolconst) {
  if(sizeof(bool) == 1)
    movb(dst, (int) boolconst);
  else if(sizeof(bool) == 2)
    movw(dst, (int) boolconst);
  else if(sizeof(bool) == 4)
    movl(dst, (int) boolconst);
  else
    // unsupported
    ShouldNotReachHere();
D
duke 已提交
6653 6654
}

6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
void MacroAssembler::movbool(Address dst, Register src) {
  if(sizeof(bool) == 1)
    movb(dst, src);
  else if(sizeof(bool) == 2)
    movw(dst, src);
  else if(sizeof(bool) == 4)
    movl(dst, src);
  else
    // unsupported
    ShouldNotReachHere();
D
duke 已提交
6665 6666
}

6667 6668 6669
void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  movb(as_Address(dst), src);
}
D
duke 已提交
6670

6671 6672 6673 6674 6675 6676 6677
void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    if (UseXmmLoadAndClearUpper) {
      movsd (dst, as_Address(src));
    } else {
      movlpd(dst, as_Address(src));
    }
D
duke 已提交
6678
  } else {
6679 6680 6681 6682 6683 6684
    lea(rscratch1, src);
    if (UseXmmLoadAndClearUpper) {
      movsd (dst, Address(rscratch1, 0));
    } else {
      movlpd(dst, Address(rscratch1, 0));
    }
D
duke 已提交
6685 6686 6687
  }
}

6688 6689 6690 6691 6692 6693 6694
void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    movss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    movss(dst, Address(rscratch1, 0));
  }
D
duke 已提交
6695 6696
}

6697 6698
void MacroAssembler::movptr(Register dst, Register src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
D
duke 已提交
6699 6700
}

6701 6702 6703
void MacroAssembler::movptr(Register dst, Address src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
D
duke 已提交
6704

6705 6706 6707
// src should NEVER be a real pointer. Use AddressLiteral for true pointers
void MacroAssembler::movptr(Register dst, intptr_t src) {
  LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
D
duke 已提交
6708 6709
}

6710 6711 6712
void MacroAssembler::movptr(Address dst, Register src) {
  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
}
D
duke 已提交
6713

6714 6715 6716 6717 6718 6719 6720 6721
void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    movss(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    movss(dst, Address(rscratch1, 0));
  }
}
D
duke 已提交
6722

6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
void MacroAssembler::null_check(Register reg, int offset) {
  if (needs_explicit_null_check(offset)) {
    // provoke OS NULL exception if reg = NULL by
    // accessing M[reg] w/o changing any (non-CC) registers
    // NOTE: cmpl is plenty here to provoke a segv
    cmpptr(rax, Address(reg, 0));
    // Note: should probably use testl(rax, Address(reg, 0));
    //       may be shorter code (however, this version of
    //       testl needs to be implemented first)
  } else {
    // nothing to do, (later) access of M[reg + offset]
    // will provoke OS NULL exception if reg = NULL
  }
}
D
duke 已提交
6737

6738 6739 6740 6741
void MacroAssembler::os_breakpoint() {
  // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  // (e.g., MSVC can't call ps() otherwise)
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
D
duke 已提交
6742 6743
}

6744 6745 6746 6747
void MacroAssembler::pop_CPU_state() {
  pop_FPU_state();
  pop_IU_state();
}
D
duke 已提交
6748

6749 6750 6751 6752
void MacroAssembler::pop_FPU_state() {
  NOT_LP64(frstor(Address(rsp, 0));)
  LP64_ONLY(fxrstor(Address(rsp, 0));)
  addptr(rsp, FPUStateSizeInWords * wordSize);
D
duke 已提交
6753 6754
}

6755 6756 6757 6758 6759
void MacroAssembler::pop_IU_state() {
  popa();
  LP64_ONLY(addq(rsp, 8));
  popf();
}
D
duke 已提交
6760

6761 6762 6763 6764 6765 6766
// Save Integer and Float state
// Warning: Stack must be 16 byte aligned (64bit)
void MacroAssembler::push_CPU_state() {
  push_IU_state();
  push_FPU_state();
}
D
duke 已提交
6767

6768 6769 6770 6771 6772 6773 6774 6775
void MacroAssembler::push_FPU_state() {
  subptr(rsp, FPUStateSizeInWords * wordSize);
#ifndef _LP64
  fnsave(Address(rsp, 0));
  fwait();
#else
  fxsave(Address(rsp, 0));
#endif // LP64
D
duke 已提交
6776 6777
}

6778 6779 6780 6781 6782 6783 6784
void MacroAssembler::push_IU_state() {
  // Push flags first because pusha kills them
  pushf();
  // Make sure rsp stays 16-byte aligned
  LP64_ONLY(subq(rsp, 8));
  pusha();
}
6785

6786 6787 6788 6789 6790 6791 6792
void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  // determine java_thread register
  if (!java_thread->is_valid()) {
    java_thread = rdi;
    get_thread(java_thread);
  }
  // we must set sp to zero to clear frame
6793
  movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
6794
  if (clear_fp) {
6795
    movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
D
duke 已提交
6796
  }
6797 6798

  if (clear_pc)
6799
    movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
6800

D
duke 已提交
6801 6802
}

6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
void MacroAssembler::restore_rax(Register tmp) {
  if (tmp == noreg) pop(rax);
  else if (tmp != rax) mov(rax, tmp);
}

void MacroAssembler::round_to(Register reg, int modulus) {
  addptr(reg, modulus - 1);
  andptr(reg, -modulus);
}

void MacroAssembler::save_rax(Register tmp) {
  if (tmp == noreg) push(rax);
  else if (tmp != rax) mov(tmp, rax);
D
duke 已提交
6816 6817 6818 6819 6820 6821
}

// Write serialization page so VM thread can do a pseudo remote membar.
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
6822
void MacroAssembler::serialize_memory(Register thread, Register tmp) {
D
duke 已提交
6823 6824 6825 6826 6827 6828 6829
  movl(tmp, thread);
  shrl(tmp, os::get_serialize_page_shift_count());
  andl(tmp, (os::vm_page_size() - sizeof(int)));

  Address index(noreg, tmp, Address::times_1);
  ExternalAddress page(os::get_memory_serialize_page());

6830 6831
  // Size of store must match masking code above
  movl(as_Address(ArrayAddress(page, index)), tmp);
D
duke 已提交
6832 6833
}

6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851
// Calls to C land
//
// When entering C land, the rbp, & rsp of the last Java frame have to be recorded
// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
// has to be reset to 0. This is required to allow proper stack traversal.
void MacroAssembler::set_last_Java_frame(Register java_thread,
                                         Register last_java_sp,
                                         Register last_java_fp,
                                         address  last_java_pc) {
  // determine java_thread register
  if (!java_thread->is_valid()) {
    java_thread = rdi;
    get_thread(java_thread);
  }
  // determine last_java_sp register
  if (!last_java_sp->is_valid()) {
    last_java_sp = rsp;
  }
D
duke 已提交
6852

6853
  // last_java_fp is optional
D
duke 已提交
6854

6855 6856 6857
  if (last_java_fp->is_valid()) {
    movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  }
D
duke 已提交
6858

6859
  // last_java_pc is optional
D
duke 已提交
6860

6861 6862 6863 6864
  if (last_java_pc != NULL) {
    lea(Address(java_thread,
                 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
        InternalAddress(last_java_pc));
D
duke 已提交
6865 6866

  }
6867
  movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
D
duke 已提交
6868 6869
}

6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880
void MacroAssembler::shlptr(Register dst, int imm8) {
  LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
}

void MacroAssembler::shrptr(Register dst, int imm8) {
  LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
}

void MacroAssembler::sign_extend_byte(Register reg) {
  if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
    movsbl(reg, reg); // movsxb
D
duke 已提交
6881
  } else {
6882 6883
    shll(reg, 24);
    sarl(reg, 24);
D
duke 已提交
6884
  }
6885
}
D
duke 已提交
6886

6887 6888 6889 6890 6891 6892
void MacroAssembler::sign_extend_short(Register reg) {
  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
    movswl(reg, reg); // movsxw
  } else {
    shll(reg, 16);
    sarl(reg, 16);
D
duke 已提交
6893
  }
6894 6895
}

6896 6897 6898 6899 6900
void MacroAssembler::testl(Register dst, AddressLiteral src) {
  assert(reachable(src), "Address should be reachable");
  testl(dst, as_Address(src));
}

A
Merge  
apetrusenko 已提交
6901 6902
//////////////////////////////////////////////////////////////////////////////////
#ifndef SERIALGC
D
duke 已提交
6903

A
Merge  
apetrusenko 已提交
6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
void MacroAssembler::g1_write_barrier_pre(Register obj,
#ifndef _LP64
                                          Register thread,
#endif
                                          Register tmp,
                                          Register tmp2,
                                          bool tosca_live) {
  LP64_ONLY(Register thread = r15_thread;)
  Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
                                       PtrQueue::byte_offset_of_active()));
D
duke 已提交
6914

A
Merge  
apetrusenko 已提交
6915 6916 6917 6918
  Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
                                       PtrQueue::byte_offset_of_index()));
  Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
                                       PtrQueue::byte_offset_of_buf()));
D
duke 已提交
6919 6920


A
Merge  
apetrusenko 已提交
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
  Label done;
  Label runtime;

  // if (!marking_in_progress) goto done;
  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
    cmpl(in_progress, 0);
  } else {
    assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
    cmpb(in_progress, 0);
  }
  jcc(Assembler::equal, done);

  // if (x.f == NULL) goto done;
6934 6935 6936 6937 6938 6939
#ifdef _LP64
  load_heap_oop(tmp2, Address(obj, 0));
#else
  movptr(tmp2, Address(obj, 0));
#endif
  cmpptr(tmp2, (int32_t) NULL_WORD);
A
Merge  
apetrusenko 已提交
6940 6941 6942 6943 6944
  jcc(Assembler::equal, done);

  // Can we store original value in the thread's buffer?

#ifdef _LP64
6945
  movslq(tmp, index);
A
Merge  
apetrusenko 已提交
6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
  cmpq(tmp, 0);
#else
  cmpl(index, 0);
#endif
  jcc(Assembler::equal, runtime);
#ifdef _LP64
  subq(tmp, wordSize);
  movl(index, tmp);
  addq(tmp, buffer);
#else
  subl(index, wordSize);
  movl(tmp, buffer);
  addl(tmp, index);
#endif
  movptr(Address(tmp, 0), tmp2);
  jmp(done);
  bind(runtime);
  // save the live input values
  if(tosca_live) push(rax);
  push(obj);
#ifdef _LP64
6967
  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, r15_thread);
A
Merge  
apetrusenko 已提交
6968 6969 6970 6971 6972 6973 6974 6975 6976
#else
  push(thread);
  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, thread);
  pop(thread);
#endif
  pop(obj);
  if(tosca_live) pop(rax);
  bind(done);

D
duke 已提交
6977 6978
}

A
Merge  
apetrusenko 已提交
6979 6980 6981 6982
void MacroAssembler::g1_write_barrier_post(Register store_addr,
                                           Register new_val,
#ifndef _LP64
                                           Register thread,
6983
#endif
A
Merge  
apetrusenko 已提交
6984 6985
                                           Register tmp,
                                           Register tmp2) {
6986

A
Merge  
apetrusenko 已提交
6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031
  LP64_ONLY(Register thread = r15_thread;)
  Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
                                       PtrQueue::byte_offset_of_index()));
  Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
                                       PtrQueue::byte_offset_of_buf()));
  BarrierSet* bs = Universe::heap()->barrier_set();
  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  Label done;
  Label runtime;

  // Does store cross heap regions?

  movptr(tmp, store_addr);
  xorptr(tmp, new_val);
  shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  jcc(Assembler::equal, done);

  // crosses regions, storing NULL?

  cmpptr(new_val, (int32_t) NULL_WORD);
  jcc(Assembler::equal, done);

  // storing region crossing non-NULL, is card already dirty?

  ExternalAddress cardtable((address) ct->byte_map_base);
  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
#ifdef _LP64
  const Register card_addr = tmp;

  movq(card_addr, store_addr);
  shrq(card_addr, CardTableModRefBS::card_shift);

  lea(tmp2, cardtable);

  // get the address of the card
  addq(card_addr, tmp2);
#else
  const Register card_index = tmp;

  movl(card_index, store_addr);
  shrl(card_index, CardTableModRefBS::card_shift);

  Address index(noreg, card_index, Address::times_1);
  const Register card_addr = tmp;
  lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
D
duke 已提交
7032
#endif
A
Merge  
apetrusenko 已提交
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064
  cmpb(Address(card_addr, 0), 0);
  jcc(Assembler::equal, done);

  // storing a region crossing, non-NULL oop, card is clean.
  // dirty card and log.

  movb(Address(card_addr, 0), 0);

  cmpl(queue_index, 0);
  jcc(Assembler::equal, runtime);
  subl(queue_index, wordSize);
  movptr(tmp2, buffer);
#ifdef _LP64
  movslq(rscratch1, queue_index);
  addq(tmp2, rscratch1);
  movq(Address(tmp2, 0), card_addr);
#else
  addl(tmp2, queue_index);
  movl(Address(tmp2, 0), card_index);
#endif
  jmp(done);

  bind(runtime);
  // save the live input values
  push(store_addr);
  push(new_val);
#ifdef _LP64
  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
#else
  push(thread);
  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  pop(thread);
7065
#endif
A
Merge  
apetrusenko 已提交
7066 7067 7068 7069
  pop(new_val);
  pop(store_addr);

  bind(done);
D
duke 已提交
7070 7071 7072

}

A
Merge  
apetrusenko 已提交
7073 7074
#endif // SERIALGC
//////////////////////////////////////////////////////////////////////////////////
D
duke 已提交
7075 7076


7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151
void MacroAssembler::store_check(Register obj) {
  // Does a store check for the oop in register obj. The content of
  // register obj is destroyed afterwards.
  store_check_part_1(obj);
  store_check_part_2(obj);
}

void MacroAssembler::store_check(Register obj, Address dst) {
  store_check(obj);
}


// split the store check operation so that other instructions can be scheduled inbetween
void MacroAssembler::store_check_part_1(Register obj) {
  BarrierSet* bs = Universe::heap()->barrier_set();
  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  shrptr(obj, CardTableModRefBS::card_shift);
}

void MacroAssembler::store_check_part_2(Register obj) {
  BarrierSet* bs = Universe::heap()->barrier_set();
  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");

  // The calculation for byte_map_base is as follows:
  // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  // So this essentially converts an address to a displacement and
  // it will never need to be relocated. On 64bit however the value may be too
  // large for a 32bit displacement

  intptr_t disp = (intptr_t) ct->byte_map_base;
  if (is_simm32(disp)) {
    Address cardtable(noreg, obj, Address::times_1, disp);
    movb(cardtable, 0);
  } else {
    // By doing it as an ExternalAddress disp could be converted to a rip-relative
    // displacement and done in a single instruction given favorable mapping and
    // a smarter version of as_Address. Worst case it is two instructions which
    // is no worse off then loading disp into a register and doing as a simple
    // Address() as above.
    // We can't do as ExternalAddress as the only style since if disp == 0 we'll
    // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
    // in some cases we'll get a single instruction version.

    ExternalAddress cardtable((address)disp);
    Address index(noreg, obj, Address::times_1);
    movb(as_Address(ArrayAddress(cardtable, index)), 0);
  }
}

void MacroAssembler::subptr(Register dst, int32_t imm32) {
  LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
}

void MacroAssembler::subptr(Register dst, Register src) {
  LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
}

// C++ bool manipulation
void MacroAssembler::testbool(Register dst) {
  if(sizeof(bool) == 1)
    testb(dst, 0xff);
  else if(sizeof(bool) == 2) {
    // testw implementation needed for two byte bools
    ShouldNotReachHere();
  } else if(sizeof(bool) == 4)
    testl(dst, dst);
  else
    // unsupported
    ShouldNotReachHere();
}

void MacroAssembler::testptr(Register dst, Register src) {
  LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
D
duke 已提交
7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
}

// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
void MacroAssembler::tlab_allocate(Register obj,
                                   Register var_size_in_bytes,
                                   int con_size_in_bytes,
                                   Register t1,
                                   Register t2,
                                   Label& slow_case) {
  assert_different_registers(obj, t1, t2);
  assert_different_registers(obj, var_size_in_bytes, t1);
  Register end = t2;
7164
  Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
D
duke 已提交
7165 7166 7167

  verify_tlab();

7168 7169 7170
  NOT_LP64(get_thread(thread));

  movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
D
duke 已提交
7171
  if (var_size_in_bytes == noreg) {
7172
    lea(end, Address(obj, con_size_in_bytes));
D
duke 已提交
7173
  } else {
7174
    lea(end, Address(obj, var_size_in_bytes, Address::times_1));
D
duke 已提交
7175
  }
7176
  cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
D
duke 已提交
7177 7178 7179
  jcc(Assembler::above, slow_case);

  // update the tlab top pointer
7180
  movptr(Address(thread, JavaThread::tlab_top_offset()), end);
D
duke 已提交
7181 7182 7183

  // recover var_size_in_bytes if necessary
  if (var_size_in_bytes == end) {
7184
    subptr(var_size_in_bytes, obj);
D
duke 已提交
7185 7186 7187 7188
  }
  verify_tlab();
}

7189
// Preserves rbx, and rdx.
7190 7191 7192
Register MacroAssembler::tlab_refill(Label& retry,
                                     Label& try_eden,
                                     Label& slow_case) {
D
duke 已提交
7193
  Register top = rax;
7194 7195 7196 7197
  Register t1  = rcx;
  Register t2  = rsi;
  Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
D
duke 已提交
7198 7199 7200 7201 7202 7203 7204
  Label do_refill, discard_tlab;

  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
    // No allocation in the shared eden.
    jmp(slow_case);
  }

7205 7206 7207 7208
  NOT_LP64(get_thread(thread_reg));

  movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
D
duke 已提交
7209 7210

  // calculate amount of free space
7211 7212
  subptr(t1, top);
  shrptr(t1, LogHeapWordSize);
D
duke 已提交
7213 7214 7215

  // Retain tlab and allocate object in shared space if
  // the amount free in the tlab is too large to discard.
7216
  cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
D
duke 已提交
7217 7218 7219
  jcc(Assembler::lessEqual, discard_tlab);

  // Retain
7220 7221 7222
  // %%% yuck as movptr...
  movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
D
duke 已提交
7223 7224
  if (TLABStats) {
    // increment number of slow_allocations
7225
    addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
D
duke 已提交
7226 7227 7228 7229 7230 7231
  }
  jmp(try_eden);

  bind(discard_tlab);
  if (TLABStats) {
    // increment number of refills
7232
    addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
D
duke 已提交
7233
    // accumulate wastage -- t1 is amount free in tlab
7234
    addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
D
duke 已提交
7235 7236 7237 7238
  }

  // if tlab is currently allocated (top or end != null) then
  // fill [top, end + alignment_reserve) with array object
7239
  testptr(top, top);
D
duke 已提交
7240 7241 7242
  jcc(Assembler::zero, do_refill);

  // set up the mark word
7243
  movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
D
duke 已提交
7244
  // set the length to the remaining space
7245 7246 7247
  subptr(t1, typeArrayOopDesc::header_size(T_INT));
  addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
7248
  movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
D
duke 已提交
7249
  // set klass to intArrayKlass
7250
  // dubious reloc why not an oop reloc?
7251
  movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
7252 7253
  // store klass last.  concurrent gcs assumes klass length is valid if
  // klass field is not null.
7254
  store_klass(top, t1);
D
duke 已提交
7255

7256 7257 7258 7259
  movptr(t1, top);
  subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  incr_allocated_bytes(thread_reg, t1, 0);

D
duke 已提交
7260 7261
  // refill the tlab with an eden allocation
  bind(do_refill);
7262 7263
  movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  shlptr(t1, LogHeapWordSize);
7264
  // allocate new tlab, address returned in top
D
duke 已提交
7265 7266 7267 7268 7269 7270 7271 7272
  eden_allocate(top, t1, 0, t2, slow_case);

  // Check that t1 was preserved in eden_allocate.
#ifdef ASSERT
  if (UseTLAB) {
    Label ok;
    Register tsize = rsi;
    assert_different_registers(tsize, thread_reg, t1);
7273 7274 7275 7276
    push(tsize);
    movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
    shlptr(tsize, LogHeapWordSize);
    cmpptr(t1, tsize);
D
duke 已提交
7277 7278 7279 7280 7281
    jcc(Assembler::equal, ok);
    stop("assert(t1 != tlab size)");
    should_not_reach_here();

    bind(ok);
7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
    pop(tsize);
  }
#endif
  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  addptr(top, t1);
  subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  verify_tlab();
  jmp(retry);
7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319

  return thread_reg; // for use by caller
}

void MacroAssembler::incr_allocated_bytes(Register thread,
                                          Register var_size_in_bytes,
                                          int con_size_in_bytes,
                                          Register t1) {
#ifdef _LP64
  if (var_size_in_bytes->is_valid()) {
    addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  } else {
    addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  }
#else
  if (!thread->is_valid()) {
    assert(t1->is_valid(), "need temp reg");
    thread = t1;
    get_thread(thread);
  }

  if (var_size_in_bytes->is_valid()) {
    addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  } else {
    addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  }
  adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
#endif
7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339
}

static const double     pi_4 =  0.7853981633974483;

void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  // was attempted in this code; unfortunately it appears that the
  // switch to 80-bit precision and back causes this to be
  // unprofitable compared with simply performing a runtime call if
  // the argument is out of the (-pi/4, pi/4) range.

  Register tmp = noreg;
  if (!VM_Version::supports_cmov()) {
    // fcmp needs a temporary so preserve rbx,
    tmp = rbx;
    push(tmp);
  }

  Label slow_case, done;

7340 7341 7342 7343 7344 7345 7346 7347
  ExternalAddress pi4_adr = (address)&pi_4;
  if (reachable(pi4_adr)) {
    // x ?<= pi/4
    fld_d(pi4_adr);
    fld_s(1);                // Stack:  X  PI/4  X
    fabs();                  // Stack: |X| PI/4  X
    fcmp(tmp);
    jcc(Assembler::above, slow_case);
7348

7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364
    // fastest case: -pi/4 <= x <= pi/4
    switch(trig) {
    case 's':
      fsin();
      break;
    case 'c':
      fcos();
      break;
    case 't':
      ftan();
      break;
    default:
      assert(false, "bad intrinsic");
      break;
    }
    jmp(done);
7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
  }

  // slow case: runtime call
  bind(slow_case);
  // Preserve registers across runtime call
  pusha();
  int incoming_argument_and_return_value_offset = -1;
  if (num_fpu_regs_in_use > 1) {
    // Must preserve all other FPU regs (could alternatively convert
    // SharedRuntime::dsin and dcos into assembly routines known not to trash
    // FPU state, but can not trust C compiler)
    NEEDS_CLEANUP;
    // NOTE that in this case we also push the incoming argument to
    // the stack and restore it later; we also use this stack slot to
    // hold the return value from dsin or dcos.
    for (int i = 0; i < num_fpu_regs_in_use; i++) {
      subptr(rsp, sizeof(jdouble));
      fstp_d(Address(rsp, 0));
    }
    incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
    fld_d(Address(rsp, incoming_argument_and_return_value_offset));
  }
  subptr(rsp, sizeof(jdouble));
  fstp_d(Address(rsp, 0));
#ifdef _LP64
  movdbl(xmm0, Address(rsp, 0));
#endif // _LP64

  // NOTE: we must not use call_VM_leaf here because that requires a
  // complete interpreter frame in debug mode -- same bug as 4387334
  // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  // do proper 64bit abi

  NEEDS_CLEANUP;
  // Need to add stack banging before this runtime call if it needs to
  // be taken; however, there is no generic stack banging routine at
  // the MacroAssembler level
  switch(trig) {
  case 's':
    {
      MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
    }
    break;
  case 'c':
    {
      MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
    }
    break;
  case 't':
    {
      MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
    }
    break;
  default:
    assert(false, "bad intrinsic");
    break;
  }
#ifdef _LP64
    movsd(Address(rsp, 0), xmm0);
    fld_d(Address(rsp, 0));
#endif // _LP64
  addptr(rsp, sizeof(jdouble));
  if (num_fpu_regs_in_use > 1) {
    // Must save return value to stack and then restore entire FPU stack
    fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
    for (int i = 0; i < num_fpu_regs_in_use; i++) {
      fld_d(Address(rsp, 0));
      addptr(rsp, sizeof(jdouble));
    }
  }
  popa();

  // Come here with result in F-TOS
  bind(done);

  if (tmp != noreg) {
    pop(tmp);
  }
}


7446 7447 7448 7449 7450 7451 7452
// Look up the method for a megamorphic invokeinterface call.
// The target method is determined by <intf_klass, itable_index>.
// The receiver klass is in recv_klass.
// On success, the result will be in method_result, and execution falls through.
// On failure, execution transfers to the given label.
void MacroAssembler::lookup_interface_method(Register recv_klass,
                                             Register intf_klass,
7453
                                             RegisterOrConstant itable_index,
7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520
                                             Register method_result,
                                             Register scan_temp,
                                             Label& L_no_such_interface) {
  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
         "caller must use same register for non-constant itable index as for method");

  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  int itentry_off = itableMethodEntry::method_offset_in_bytes();
  int scan_step   = itableOffsetEntry::size() * wordSize;
  int vte_size    = vtableEntry::size() * wordSize;
  Address::ScaleFactor times_vte_scale = Address::times_ptr;
  assert(vte_size == wordSize, "else adjust times_vte_scale");

  movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));

  // %%% Could store the aligned, prescaled offset in the klassoop.
  lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  if (HeapWordsPerLong > 1) {
    // Round up to align_object_offset boundary
    // see code for instanceKlass::start_of_itable!
    round_to(scan_temp, BytesPerLong);
  }

  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));

  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  //   if (scan->interface() == intf) {
  //     result = (klass + scan->offset() + itable_index);
  //   }
  // }
  Label search, found_method;

  for (int peel = 1; peel >= 0; peel--) {
    movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
    cmpptr(intf_klass, method_result);

    if (peel) {
      jccb(Assembler::equal, found_method);
    } else {
      jccb(Assembler::notEqual, search);
      // (invert the test to fall through to found_method...)
    }

    if (!peel)  break;

    bind(search);

    // Check that the previous entry is non-null.  A null entry means that
    // the receiver class doesn't implement the interface, and wasn't the
    // same as when the caller was compiled.
    testptr(method_result, method_result);
    jcc(Assembler::zero, L_no_such_interface);
    addptr(scan_temp, scan_step);
  }

  bind(found_method);

  // Got a hit.
  movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
}


7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537
void MacroAssembler::check_klass_subtype(Register sub_klass,
                           Register super_klass,
                           Register temp_reg,
                           Label& L_success) {
  Label L_failure;
  check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  bind(L_failure);
}


void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
                                                   Register super_klass,
                                                   Register temp_reg,
                                                   Label* L_success,
                                                   Label* L_failure,
                                                   Label* L_slow_path,
7538
                                        RegisterOrConstant super_check_offset) {
7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586
  assert_different_registers(sub_klass, super_klass, temp_reg);
  bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  if (super_check_offset.is_register()) {
    assert_different_registers(sub_klass, super_klass,
                               super_check_offset.as_register());
  } else if (must_load_sco) {
    assert(temp_reg != noreg, "supply either a temp or a register offset");
  }

  Label L_fallthrough;
  int label_nulls = 0;
  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  assert(label_nulls <= 1, "at most one NULL in the batch");

  int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
                   Klass::secondary_super_cache_offset_in_bytes());
  int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
                    Klass::super_check_offset_offset_in_bytes());
  Address super_check_offset_addr(super_klass, sco_offset);

  // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  // range of a jccb.  If this routine grows larger, reconsider at
  // least some of these.
#define local_jcc(assembler_cond, label)                                \
  if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  else                             jcc( assembler_cond, label) /*omit semi*/

  // Hacked jmp, which may only be used just before L_fallthrough.
#define final_jmp(label)                                                \
  if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  else                            jmp(label)                /*omit semi*/

  // If the pointers are equal, we are done (e.g., String[] elements).
  // This self-check enables sharing of secondary supertype arrays among
  // non-primary types such as array-of-interface.  Otherwise, each such
  // type would need its own customized SSA.
  // We move this check to the front of the fast path because many
  // type checks are in fact trivially successful in this manner,
  // so we get a nicely predicted branch right at the start of the check.
  cmpptr(sub_klass, super_klass);
  local_jcc(Assembler::equal, *L_success);

  // Check the supertype display:
  if (must_load_sco) {
    // Positive movl does right thing on LP64.
    movl(temp_reg, super_check_offset_addr);
7587
    super_check_offset = RegisterOrConstant(temp_reg);
7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696
  }
  Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  cmpptr(super_klass, super_check_addr); // load displayed supertype

  // This check has worked decisively for primary supers.
  // Secondary supers are sought in the super_cache ('super_cache_addr').
  // (Secondary supers are interfaces and very deeply nested subtypes.)
  // This works in the same check above because of a tricky aliasing
  // between the super_cache and the primary super display elements.
  // (The 'super_check_addr' can address either, as the case requires.)
  // Note that the cache is updated below if it does not help us find
  // what we need immediately.
  // So if it was a primary super, we can just fail immediately.
  // Otherwise, it's the slow path for us (no success at this point).

  if (super_check_offset.is_register()) {
    local_jcc(Assembler::equal, *L_success);
    cmpl(super_check_offset.as_register(), sc_offset);
    if (L_failure == &L_fallthrough) {
      local_jcc(Assembler::equal, *L_slow_path);
    } else {
      local_jcc(Assembler::notEqual, *L_failure);
      final_jmp(*L_slow_path);
    }
  } else if (super_check_offset.as_constant() == sc_offset) {
    // Need a slow path; fast failure is impossible.
    if (L_slow_path == &L_fallthrough) {
      local_jcc(Assembler::equal, *L_success);
    } else {
      local_jcc(Assembler::notEqual, *L_slow_path);
      final_jmp(*L_success);
    }
  } else {
    // No slow path; it's a fast decision.
    if (L_failure == &L_fallthrough) {
      local_jcc(Assembler::equal, *L_success);
    } else {
      local_jcc(Assembler::notEqual, *L_failure);
      final_jmp(*L_success);
    }
  }

  bind(L_fallthrough);

#undef local_jcc
#undef final_jmp
}


void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
                                                   Register super_klass,
                                                   Register temp_reg,
                                                   Register temp2_reg,
                                                   Label* L_success,
                                                   Label* L_failure,
                                                   bool set_cond_codes) {
  assert_different_registers(sub_klass, super_klass, temp_reg);
  if (temp2_reg != noreg)
    assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
#define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)

  Label L_fallthrough;
  int label_nulls = 0;
  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  assert(label_nulls <= 1, "at most one NULL in the batch");

  // a couple of useful fields in sub_klass:
  int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
                   Klass::secondary_supers_offset_in_bytes());
  int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
                   Klass::secondary_super_cache_offset_in_bytes());
  Address secondary_supers_addr(sub_klass, ss_offset);
  Address super_cache_addr(     sub_klass, sc_offset);

  // Do a linear scan of the secondary super-klass chain.
  // This code is rarely used, so simplicity is a virtue here.
  // The repne_scan instruction uses fixed registers, which we must spill.
  // Don't worry too much about pre-existing connections with the input regs.

  assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)

  // Get super_klass value into rax (even if it was in rdi or rcx).
  bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  if (super_klass != rax || UseCompressedOops) {
    if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
    mov(rax, super_klass);
  }
  if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }

#ifndef PRODUCT
  int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  ExternalAddress pst_counter_addr((address) pst_counter);
  NOT_LP64(  incrementl(pst_counter_addr) );
  LP64_ONLY( lea(rcx, pst_counter_addr) );
  LP64_ONLY( incrementl(Address(rcx, 0)) );
#endif //PRODUCT

  // We will consult the secondary-super array.
  movptr(rdi, secondary_supers_addr);
  // Load the array length.  (Positive movl does right thing on LP64.)
  movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  // Skip to start of data.
  addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));

  // Scan RCX words at [RDI] for an occurrence of RAX.
  // Set NZ/Z based on last compare.
7697 7698 7699
  // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  // not change flags (only scas instruction which is repeated sets flags).
  // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
7700 7701 7702 7703 7704
#ifdef _LP64
  // This part is tricky, as values in supers array could be 32 or 64 bit wide
  // and we store values in objArrays always encoded, thus we need to encode
  // the value of rax before repne.  Note that rax is dead after the repne.
  if (UseCompressedOops) {
7705
    encode_heap_oop_not_null(rax); // Changes flags.
7706 7707 7708 7709
    // The superclass is never null; it would be a basic system error if a null
    // pointer were to sneak in here.  Note that we have already loaded the
    // Klass::super_check_offset from the super_klass in the fast path,
    // so if there is a null in that register, we are already in the afterlife.
7710
    testl(rax,rax); // Set Z = 0
7711 7712 7713
    repne_scanl();
  } else
#endif // _LP64
7714 7715
  {
    testptr(rax,rax); // Set Z = 0
7716
    repne_scan();
7717
  }
7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745
  // Unspill the temp. registers:
  if (pushed_rdi)  pop(rdi);
  if (pushed_rcx)  pop(rcx);
  if (pushed_rax)  pop(rax);

  if (set_cond_codes) {
    // Special hack for the AD files:  rdi is guaranteed non-zero.
    assert(!pushed_rdi, "rdi must be left non-NULL");
    // Also, the condition codes are properly set Z/NZ on succeed/failure.
  }

  if (L_failure == &L_fallthrough)
        jccb(Assembler::notEqual, *L_failure);
  else  jcc(Assembler::notEqual, *L_failure);

  // Success.  Cache the super we found and proceed in triumph.
  movptr(super_cache_addr, super_klass);

  if (L_success != &L_fallthrough) {
    jmp(*L_success);
  }

#undef IS_A_TEMP

  bind(L_fallthrough);
}


7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771
void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  ucomisd(dst, as_Address(src));
}

void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  ucomiss(dst, as_Address(src));
}

void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    xorpd(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    xorpd(dst, Address(rscratch1, 0));
  }
}

void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  if (reachable(src)) {
    xorps(dst, as_Address(src));
  } else {
    lea(rscratch1, src);
    xorps(dst, Address(rscratch1, 0));
  }
}

7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793
void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  if (VM_Version::supports_cmov()) {
    cmovl(cc, dst, src);
  } else {
    Label L;
    jccb(negate_condition(cc), L);
    movl(dst, src);
    bind(L);
  }
}

void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  if (VM_Version::supports_cmov()) {
    cmovl(cc, dst, src);
  } else {
    Label L;
    jccb(negate_condition(cc), L);
    movl(dst, src);
    bind(L);
  }
}

7794 7795 7796 7797 7798 7799
void MacroAssembler::verify_oop(Register reg, const char* s) {
  if (!VerifyOops) return;

  // Pass register number to verify_oop_subroutine
  char* b = new char[strlen(s) + 50];
  sprintf(b, "verify_oop: %s: %s", reg->name(), s);
K
kvn 已提交
7800 7801 7802
#ifdef _LP64
  push(rscratch1);                    // save r10, trashed by movptr()
#endif
7803 7804 7805 7806 7807 7808 7809 7810 7811 7812
  push(rax);                          // save rax,
  push(reg);                          // pass register argument
  ExternalAddress buffer((address) b);
  // avoid using pushptr, as it modifies scratch registers
  // and our contract is not to modify anything
  movptr(rax, buffer.addr());
  push(rax);
  // call indirectly to solve generation ordering problem
  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  call(rax);
K
kvn 已提交
7813
  // Caller pops the arguments (oop, message) and restores rax, r10
7814 7815 7816
}


7817 7818 7819
RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
                                                      Register tmp,
                                                      int offset) {
7820 7821
  intptr_t value = *delayed_value_addr;
  if (value != 0)
7822
    return RegisterOrConstant(value + offset);
7823 7824 7825 7826 7827

  // load indirectly to solve generation ordering problem
  movptr(tmp, ExternalAddress((address) delayed_value_addr));

#ifdef ASSERT
7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840
  { Label L;
    testptr(tmp, tmp);
    if (WizardMode) {
      jcc(Assembler::notZero, L);
      char* buf = new char[40];
      sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
      stop(buf);
    } else {
      jccb(Assembler::notZero, L);
      hlt();
    }
    bind(L);
  }
7841 7842 7843 7844 7845
#endif

  if (offset != 0)
    addptr(tmp, offset);

7846
  return RegisterOrConstant(tmp);
7847 7848 7849
}


7850 7851 7852 7853 7854 7855 7856
// registers on entry:
//  - rax ('check' register): required MethodType
//  - rcx: method handle
//  - rdx, rsi, or ?: killable temp
void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
                                              Register temp_reg,
                                              Label& wrong_method_type) {
7857
  Address type_addr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg));
7858
  // compare method type against that of the receiver
7859 7860 7861 7862 7863 7864
  if (UseCompressedOops) {
    load_heap_oop(temp_reg, type_addr);
    cmpptr(mtype_reg, temp_reg);
  } else {
    cmpptr(mtype_reg, type_addr);
  }
7865 7866 7867 7868 7869 7870 7871 7872 7873 7874
  jcc(Assembler::notEqual, wrong_method_type);
}


// A method handle has a "vmslots" field which gives the size of its
// argument list in JVM stack slots.  This field is either located directly
// in every method handle, or else is indirectly accessed through the
// method handle's MethodType.  This macro hides the distinction.
void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
                                                Register temp_reg) {
T
twisti 已提交
7875
  assert_different_registers(vmslots_reg, mh_reg, temp_reg);
7876
  // load mh.type.form.vmslots
7877
  if (java_lang_invoke_MethodHandle::vmslots_offset_in_bytes() != 0) {
7878
    // hoist vmslots into every mh to avoid dependent load chain
7879
    movl(vmslots_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmslots_offset_in_bytes, temp_reg)));
7880 7881
  } else {
    Register temp2_reg = vmslots_reg;
7882 7883 7884
    load_heap_oop(temp2_reg, Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)));
    load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)));
    movl(vmslots_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897
  }
}


// registers on entry:
//  - rcx: method handle
//  - rdx: killable temp (interpreted only)
//  - rax: killable temp (compiled only)
void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
  assert(mh_reg == rcx, "caller must put MH object in rcx");
  assert_different_registers(mh_reg, temp_reg);

  // pick out the interpreted side of the handler
7898
  // NOTE: vmentry is not an oop!
7899
  movptr(temp_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911

  // off we go...
  jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));

  // for the various stubs which take control at this point,
  // see MethodHandles::generate_method_handle_stub
}


Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
                                         int extra_slot_offset) {
  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
7912
  int stackElementSize = Interpreter::stackElementSize;
7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930
  int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
#ifdef ASSERT
  int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  assert(offset1 - offset == stackElementSize, "correct arithmetic");
#endif
  Register             scale_reg    = noreg;
  Address::ScaleFactor scale_factor = Address::no_scale;
  if (arg_slot.is_constant()) {
    offset += arg_slot.as_constant() * stackElementSize;
  } else {
    scale_reg    = arg_slot.as_register();
    scale_factor = Address::times(stackElementSize);
  }
  offset += wordSize;           // return PC is on stack
  return Address(rsp, scale_reg, scale_factor, offset);
}


7931 7932 7933 7934 7935 7936 7937 7938
void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  if (!VerifyOops) return;

  // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  // Pass register number to verify_oop_subroutine
  char* b = new char[strlen(s) + 50];
  sprintf(b, "verify_oop_addr: %s", s);

K
kvn 已提交
7939 7940 7941
#ifdef _LP64
  push(rscratch1);                    // save r10, trashed by movptr()
#endif
7942 7943
  push(rax);                          // save rax,
  // addr may contain rsp so we will have to adjust it based on the push
7944
  // we just did (and on 64 bit we do two pushes)
7945 7946 7947 7948
  // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  // stores rax into addr which is backwards of what was intended.
  if (addr.uses(rsp)) {
    lea(rax, addr);
7949
    pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963
  } else {
    pushptr(addr);
  }

  ExternalAddress buffer((address) b);
  // pass msg argument
  // avoid using pushptr, as it modifies scratch registers
  // and our contract is not to modify anything
  movptr(rax, buffer.addr());
  push(rax);

  // call indirectly to solve generation ordering problem
  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  call(rax);
K
kvn 已提交
7964
  // Caller pops the arguments (addr, message) and restores rax, r10.
7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993
}

void MacroAssembler::verify_tlab() {
#ifdef ASSERT
  if (UseTLAB && VerifyOops) {
    Label next, ok;
    Register t1 = rsi;
    Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);

    push(t1);
    NOT_LP64(push(thread_reg));
    NOT_LP64(get_thread(thread_reg));

    movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
    cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
    jcc(Assembler::aboveEqual, next);
    stop("assert(top >= start)");
    should_not_reach_here();

    bind(next);
    movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
    cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
    jcc(Assembler::aboveEqual, ok);
    stop("assert(top <= end)");
    should_not_reach_here();

    bind(ok);
    NOT_LP64(pop(thread_reg));
    pop(t1);
D
duke 已提交
7994 7995 7996 7997
  }
#endif
}

7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041
class ControlWord {
 public:
  int32_t _value;

  int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  int  precision_control() const       { return  (_value >>  8) & 3      ; }
  bool precision() const               { return ((_value >>  5) & 1) != 0; }
  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }

  void print() const {
    // rounding control
    const char* rc;
    switch (rounding_control()) {
      case 0: rc = "round near"; break;
      case 1: rc = "round down"; break;
      case 2: rc = "round up  "; break;
      case 3: rc = "chop      "; break;
    };
    // precision control
    const char* pc;
    switch (precision_control()) {
      case 0: pc = "24 bits "; break;
      case 1: pc = "reserved"; break;
      case 2: pc = "53 bits "; break;
      case 3: pc = "64 bits "; break;
    };
    // flags
    char f[9];
    f[0] = ' ';
    f[1] = ' ';
    f[2] = (precision   ()) ? 'P' : 'p';
    f[3] = (underflow   ()) ? 'U' : 'u';
    f[4] = (overflow    ()) ? 'O' : 'o';
    f[5] = (zero_divide ()) ? 'Z' : 'z';
    f[6] = (denormalized()) ? 'D' : 'd';
    f[7] = (invalid     ()) ? 'I' : 'i';
    f[8] = '\x0';
    // output
    printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  }
D
duke 已提交
8042

8043
};
D
duke 已提交
8044

8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084
class StatusWord {
 public:
  int32_t _value;

  bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  int  top() const                     { return  (_value >> 11) & 7      ; }
  bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  bool precision() const               { return ((_value >>  5) & 1) != 0; }
  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }

  void print() const {
    // condition codes
    char c[5];
    c[0] = (C3()) ? '3' : '-';
    c[1] = (C2()) ? '2' : '-';
    c[2] = (C1()) ? '1' : '-';
    c[3] = (C0()) ? '0' : '-';
    c[4] = '\x0';
    // flags
    char f[9];
    f[0] = (error_status()) ? 'E' : '-';
    f[1] = (stack_fault ()) ? 'S' : '-';
    f[2] = (precision   ()) ? 'P' : '-';
    f[3] = (underflow   ()) ? 'U' : '-';
    f[4] = (overflow    ()) ? 'O' : '-';
    f[5] = (zero_divide ()) ? 'Z' : '-';
    f[6] = (denormalized()) ? 'D' : '-';
    f[7] = (invalid     ()) ? 'I' : '-';
    f[8] = '\x0';
    // output
    printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
D
duke 已提交
8085 8086
  }

8087
};
D
duke 已提交
8088

8089 8090 8091
class TagWord {
 public:
  int32_t _value;
D
duke 已提交
8092

8093
  int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
D
duke 已提交
8094

8095 8096
  void print() const {
    printf("%04x", _value & 0xFFFF);
D
duke 已提交
8097
  }
8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108

};

class FPU_Register {
 public:
  int32_t _m0;
  int32_t _m1;
  int16_t _ex;

  bool is_indefinite() const           {
    return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
D
duke 已提交
8109 8110
  }

8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145
  void print() const {
    char  sign = (_ex < 0) ? '-' : '+';
    const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
    printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  };

};

class FPU_State {
 public:
  enum {
    register_size       = 10,
    number_of_registers =  8,
    register_mask       =  7
  };

  ControlWord  _control_word;
  StatusWord   _status_word;
  TagWord      _tag_word;
  int32_t      _error_offset;
  int32_t      _error_selector;
  int32_t      _data_offset;
  int32_t      _data_selector;
  int8_t       _register[register_size * number_of_registers];

  int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }

  const char* tag_as_string(int tag) const {
    switch (tag) {
      case 0: return "valid";
      case 1: return "zero";
      case 2: return "special";
      case 3: return "empty";
    }
8146
    ShouldNotReachHere();
8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164
    return NULL;
  }

  void print() const {
    // print computation registers
    { int t = _status_word.top();
      for (int i = 0; i < number_of_registers; i++) {
        int j = (i - t) & register_mask;
        printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
        st(j)->print();
        printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
      }
    }
    printf("\n");
    // print control registers
    printf("ctrl = "); _control_word.print(); printf("\n");
    printf("stat = "); _status_word .print(); printf("\n");
    printf("tags = "); _tag_word    .print(); printf("\n");
D
duke 已提交
8165
  }
8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193

};

class Flag_Register {
 public:
  int32_t _value;

  bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  bool direction() const               { return ((_value >> 10) & 1) != 0; }
  bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  bool carry() const                   { return ((_value >>  0) & 1) != 0; }

  void print() const {
    // flags
    char f[8];
    f[0] = (overflow       ()) ? 'O' : '-';
    f[1] = (direction      ()) ? 'D' : '-';
    f[2] = (sign           ()) ? 'S' : '-';
    f[3] = (zero           ()) ? 'Z' : '-';
    f[4] = (auxiliary_carry()) ? 'A' : '-';
    f[5] = (parity         ()) ? 'P' : '-';
    f[6] = (carry          ()) ? 'C' : '-';
    f[7] = '\x0';
    // output
    printf("%08x  flags = %s", _value, f);
D
duke 已提交
8194
  }
8195 8196 8197 8198 8199 8200 8201 8202 8203

};

class IU_Register {
 public:
  int32_t _value;

  void print() const {
    printf("%08x  %11d", _value, _value);
D
duke 已提交
8204 8205
  }

8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232
};

class IU_State {
 public:
  Flag_Register _eflags;
  IU_Register   _rdi;
  IU_Register   _rsi;
  IU_Register   _rbp;
  IU_Register   _rsp;
  IU_Register   _rbx;
  IU_Register   _rdx;
  IU_Register   _rcx;
  IU_Register   _rax;

  void print() const {
    // computation registers
    printf("rax,  = "); _rax.print(); printf("\n");
    printf("rbx,  = "); _rbx.print(); printf("\n");
    printf("rcx  = "); _rcx.print(); printf("\n");
    printf("rdx  = "); _rdx.print(); printf("\n");
    printf("rdi  = "); _rdi.print(); printf("\n");
    printf("rsi  = "); _rsi.print(); printf("\n");
    printf("rbp,  = "); _rbp.print(); printf("\n");
    printf("rsp  = "); _rsp.print(); printf("\n");
    printf("\n");
    // control registers
    printf("flgs = "); _eflags.print(); printf("\n");
D
duke 已提交
8233
  }
8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247
};


class CPU_State {
 public:
  FPU_State _fpu_state;
  IU_State  _iu_state;

  void print() const {
    printf("--------------------------------------------------\n");
    _iu_state .print();
    printf("\n");
    _fpu_state.print();
    printf("--------------------------------------------------\n");
D
duke 已提交
8248 8249
  }

8250
};
D
duke 已提交
8251 8252


8253 8254 8255
static void _print_CPU_state(CPU_State* state) {
  state->print();
};
D
duke 已提交
8256 8257


8258 8259 8260 8261 8262 8263
void MacroAssembler::print_CPU_state() {
  push_CPU_state();
  push(rsp);                // pass CPU state
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  addptr(rsp, wordSize);       // discard argument
  pop_CPU_state();
D
duke 已提交
8264 8265 8266
}


8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343
static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  static int counter = 0;
  FPU_State* fs = &state->_fpu_state;
  counter++;
  // For leaf calls, only verify that the top few elements remain empty.
  // We only need 1 empty at the top for C2 code.
  if( stack_depth < 0 ) {
    if( fs->tag_for_st(7) != 3 ) {
      printf("FPR7 not empty\n");
      state->print();
      assert(false, "error");
      return false;
    }
    return true;                // All other stack states do not matter
  }

  assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
         "bad FPU control word");

  // compute stack depth
  int i = 0;
  while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  int d = i;
  while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  // verify findings
  if (i != FPU_State::number_of_registers) {
    // stack not contiguous
    printf("%s: stack not contiguous at ST%d\n", s, i);
    state->print();
    assert(false, "error");
    return false;
  }
  // check if computed stack depth corresponds to expected stack depth
  if (stack_depth < 0) {
    // expected stack depth is -stack_depth or less
    if (d > -stack_depth) {
      // too many elements on the stack
      printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
      state->print();
      assert(false, "error");
      return false;
    }
  } else {
    // expected stack depth is stack_depth
    if (d != stack_depth) {
      // wrong stack depth
      printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
      state->print();
      assert(false, "error");
      return false;
    }
  }
  // everything is cool
  return true;
}


void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  if (!VerifyFPU) return;
  push_CPU_state();
  push(rsp);                // pass CPU state
  ExternalAddress msg((address) s);
  // pass message string s
  pushptr(msg.addr());
  push(stack_depth);        // pass stack depth
  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  addptr(rsp, 3 * wordSize);   // discard arguments
  // check for error
  { Label L;
    testl(rax, rax);
    jcc(Assembler::notZero, L);
    int3();                  // break if error condition
    bind(L);
  }
  pop_CPU_state();
}

8344
void MacroAssembler::load_klass(Register dst, Register src) {
8345
#ifdef _LP64
8346 8347 8348
  if (UseCompressedOops) {
    movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
    decode_heap_oop_not_null(dst);
8349 8350 8351
  } else
#endif
    movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8352 8353
}

8354
void MacroAssembler::load_prototype_header(Register dst, Register src) {
8355
#ifdef _LP64
8356
  if (UseCompressedOops) {
8357
    assert (Universe::heap() != NULL, "java heap should be initialized");
8358
    movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8359
    if (Universe::narrow_oop_shift() != 0) {
8360 8361 8362 8363 8364 8365 8366 8367
      assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
      if (LogMinObjAlignmentInBytes == Address::times_8) {
        movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
      } else {
        // OK to use shift since we don't need to preserve flags.
        shlq(dst, LogMinObjAlignmentInBytes);
        movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
      }
8368 8369 8370
    } else {
      movq(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
    }
8371 8372
  } else
#endif
8373 8374 8375 8376
  {
    movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
    movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  }
8377 8378
}

8379
void MacroAssembler::store_klass(Register dst, Register src) {
8380
#ifdef _LP64
8381 8382
  if (UseCompressedOops) {
    encode_heap_oop_not_null(src);
8383
    movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
8384 8385 8386
  } else
#endif
    movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
8387 8388
}

8389
void MacroAssembler::load_heap_oop(Register dst, Address src) {
8390
#ifdef _LP64
8391 8392 8393
  if (UseCompressedOops) {
    movl(dst, src);
    decode_heap_oop(dst);
8394 8395 8396
  } else
#endif
    movptr(dst, src);
8397 8398
}

8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409
// Doesn't do verfication, generates fixed size code
void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
#ifdef _LP64
  if (UseCompressedOops) {
    movl(dst, src);
    decode_heap_oop_not_null(dst);
  } else
#endif
    movptr(dst, src);
}

8410
void MacroAssembler::store_heap_oop(Address dst, Register src) {
8411
#ifdef _LP64
8412 8413 8414 8415
  if (UseCompressedOops) {
    assert(!dst.uses(src), "not enough registers");
    encode_heap_oop(src);
    movl(dst, src);
8416 8417 8418
  } else
#endif
    movptr(dst, src);
8419 8420
}

8421 8422
// Used for storing NULLs.
void MacroAssembler::store_heap_oop_null(Address dst) {
8423
#ifdef _LP64
8424 8425 8426 8427 8428
  if (UseCompressedOops) {
    movl(dst, (int32_t)NULL_WORD);
  } else {
    movslq(dst, (int32_t)NULL_WORD);
  }
8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
#else
  movl(dst, (int32_t)NULL_WORD);
#endif
}

#ifdef _LP64
void MacroAssembler::store_klass_gap(Register dst, Register src) {
  if (UseCompressedOops) {
    // Store to klass gap in destination
    movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  }
8440 8441
}

8442 8443
#ifdef ASSERT
void MacroAssembler::verify_heapbase(const char* msg) {
8444
  assert (UseCompressedOops, "should be compressed");
8445
  assert (Universe::heap() != NULL, "java heap should be initialized");
8446 8447
  if (CheckCompressedOops) {
    Label ok;
8448
    push(rscratch1); // cmpptr trashes rscratch1
8449
    cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
8450
    jcc(Assembler::equal, ok);
8451
    stop(msg);
8452
    bind(ok);
8453
    pop(rscratch1);
8454
  }
8455 8456 8457 8458 8459 8460 8461
}
#endif

// Algorithm must match oop.inline.hpp encode_heap_oop.
void MacroAssembler::encode_heap_oop(Register r) {
#ifdef ASSERT
  verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
8462
#endif
8463
  verify_oop(r, "broken oop in encode_heap_oop");
8464 8465 8466 8467 8468 8469 8470
  if (Universe::narrow_oop_base() == NULL) {
    if (Universe::narrow_oop_shift() != 0) {
      assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
      shrq(r, LogMinObjAlignmentInBytes);
    }
    return;
  }
8471 8472 8473 8474 8475 8476 8477 8478
  testq(r, r);
  cmovq(Assembler::equal, r, r12_heapbase);
  subq(r, r12_heapbase);
  shrq(r, LogMinObjAlignmentInBytes);
}

void MacroAssembler::encode_heap_oop_not_null(Register r) {
#ifdef ASSERT
8479
  verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
8480 8481 8482 8483 8484 8485 8486
  if (CheckCompressedOops) {
    Label ok;
    testq(r, r);
    jcc(Assembler::notEqual, ok);
    stop("null oop passed to encode_heap_oop_not_null");
    bind(ok);
  }
8487
#endif
8488
  verify_oop(r, "broken oop in encode_heap_oop_not_null");
8489 8490 8491 8492 8493 8494 8495
  if (Universe::narrow_oop_base() != NULL) {
    subq(r, r12_heapbase);
  }
  if (Universe::narrow_oop_shift() != 0) {
    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
    shrq(r, LogMinObjAlignmentInBytes);
  }
8496 8497
}

8498 8499
void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
#ifdef ASSERT
8500
  verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
8501 8502 8503 8504 8505 8506 8507
  if (CheckCompressedOops) {
    Label ok;
    testq(src, src);
    jcc(Assembler::notEqual, ok);
    stop("null oop passed to encode_heap_oop_not_null2");
    bind(ok);
  }
8508 8509 8510 8511 8512
#endif
  verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  if (dst != src) {
    movq(dst, src);
  }
8513 8514 8515 8516 8517 8518 8519
  if (Universe::narrow_oop_base() != NULL) {
    subq(dst, r12_heapbase);
  }
  if (Universe::narrow_oop_shift() != 0) {
    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
    shrq(dst, LogMinObjAlignmentInBytes);
  }
8520 8521
}

8522
void  MacroAssembler::decode_heap_oop(Register r) {
8523 8524 8525
#ifdef ASSERT
  verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
#endif
8526 8527 8528 8529 8530
  if (Universe::narrow_oop_base() == NULL) {
    if (Universe::narrow_oop_shift() != 0) {
      assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
      shlq(r, LogMinObjAlignmentInBytes);
    }
8531 8532 8533 8534 8535 8536
  } else {
    Label done;
    shlq(r, LogMinObjAlignmentInBytes);
    jccb(Assembler::equal, done);
    addq(r, r12_heapbase);
    bind(done);
8537
  }
8538
  verify_oop(r, "broken oop in decode_heap_oop");
8539 8540 8541
}

void  MacroAssembler::decode_heap_oop_not_null(Register r) {
8542
  // Note: it will change flags
8543
  assert (UseCompressedOops, "should only be used for compressed headers");
8544
  assert (Universe::heap() != NULL, "java heap should be initialized");
8545 8546
  // Cannot assert, unverified entry point counts instructions (see .ad file)
  // vtableStubs also counts instructions in pd_code_size_limit.
8547
  // Also do not verify_oop as this is called by verify_oop.
8548
  if (Universe::narrow_oop_shift() != 0) {
8549 8550 8551 8552 8553
    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
    shlq(r, LogMinObjAlignmentInBytes);
    if (Universe::narrow_oop_base() != NULL) {
      addq(r, r12_heapbase);
    }
8554 8555
  } else {
    assert (Universe::narrow_oop_base() == NULL, "sanity");
8556
  }
8557 8558
}

8559
void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
8560
  // Note: it will change flags
8561
  assert (UseCompressedOops, "should only be used for compressed headers");
8562
  assert (Universe::heap() != NULL, "java heap should be initialized");
8563 8564
  // Cannot assert, unverified entry point counts instructions (see .ad file)
  // vtableStubs also counts instructions in pd_code_size_limit.
8565
  // Also do not verify_oop as this is called by verify_oop.
8566
  if (Universe::narrow_oop_shift() != 0) {
8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578
    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
    if (LogMinObjAlignmentInBytes == Address::times_8) {
      leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
    } else {
      if (dst != src) {
        movq(dst, src);
      }
      shlq(dst, LogMinObjAlignmentInBytes);
      if (Universe::narrow_oop_base() != NULL) {
        addq(dst, r12_heapbase);
      }
    }
8579
  } else {
8580
    assert (Universe::narrow_oop_base() == NULL, "sanity");
8581 8582 8583
    if (dst != src) {
      movq(dst, src);
    }
8584
  }
8585 8586
}

8587
void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
  mov_narrow_oop(dst, oop_index, rspec);
}

void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
  mov_narrow_oop(dst, oop_index, rspec);
}

void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
  Assembler::cmp_narrow_oop(dst, oop_index, rspec);
}

void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  assert (UseCompressedOops, "should only be used for compressed headers");
  assert (Universe::heap() != NULL, "java heap should be initialized");
  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8618 8619
  int oop_index = oop_recorder()->find_index(obj);
  RelocationHolder rspec = oop_Relocation::spec(oop_index);
8620
  Assembler::cmp_narrow_oop(dst, oop_index, rspec);
8621 8622
}

8623 8624
void MacroAssembler::reinit_heapbase() {
  if (UseCompressedOops) {
8625
    movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
8626 8627 8628
  }
}
#endif // _LP64
8629

8630 8631 8632 8633 8634 8635
// IndexOf for constant substrings with size >= 8 chars
// which don't need to be loaded through stack.
void MacroAssembler::string_indexofC8(Register str1, Register str2,
                                      Register cnt1, Register cnt2,
                                      int int_cnt2,  Register result,
                                      XMMRegister vec, Register tmp) {
8636 8637
  assert(UseSSE42Intrinsics, "SSE4.2 is required");

8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658
  // This method uses pcmpestri inxtruction with bound registers
  //   inputs:
  //     xmm - substring
  //     rax - substring length (elements count)
  //     mem - scanned string
  //     rdx - string length (elements count)
  //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  //   outputs:
  //     rcx - matched index in string
  assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");

  Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
        RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
        MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;

  // Note, inline_string_indexOf() generates checks:
  // if (substr.count > string.count) return -1;
  // if (substr.count == 0) return 0;
  assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");

  // Load substring.
8659
  movdqu(vec, Address(str2, 0));
8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675
  movl(cnt2, int_cnt2);
  movptr(result, str1); // string addr

  if (int_cnt2 > 8) {
    jmpb(SCAN_TO_SUBSTR);

    // Reload substr for rescan, this code
    // is executed only for large substrings (> 8 chars)
    bind(RELOAD_SUBSTR);
    movdqu(vec, Address(str2, 0));
    negptr(cnt2); // Jumped here with negative cnt2, convert to positive

    bind(RELOAD_STR);
    // We came here after the beginning of the substring was
    // matched but the rest of it was not so we need to search
    // again. Start from the next element after the previous match.
8676

8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692
    // cnt2 is number of substring reminding elements and
    // cnt1 is number of string reminding elements when cmp failed.
    // Restored cnt1 = cnt1 - cnt2 + int_cnt2
    subl(cnt1, cnt2);
    addl(cnt1, int_cnt2);
    movl(cnt2, int_cnt2); // Now restore cnt2

    decrementl(cnt1);     // Shift to next element
    cmpl(cnt1, cnt2);
    jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring

    addptr(result, 2);

  } // (int_cnt2 > 8)

  // Scan string for start of substr in 16-byte vectors
8693
  bind(SCAN_TO_SUBSTR);
8694 8695
  pcmpestri(vec, Address(result, 0), 0x0d);
  jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
8696
  subl(cnt1, 8);
8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
  jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  cmpl(cnt1, cnt2);
  jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  addptr(result, 16);
  jmpb(SCAN_TO_SUBSTR);

  // Found a potential substr
  bind(FOUND_CANDIDATE);
  // Matched whole vector if first element matched (tmp(rcx) == 0).
  if (int_cnt2 == 8) {
    jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  } else { // int_cnt2 > 8
    jccb(Assembler::overflow, FOUND_SUBSTR);
  }
  // After pcmpestri tmp(rcx) contains matched element index
  // Compute start addr of substr
  lea(result, Address(result, tmp, Address::times_2));

  // Make sure string is still long enough
  subl(cnt1, tmp);
  cmpl(cnt1, cnt2);
  if (int_cnt2 == 8) {
    jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  } else { // int_cnt2 > 8
    jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  }
  // Left less then substring.
8724

8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798
  bind(RET_NOT_FOUND);
  movl(result, -1);
  jmpb(EXIT);

  if (int_cnt2 > 8) {
    // This code is optimized for the case when whole substring
    // is matched if its head is matched.
    bind(MATCH_SUBSTR_HEAD);
    pcmpestri(vec, Address(result, 0), 0x0d);
    // Reload only string if does not match
    jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0

    Label CONT_SCAN_SUBSTR;
    // Compare the rest of substring (> 8 chars).
    bind(FOUND_SUBSTR);
    // First 8 chars are already matched.
    negptr(cnt2);
    addptr(cnt2, 8);

    bind(SCAN_SUBSTR);
    subl(cnt1, 8);
    cmpl(cnt2, -8); // Do not read beyond substring
    jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
    // Back-up strings to avoid reading beyond substring:
    // cnt1 = cnt1 - cnt2 + 8
    addl(cnt1, cnt2); // cnt2 is negative
    addl(cnt1, 8);
    movl(cnt2, 8); negptr(cnt2);
    bind(CONT_SCAN_SUBSTR);
    if (int_cnt2 < (int)G) {
      movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
      pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
    } else {
      // calculate index in register to avoid integer overflow (int_cnt2*2)
      movl(tmp, int_cnt2);
      addptr(tmp, cnt2);
      movdqu(vec, Address(str2, tmp, Address::times_2, 0));
      pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
    }
    // Need to reload strings pointers if not matched whole vector
    jccb(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
    addptr(cnt2, 8);
    jccb(Assembler::negative, SCAN_SUBSTR);
    // Fall through if found full substring

  } // (int_cnt2 > 8)

  bind(RET_FOUND);
  // Found result if we matched full small substring.
  // Compute substr offset
  subptr(result, str1);
  shrl(result, 1); // index
  bind(EXIT);

} // string_indexofC8

// Small strings are loaded through stack if they cross page boundary.
void MacroAssembler::string_indexof(Register str1, Register str2,
                                    Register cnt1, Register cnt2,
                                    int int_cnt2,  Register result,
                                    XMMRegister vec, Register tmp) {
  assert(UseSSE42Intrinsics, "SSE4.2 is required");
  //
  // int_cnt2 is length of small (< 8 chars) constant substring
  // or (-1) for non constant substring in which case its length
  // is in cnt2 register.
  //
  // Note, inline_string_indexOf() generates checks:
  // if (substr.count > string.count) return -1;
  // if (substr.count == 0) return 0;
  //
  assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");

  // This method uses pcmpestri inxtruction with bound registers
8799 8800 8801
  //   inputs:
  //     xmm - substring
  //     rax - substring length (elements count)
8802
  //     mem - scanned string
8803 8804 8805 8806 8807 8808
  //     rdx - string length (elements count)
  //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  //   outputs:
  //     rcx - matched index in string
  assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");

8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879
  Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
        RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
        FOUND_CANDIDATE;

  { //========================================================
    // We don't know where these strings are located
    // and we can't read beyond them. Load them through stack.
    Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;

    movptr(tmp, rsp); // save old SP

    if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
      if (int_cnt2 == 1) {  // One char
        load_unsigned_short(result, Address(str2, 0));
        movdl(vec, result); // move 32 bits
      } else if (int_cnt2 == 2) { // Two chars
        movdl(vec, Address(str2, 0)); // move 32 bits
      } else if (int_cnt2 == 4) { // Four chars
        movq(vec, Address(str2, 0));  // move 64 bits
      } else { // cnt2 = { 3, 5, 6, 7 }
        // Array header size is 12 bytes in 32-bit VM
        // + 6 bytes for 3 chars == 18 bytes,
        // enough space to load vec and shift.
        assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity");
        movdqu(vec, Address(str2, (int_cnt2*2)-16));
        psrldq(vec, 16-(int_cnt2*2));
      }
    } else { // not constant substring
      cmpl(cnt2, 8);
      jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough

      // We can read beyond string if srt+16 does not cross page boundary
      // since heaps are aligned and mapped by pages.
      assert(os::vm_page_size() < (int)G, "default page should be small");
      movl(result, str2); // We need only low 32 bits
      andl(result, (os::vm_page_size()-1));
      cmpl(result, (os::vm_page_size()-16));
      jccb(Assembler::belowEqual, CHECK_STR);

      // Move small strings to stack to allow load 16 bytes into vec.
      subptr(rsp, 16);
      int stk_offset = wordSize-2;
      push(cnt2);

      bind(COPY_SUBSTR);
      load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
      movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
      decrement(cnt2);
      jccb(Assembler::notZero, COPY_SUBSTR);

      pop(cnt2);
      movptr(str2, rsp);  // New substring address
    } // non constant

    bind(CHECK_STR);
    cmpl(cnt1, 8);
    jccb(Assembler::aboveEqual, BIG_STRINGS);

    // Check cross page boundary.
    movl(result, str1); // We need only low 32 bits
    andl(result, (os::vm_page_size()-1));
    cmpl(result, (os::vm_page_size()-16));
    jccb(Assembler::belowEqual, BIG_STRINGS);

    subptr(rsp, 16);
    int stk_offset = -2;
    if (int_cnt2 < 0) { // not constant
      push(cnt2);
      stk_offset += wordSize;
    }
    movl(cnt2, cnt1);
8880

8881 8882 8883 8884 8885
    bind(COPY_STR);
    load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
    movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
    decrement(cnt2);
    jccb(Assembler::notZero, COPY_STR);
8886

8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905
    if (int_cnt2 < 0) { // not constant
      pop(cnt2);
    }
    movptr(str1, rsp);  // New string address

    bind(BIG_STRINGS);
    // Load substring.
    if (int_cnt2 < 0) { // -1
      movdqu(vec, Address(str2, 0));
      push(cnt2);       // substr count
      push(str2);       // substr addr
      push(str1);       // string addr
    } else {
      // Small (< 8 chars) constant substrings are loaded already.
      movl(cnt2, int_cnt2);
    }
    push(tmp);  // original SP

  } // Finished loading
8906

8907 8908 8909
  //========================================================
  // Start search
  //
8910

8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944
  movptr(result, str1); // string addr

  if (int_cnt2  < 0) {  // Only for non constant substring
    jmpb(SCAN_TO_SUBSTR);

    // SP saved at sp+0
    // String saved at sp+1*wordSize
    // Substr saved at sp+2*wordSize
    // Substr count saved at sp+3*wordSize

    // Reload substr for rescan, this code
    // is executed only for large substrings (> 8 chars)
    bind(RELOAD_SUBSTR);
    movptr(str2, Address(rsp, 2*wordSize));
    movl(cnt2, Address(rsp, 3*wordSize));
    movdqu(vec, Address(str2, 0));
    // We came here after the beginning of the substring was
    // matched but the rest of it was not so we need to search
    // again. Start from the next element after the previous match.
    subptr(str1, result); // Restore counter
    shrl(str1, 1);
    addl(cnt1, str1);
    decrementl(cnt1);   // Shift to next element
    cmpl(cnt1, cnt2);
    jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring

    addptr(result, 2);
  } // non constant

  // Scan string for start of substr in 16-byte vectors
  bind(SCAN_TO_SUBSTR);
  assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  pcmpestri(vec, Address(result, 0), 0x0d);
  jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
8945
  subl(cnt1, 8);
8946 8947 8948 8949
  jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  cmpl(cnt1, cnt2);
  jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  addptr(result, 16);
8950

8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967
  bind(ADJUST_STR);
  cmpl(cnt1, 8); // Do not read beyond string
  jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  // Back-up string to avoid reading beyond string.
  lea(result, Address(result, cnt1, Address::times_2, -16));
  movl(cnt1, 8);
  jmpb(SCAN_TO_SUBSTR);

  // Found a potential substr
  bind(FOUND_CANDIDATE);
  // After pcmpestri tmp(rcx) contains matched element index

  // Make sure string is still long enough
  subl(cnt1, tmp);
  cmpl(cnt1, cnt2);
  jccb(Assembler::greaterEqual, FOUND_SUBSTR);
  // Left less then substring.
8968 8969 8970

  bind(RET_NOT_FOUND);
  movl(result, -1);
8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036
  jmpb(CLEANUP);

  bind(FOUND_SUBSTR);
  // Compute start addr of substr
  lea(result, Address(result, tmp, Address::times_2));

  if (int_cnt2 > 0) { // Constant substring
    // Repeat search for small substring (< 8 chars)
    // from new point without reloading substring.
    // Have to check that we don't read beyond string.
    cmpl(tmp, 8-int_cnt2);
    jccb(Assembler::greater, ADJUST_STR);
    // Fall through if matched whole substring.
  } else { // non constant
    assert(int_cnt2 == -1, "should be != 0");

    addl(tmp, cnt2);
    // Found result if we matched whole substring.
    cmpl(tmp, 8);
    jccb(Assembler::lessEqual, RET_FOUND);

    // Repeat search for small substring (<= 8 chars)
    // from new point 'str1' without reloading substring.
    cmpl(cnt2, 8);
    // Have to check that we don't read beyond string.
    jccb(Assembler::lessEqual, ADJUST_STR);

    Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
    // Compare the rest of substring (> 8 chars).
    movptr(str1, result);

    cmpl(tmp, cnt2);
    // First 8 chars are already matched.
    jccb(Assembler::equal, CHECK_NEXT);

    bind(SCAN_SUBSTR);
    pcmpestri(vec, Address(str1, 0), 0x0d);
    // Need to reload strings pointers if not matched whole vector
    jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0

    bind(CHECK_NEXT);
    subl(cnt2, 8);
    jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
    addptr(str1, 16);
    addptr(str2, 16);
    subl(cnt1, 8);
    cmpl(cnt2, 8); // Do not read beyond substring
    jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
    // Back-up strings to avoid reading beyond substring.
    lea(str2, Address(str2, cnt2, Address::times_2, -16));
    lea(str1, Address(str1, cnt2, Address::times_2, -16));
    subl(cnt1, cnt2);
    movl(cnt2, 8);
    addl(cnt1, 8);
    bind(CONT_SCAN_SUBSTR);
    movdqu(vec, Address(str2, 0));
    jmpb(SCAN_SUBSTR);

    bind(RET_FOUND_LONG);
    movptr(str1, Address(rsp, wordSize));
  } // non constant

  bind(RET_FOUND);
  // Compute substr offset
  subptr(result, str1);
  shrl(result, 1); // index
9037 9038

  bind(CLEANUP);
9039 9040 9041
  pop(rsp); // restore SP

} // string_indexof
9042 9043 9044 9045

// Compare strings.
void MacroAssembler::string_compare(Register str1, Register str2,
                                    Register cnt1, Register cnt2, Register result,
9046
                                    XMMRegister vec1) {
9047 9048 9049 9050 9051 9052 9053 9054
  Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;

  // Compute the minimum of the string lengths and the
  // difference of the string lengths (stack).
  // Do the conditional move stuff
  movl(result, cnt1);
  subl(cnt1, cnt2);
  push(cnt1);
9055
  cmov32(Assembler::lessEqual, cnt2, result);
9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085

  // Is the minimum length zero?
  testl(cnt2, cnt2);
  jcc(Assembler::zero, LENGTH_DIFF_LABEL);

  // Load first characters
  load_unsigned_short(result, Address(str1, 0));
  load_unsigned_short(cnt1, Address(str2, 0));

  // Compare first characters
  subl(result, cnt1);
  jcc(Assembler::notZero,  POP_LABEL);
  decrementl(cnt2);
  jcc(Assembler::zero, LENGTH_DIFF_LABEL);

  {
    // Check after comparing first character to see if strings are equivalent
    Label LSkip2;
    // Check if the strings start at same location
    cmpptr(str1, str2);
    jccb(Assembler::notEqual, LSkip2);

    // Check if the length difference is zero (from stack)
    cmpl(Address(rsp, 0), 0x0);
    jcc(Assembler::equal,  LENGTH_DIFF_LABEL);

    // Strings might not be equivalent
    bind(LSkip2);
  }

9086 9087 9088 9089 9090 9091
  Address::ScaleFactor scale = Address::times_2;
  int stride = 8;

  // Advance to next element
  addptr(str1, 16/stride);
  addptr(str2, 16/stride);
9092 9093

  if (UseSSE42Intrinsics) {
9094 9095
    Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
    int pcmpmask = 0x19;
9096
    // Setup to compare 16-byte vectors
9097 9098
    movl(result, cnt2);
    andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
9099 9100
    jccb(Assembler::zero, COMPARE_TAIL);

9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115
    lea(str1, Address(str1, result, scale));
    lea(str2, Address(str2, result, scale));
    negptr(result);

    // pcmpestri
    //   inputs:
    //     vec1- substring
    //     rax - negative string length (elements count)
    //     mem - scaned string
    //     rdx - string length (elements count)
    //     pcmpmask - cmp mode: 11000 (string compare with negated result)
    //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
    //   outputs:
    //     rcx - first mismatched element index
    assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
9116

9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136
    bind(COMPARE_WIDE_VECTORS);
    movdqu(vec1, Address(str1, result, scale));
    pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
    // After pcmpestri cnt1(rcx) contains mismatched element index

    jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
    addptr(result, stride);
    subptr(cnt2, stride);
    jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);

    // compare wide vectors tail
    testl(result, result);
    jccb(Assembler::zero, LENGTH_DIFF_LABEL);

    movl(cnt2, stride);
    movl(result, stride);
    negptr(result);
    movdqu(vec1, Address(str1, result, scale));
    pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
    jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
9137 9138 9139

    // Mismatched characters in the vectors
    bind(VECTOR_NOT_EQUAL);
9140 9141 9142 9143 9144 9145 9146 9147 9148
    addptr(result, cnt1);
    movptr(cnt2, result);
    load_unsigned_short(result, Address(str1, cnt2, scale));
    load_unsigned_short(cnt1, Address(str2, cnt2, scale));
    subl(result, cnt1);
    jmpb(POP_LABEL);

    bind(COMPARE_TAIL); // limit is zero
    movl(cnt2, result);
9149 9150 9151 9152
    // Fallthru to tail compare
  }

  // Shift str2 and str1 to the end of the arrays, negate min
9153 9154
  lea(str1, Address(str1, cnt2, scale, 0));
  lea(str2, Address(str2, cnt2, scale, 0));
9155 9156
  negptr(cnt2);

9157
  // Compare the rest of the elements
9158
  bind(WHILE_HEAD_LABEL);
9159 9160
  load_unsigned_short(result, Address(str1, cnt2, scale, 0));
  load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
9161 9162 9163
  subl(result, cnt1);
  jccb(Assembler::notZero, POP_LABEL);
  increment(cnt2);
9164
  jccb(Assembler::notZero, WHILE_HEAD_LABEL);
9165 9166 9167 9168 9169 9170 9171 9172

  // Strings are equal up to min length.  Return the length difference.
  bind(LENGTH_DIFF_LABEL);
  pop(result);
  jmpb(DONE_LABEL);

  // Discard the stored length difference
  bind(POP_LABEL);
9173
  pop(cnt1);
9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193

  // That's it
  bind(DONE_LABEL);
}

// Compare char[] arrays aligned to 4 bytes or substrings.
void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
                                        Register limit, Register result, Register chr,
                                        XMMRegister vec1, XMMRegister vec2) {
  Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;

  int length_offset  = arrayOopDesc::length_offset_in_bytes();
  int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);

  // Check the input args
  cmpptr(ary1, ary2);
  jcc(Assembler::equal, TRUE_LABEL);

  if (is_array_equ) {
    // Need additional checks for arrays_equals.
9194 9195 9196 9197
    testptr(ary1, ary1);
    jcc(Assembler::zero, FALSE_LABEL);
    testptr(ary2, ary2);
    jcc(Assembler::zero, FALSE_LABEL);
9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220

    // Check the lengths
    movl(limit, Address(ary1, length_offset));
    cmpl(limit, Address(ary2, length_offset));
    jcc(Assembler::notEqual, FALSE_LABEL);
  }

  // count == 0
  testl(limit, limit);
  jcc(Assembler::zero, TRUE_LABEL);

  if (is_array_equ) {
    // Load array address
    lea(ary1, Address(ary1, base_offset));
    lea(ary2, Address(ary2, base_offset));
  }

  shll(limit, 1);      // byte count != 0
  movl(result, limit); // copy

  if (UseSSE42Intrinsics) {
    // With SSE4.2, use double quad vector compare
    Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
9221

9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234
    // Compare 16-byte vectors
    andl(result, 0x0000000e);  //   tail count (in bytes)
    andl(limit, 0xfffffff0);   // vector count (in bytes)
    jccb(Assembler::zero, COMPARE_TAIL);

    lea(ary1, Address(ary1, limit, Address::times_1));
    lea(ary2, Address(ary2, limit, Address::times_1));
    negptr(limit);

    bind(COMPARE_WIDE_VECTORS);
    movdqu(vec1, Address(ary1, limit, Address::times_1));
    movdqu(vec2, Address(ary2, limit, Address::times_1));
    pxor(vec1, vec2);
9235

9236 9237 9238 9239 9240
    ptest(vec1, vec1);
    jccb(Assembler::notZero, FALSE_LABEL);
    addptr(limit, 16);
    jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);

9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251
    testl(result, result);
    jccb(Assembler::zero, TRUE_LABEL);

    movdqu(vec1, Address(ary1, result, Address::times_1, -16));
    movdqu(vec2, Address(ary2, result, Address::times_1, -16));
    pxor(vec1, vec2);

    ptest(vec1, vec1);
    jccb(Assembler::notZero, FALSE_LABEL);
    jmpb(TRUE_LABEL);

9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291
    bind(COMPARE_TAIL); // limit is zero
    movl(limit, result);
    // Fallthru to tail compare
  }

  // Compare 4-byte vectors
  andl(limit, 0xfffffffc); // vector count (in bytes)
  jccb(Assembler::zero, COMPARE_CHAR);

  lea(ary1, Address(ary1, limit, Address::times_1));
  lea(ary2, Address(ary2, limit, Address::times_1));
  negptr(limit);

  bind(COMPARE_VECTORS);
  movl(chr, Address(ary1, limit, Address::times_1));
  cmpl(chr, Address(ary2, limit, Address::times_1));
  jccb(Assembler::notEqual, FALSE_LABEL);
  addptr(limit, 4);
  jcc(Assembler::notZero, COMPARE_VECTORS);

  // Compare trailing char (final 2 bytes), if any
  bind(COMPARE_CHAR);
  testl(result, 0x2);   // tail  char
  jccb(Assembler::zero, TRUE_LABEL);
  load_unsigned_short(chr, Address(ary1, 0));
  load_unsigned_short(limit, Address(ary2, 0));
  cmpl(chr, limit);
  jccb(Assembler::notEqual, FALSE_LABEL);

  bind(TRUE_LABEL);
  movl(result, 1);   // return true
  jmpb(DONE);

  bind(FALSE_LABEL);
  xorl(result, result); // return false

  // That's it
  bind(DONE);
}

N
never 已提交
9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) block_comment(str)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
void MacroAssembler::generate_fill(BasicType t, bool aligned,
                                   Register to, Register value, Register count,
                                   Register rtmp, XMMRegister xtmp) {
  assert_different_registers(to, value, count, rtmp);
  Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  Label L_fill_2_bytes, L_fill_4_bytes;

  int shift = -1;
  switch (t) {
    case T_BYTE:
      shift = 2;
      break;
    case T_SHORT:
      shift = 1;
      break;
    case T_INT:
      shift = 0;
      break;
    default: ShouldNotReachHere();
  }

  if (t == T_BYTE) {
    andl(value, 0xff);
    movl(rtmp, value);
    shll(rtmp, 8);
    orl(value, rtmp);
  }
  if (t == T_SHORT) {
    andl(value, 0xffff);
  }
  if (t == T_BYTE || t == T_SHORT) {
    movl(rtmp, value);
    shll(rtmp, 16);
    orl(value, rtmp);
  }

  cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
    // align source address at 4 bytes address boundary
    if (t == T_BYTE) {
      // One byte misalignment happens only for byte arrays
      testptr(to, 1);
      jccb(Assembler::zero, L_skip_align1);
      movb(Address(to, 0), value);
      increment(to);
      decrement(count);
      BIND(L_skip_align1);
    }
    // Two bytes misalignment happens only for byte and short (char) arrays
    testptr(to, 2);
    jccb(Assembler::zero, L_skip_align2);
    movw(Address(to, 0), value);
    addptr(to, 2);
    subl(count, 1<<(shift-1));
    BIND(L_skip_align2);
  }
  if (UseSSE < 2) {
    Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
    // Fill 32-byte chunks
    subl(count, 8 << shift);
    jcc(Assembler::less, L_check_fill_8_bytes);
    align(16);

    BIND(L_fill_32_bytes_loop);

    for (int i = 0; i < 32; i += 4) {
      movl(Address(to, i), value);
    }

    addptr(to, 32);
    subl(count, 8 << shift);
    jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
    BIND(L_check_fill_8_bytes);
    addl(count, 8 << shift);
    jccb(Assembler::zero, L_exit);
    jmpb(L_fill_8_bytes);

    //
    // length is too short, just fill qwords
    //
    BIND(L_fill_8_bytes_loop);
    movl(Address(to, 0), value);
    movl(Address(to, 4), value);
    addptr(to, 8);
    BIND(L_fill_8_bytes);
    subl(count, 1 << (shift + 1));
    jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
    // fall through to fill 4 bytes
  } else {
    Label L_fill_32_bytes;
    if (!UseUnalignedLoadStores) {
      // align to 8 bytes, we know we are 4 byte aligned to start
      testptr(to, 4);
      jccb(Assembler::zero, L_fill_32_bytes);
      movl(Address(to, 0), value);
      addptr(to, 4);
      subl(count, 1<<shift);
    }
    BIND(L_fill_32_bytes);
    {
      assert( UseSSE >= 2, "supported cpu only" );
      Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
      // Fill 32-byte chunks
      movdl(xtmp, value);
      pshufd(xtmp, xtmp, 0);

      subl(count, 8 << shift);
      jcc(Assembler::less, L_check_fill_8_bytes);
      align(16);

      BIND(L_fill_32_bytes_loop);

      if (UseUnalignedLoadStores) {
        movdqu(Address(to, 0), xtmp);
        movdqu(Address(to, 16), xtmp);
      } else {
        movq(Address(to, 0), xtmp);
        movq(Address(to, 8), xtmp);
        movq(Address(to, 16), xtmp);
        movq(Address(to, 24), xtmp);
      }

      addptr(to, 32);
      subl(count, 8 << shift);
      jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
      BIND(L_check_fill_8_bytes);
      addl(count, 8 << shift);
      jccb(Assembler::zero, L_exit);
      jmpb(L_fill_8_bytes);

      //
      // length is too short, just fill qwords
      //
      BIND(L_fill_8_bytes_loop);
      movq(Address(to, 0), xtmp);
      addptr(to, 8);
      BIND(L_fill_8_bytes);
      subl(count, 1 << (shift + 1));
      jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
    }
  }
  // fill trailing 4 bytes
  BIND(L_fill_4_bytes);
  testl(count, 1<<shift);
  jccb(Assembler::zero, L_fill_2_bytes);
  movl(Address(to, 0), value);
  if (t == T_BYTE || t == T_SHORT) {
    addptr(to, 4);
    BIND(L_fill_2_bytes);
    // fill trailing 2 bytes
    testl(count, 1<<(shift-1));
    jccb(Assembler::zero, L_fill_byte);
    movw(Address(to, 0), value);
    if (t == T_BYTE) {
      addptr(to, 2);
      BIND(L_fill_byte);
      // fill trailing byte
      testl(count, 1);
      jccb(Assembler::zero, L_exit);
      movb(Address(to, 0), value);
    } else {
      BIND(L_fill_byte);
    }
  } else {
    BIND(L_fill_2_bytes);
  }
  BIND(L_exit);
}
#undef BIND
#undef BLOCK_COMMENT


D
duke 已提交
9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504
Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  switch (cond) {
    // Note some conditions are synonyms for others
    case Assembler::zero:         return Assembler::notZero;
    case Assembler::notZero:      return Assembler::zero;
    case Assembler::less:         return Assembler::greaterEqual;
    case Assembler::lessEqual:    return Assembler::greater;
    case Assembler::greater:      return Assembler::lessEqual;
    case Assembler::greaterEqual: return Assembler::less;
    case Assembler::below:        return Assembler::aboveEqual;
    case Assembler::belowEqual:   return Assembler::above;
    case Assembler::above:        return Assembler::belowEqual;
    case Assembler::aboveEqual:   return Assembler::below;
    case Assembler::overflow:     return Assembler::noOverflow;
    case Assembler::noOverflow:   return Assembler::overflow;
    case Assembler::negative:     return Assembler::positive;
    case Assembler::positive:     return Assembler::negative;
    case Assembler::parity:       return Assembler::noParity;
    case Assembler::noParity:     return Assembler::parity;
  }
  ShouldNotReachHere(); return Assembler::overflow;
}

SkipIfEqual::SkipIfEqual(
    MacroAssembler* masm, const bool* flag_addr, bool value) {
  _masm = masm;
  _masm->cmp8(ExternalAddress((address)flag_addr), value);
  _masm->jcc(Assembler::equal, _label);
}

SkipIfEqual::~SkipIfEqual() {
  _masm->bind(_label);
}