macro.cpp 67.6 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_macro.cpp.incl"


//
// Replace any references to "oldref" in inputs to "use" with "newref".
// Returns the number of replacements made.
//
int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  int nreplacements = 0;
  uint req = use->req();
  for (uint j = 0; j < use->len(); j++) {
    Node *uin = use->in(j);
    if (uin == oldref) {
      if (j < req)
        use->set_req(j, newref);
      else
        use->set_prec(j, newref);
      nreplacements++;
    } else if (j >= req && uin == NULL) {
      break;
    }
  }
  return nreplacements;
}

void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  // Copy debug information and adjust JVMState information
  uint old_dbg_start = oldcall->tf()->domain()->cnt();
  uint new_dbg_start = newcall->tf()->domain()->cnt();
  int jvms_adj  = new_dbg_start - old_dbg_start;
  assert (new_dbg_start == newcall->req(), "argument count mismatch");
57 58

  Dict* sosn_map = new Dict(cmpkey,hashkey);
D
duke 已提交
59
  for (uint i = old_dbg_start; i < oldcall->req(); i++) {
60 61 62 63 64 65 66 67 68 69 70 71
    Node* old_in = oldcall->in(i);
    // Clone old SafePointScalarObjectNodes, adjusting their field contents.
    if (old_in->is_SafePointScalarObject()) {
      SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
      uint old_unique = C->unique();
      Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
      if (old_unique != C->unique()) {
        new_in = transform_later(new_in); // Register new node.
      }
      old_in = new_in;
    }
    newcall->add_req(old_in);
D
duke 已提交
72
  }
73

D
duke 已提交
74 75 76 77 78 79
  newcall->set_jvms(oldcall->jvms());
  for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
    jvms->set_map(newcall);
    jvms->set_locoff(jvms->locoff()+jvms_adj);
    jvms->set_stkoff(jvms->stkoff()+jvms_adj);
    jvms->set_monoff(jvms->monoff()+jvms_adj);
80
    jvms->set_scloff(jvms->scloff()+jvms_adj);
D
duke 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    jvms->set_endoff(jvms->endoff()+jvms_adj);
  }
}

Node* PhaseMacroExpand::opt_iff(Node* region, Node* iff) {
  IfNode *opt_iff = transform_later(iff)->as_If();

  // Fast path taken; set region slot 2
  Node *fast_taken = transform_later( new (C, 1) IfFalseNode(opt_iff) );
  region->init_req(2,fast_taken); // Capture fast-control

  // Fast path not-taken, i.e. slow path
  Node *slow_taken = transform_later( new (C, 1) IfTrueNode(opt_iff) );
  return slow_taken;
}

//--------------------copy_predefined_input_for_runtime_call--------------------
void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
  // Set fixed predefined input arguments
  call->init_req( TypeFunc::Control, ctrl );
  call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
  call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
  call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
  call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
}

//------------------------------make_slow_call---------------------------------
CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {

  // Slow-path call
  int size = slow_call_type->domain()->cnt();
 CallNode *call = leaf_name
   ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
   : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );

  // Slow path call has no side-effects, uses few values
  copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
  if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
  if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
  copy_call_debug_info(oldcall, call);
  call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
  _igvn.hash_delete(oldcall);
  _igvn.subsume_node(oldcall, call);
  transform_later(call);

  return call;
}

void PhaseMacroExpand::extract_call_projections(CallNode *call) {
  _fallthroughproj = NULL;
  _fallthroughcatchproj = NULL;
  _ioproj_fallthrough = NULL;
  _ioproj_catchall = NULL;
  _catchallcatchproj = NULL;
  _memproj_fallthrough = NULL;
  _memproj_catchall = NULL;
  _resproj = NULL;
  for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
    ProjNode *pn = call->fast_out(i)->as_Proj();
    switch (pn->_con) {
      case TypeFunc::Control:
      {
        // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
        _fallthroughproj = pn;
        DUIterator_Fast jmax, j = pn->fast_outs(jmax);
        const Node *cn = pn->fast_out(j);
        if (cn->is_Catch()) {
          ProjNode *cpn = NULL;
          for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
            cpn = cn->fast_out(k)->as_Proj();
            assert(cpn->is_CatchProj(), "must be a CatchProjNode");
            if (cpn->_con == CatchProjNode::fall_through_index)
              _fallthroughcatchproj = cpn;
            else {
              assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
              _catchallcatchproj = cpn;
            }
          }
        }
        break;
      }
      case TypeFunc::I_O:
        if (pn->_is_io_use)
          _ioproj_catchall = pn;
        else
          _ioproj_fallthrough = pn;
        break;
      case TypeFunc::Memory:
        if (pn->_is_io_use)
          _memproj_catchall = pn;
        else
          _memproj_fallthrough = pn;
        break;
      case TypeFunc::Parms:
        _resproj = pn;
        break;
      default:
        assert(false, "unexpected projection from allocation node.");
    }
  }

}

184 185 186 187 188 189 190 191 192 193 194 195 196
// Eliminate a card mark sequence.  p2x is a ConvP2XNode
void PhaseMacroExpand::eliminate_card_mark(Node *p2x) {
  assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
  Node *shift = p2x->unique_out();
  Node *addp = shift->unique_out();
  for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
    Node *st = addp->last_out(j);
    assert(st->is_Store(), "store required");
    _igvn.replace_node(st, st->in(MemNode::Memory));
  }
}

// Search for a memory operation for the specified memory slice.
197
static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
198 199
  Node *orig_mem = mem;
  Node *alloc_mem = alloc->in(TypeFunc::Memory);
200
  const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
201 202 203 204 205 206 207 208 209 210 211
  while (true) {
    if (mem == alloc_mem || mem == start_mem ) {
      return mem;  // hit one of our sentinals
    } else if (mem->is_MergeMem()) {
      mem = mem->as_MergeMem()->memory_at(alias_idx);
    } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
      Node *in = mem->in(0);
      // we can safely skip over safepoints, calls, locks and membars because we
      // already know that the object is safe to eliminate.
      if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
        return in;
212 213 214 215 216 217 218
      } else if (in->is_Call()) {
        CallNode *call = in->as_Call();
        if (!call->may_modify(tinst, phase)) {
          mem = call->in(TypeFunc::Memory);
        }
        mem = in->in(TypeFunc::Memory);
      } else if (in->is_MemBar()) {
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        mem = in->in(TypeFunc::Memory);
      } else {
        assert(false, "unexpected projection");
      }
    } else if (mem->is_Store()) {
      const TypePtr* atype = mem->as_Store()->adr_type();
      int adr_idx = Compile::current()->get_alias_index(atype);
      if (adr_idx == alias_idx) {
        assert(atype->isa_oopptr(), "address type must be oopptr");
        int adr_offset = atype->offset();
        uint adr_iid = atype->is_oopptr()->instance_id();
        // Array elements references have the same alias_idx
        // but different offset and different instance_id.
        if (adr_offset == offset && adr_iid == alloc->_idx)
          return mem;
      } else {
        assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
      }
      mem = mem->in(MemNode::Memory);
    } else {
      return mem;
    }
241
    assert(mem != orig_mem, "dead memory loop");
242 243 244 245 246 247 248 249
  }
}

//
// Given a Memory Phi, compute a value Phi containing the values from stores
// on the input paths.
// Note: this function is recursive, its depth is limied by the "level" argument
// Returns the computed Phi, or NULL if it cannot compute it.
250 251
Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
  assert(mem->is_Phi(), "sanity");
252 253 254 255
  int alias_idx = C->get_alias_index(adr_t);
  int offset = adr_t->offset();
  int instance_id = adr_t->instance_id();

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  // Check if an appropriate value phi already exists.
  Node* region = mem->in(0);
  for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
    Node* phi = region->fast_out(k);
    if (phi->is_Phi() && phi != mem &&
        phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
      return phi;
    }
  }
  // Check if an appropriate new value phi already exists.
  Node* new_phi = NULL;
  uint size = value_phis->size();
  for (uint i=0; i < size; i++) {
    if ( mem->_idx == value_phis->index_at(i) ) {
      return value_phis->node_at(i);
    }
  }

  if (level <= 0) {
275
    return NULL; // Give up: phi tree too deep
276
  }
277 278 279 280 281 282
  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  Node *alloc_mem = alloc->in(TypeFunc::Memory);

  uint length = mem->req();
  GrowableArray <Node *> values(length, length, NULL);

283 284 285 286 287
  // create a new Phi for the value
  PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
  transform_later(phi);
  value_phis->push(phi, mem->_idx);

288 289 290 291 292
  for (uint j = 1; j < length; j++) {
    Node *in = mem->in(j);
    if (in == NULL || in->is_top()) {
      values.at_put(j, in);
    } else  {
293
      Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
      if (val == start_mem || val == alloc_mem) {
        // hit a sentinel, return appropriate 0 value
        values.at_put(j, _igvn.zerocon(ft));
        continue;
      }
      if (val->is_Initialize()) {
        val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
      }
      if (val == NULL) {
        return NULL;  // can't find a value on this path
      }
      if (val == mem) {
        values.at_put(j, mem);
      } else if (val->is_Store()) {
        values.at_put(j, val->in(MemNode::ValueIn));
      } else if(val->is_Proj() && val->in(0) == alloc) {
        values.at_put(j, _igvn.zerocon(ft));
      } else if (val->is_Phi()) {
312 313 314
        val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
        if (val == NULL) {
          return NULL;
315
        }
316
        values.at_put(j, val);
317
      } else {
318 319
        assert(false, "unknown node on this path");
        return NULL;  // unknown node on this path
320 321 322
      }
    }
  }
323
  // Set Phi's inputs
324 325 326 327 328 329 330 331 332 333 334 335
  for (uint j = 1; j < length; j++) {
    if (values.at(j) == mem) {
      phi->init_req(j, phi);
    } else {
      phi->init_req(j, values.at(j));
    }
  }
  return phi;
}

// Search the last value stored into the object's field.
Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
336 337 338
  assert(adr_t->is_known_instance_field(), "instance required");
  int instance_id = adr_t->instance_id();
  assert((uint)instance_id == alloc->_idx, "wrong allocation");
339 340 341 342 343 344

  int alias_idx = C->get_alias_index(adr_t);
  int offset = adr_t->offset();
  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  Node *alloc_ctrl = alloc->in(TypeFunc::Control);
  Node *alloc_mem = alloc->in(TypeFunc::Memory);
345 346
  Arena *a = Thread::current()->resource_area();
  VectorSet visited(a);
347 348 349 350 351 352 353 354


  bool done = sfpt_mem == alloc_mem;
  Node *mem = sfpt_mem;
  while (!done) {
    if (visited.test_set(mem->_idx)) {
      return NULL;  // found a loop, give up
    }
355
    mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    if (mem == start_mem || mem == alloc_mem) {
      done = true;  // hit a sentinel, return appropriate 0 value
    } else if (mem->is_Initialize()) {
      mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
      if (mem == NULL) {
        done = true; // Something go wrong.
      } else if (mem->is_Store()) {
        const TypePtr* atype = mem->as_Store()->adr_type();
        assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
        done = true;
      }
    } else if (mem->is_Store()) {
      const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
      assert(atype != NULL, "address type must be oopptr");
      assert(C->get_alias_index(atype) == alias_idx &&
371
             atype->is_known_instance_field() && atype->offset() == offset &&
372 373 374 375 376 377 378
             atype->instance_id() == instance_id, "store is correct memory slice");
      done = true;
    } else if (mem->is_Phi()) {
      // try to find a phi's unique input
      Node *unique_input = NULL;
      Node *top = C->top();
      for (uint i = 1; i < mem->req(); i++) {
379
        Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
        if (n == NULL || n == top || n == mem) {
          continue;
        } else if (unique_input == NULL) {
          unique_input = n;
        } else if (unique_input != n) {
          unique_input = top;
          break;
        }
      }
      if (unique_input != NULL && unique_input != top) {
        mem = unique_input;
      } else {
        done = true;
      }
    } else {
      assert(false, "unexpected node");
    }
  }
  if (mem != NULL) {
    if (mem == start_mem || mem == alloc_mem) {
      // hit a sentinel, return appropriate 0 value
      return _igvn.zerocon(ft);
    } else if (mem->is_Store()) {
      return mem->in(MemNode::ValueIn);
    } else if (mem->is_Phi()) {
      // attempt to produce a Phi reflecting the values on the input paths of the Phi
406
      Node_Stack value_phis(a, 8);
407
      Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
408 409
      if (phi != NULL) {
        return phi;
410 411 412 413 414 415 416 417
      } else {
        // Kill all new Phis
        while(value_phis.is_nonempty()) {
          Node* n = value_phis.node();
          _igvn.hash_delete(n);
          _igvn.subsume_node(n, C->top());
          value_phis.pop();
        }
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
      }
    }
  }
  // Something go wrong.
  return NULL;
}

// Check the possibility of scalar replacement.
bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
  //  Scan the uses of the allocation to check for anything that would
  //  prevent us from eliminating it.
  NOT_PRODUCT( const char* fail_eliminate = NULL; )
  DEBUG_ONLY( Node* disq_node = NULL; )
  bool  can_eliminate = true;

  Node* res = alloc->result_cast();
  const TypeOopPtr* res_type = NULL;
  if (res == NULL) {
    // All users were eliminated.
  } else if (!res->is_CheckCastPP()) {
    alloc->_is_scalar_replaceable = false;  // don't try again
    NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
    can_eliminate = false;
  } else {
    res_type = _igvn.type(res)->isa_oopptr();
    if (res_type == NULL) {
      NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
      can_eliminate = false;
    } else if (res_type->isa_aryptr()) {
      int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
      if (length < 0) {
        NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
        can_eliminate = false;
      }
    }
  }

  if (can_eliminate && res != NULL) {
    for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
                               j < jmax && can_eliminate; j++) {
      Node* use = res->fast_out(j);

      if (use->is_AddP()) {
        const TypePtr* addp_type = _igvn.type(use)->is_ptr();
        int offset = addp_type->offset();

        if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
          NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
          can_eliminate = false;
          break;
        }
        for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
                                   k < kmax && can_eliminate; k++) {
          Node* n = use->fast_out(k);
          if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
            DEBUG_ONLY(disq_node = n;)
474
            if (n->is_Load() || n->is_LoadStore()) {
475 476 477 478 479 480 481 482 483
              NOT_PRODUCT(fail_eliminate = "Field load";)
            } else {
              NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
            }
            can_eliminate = false;
          }
        }
      } else if (use->is_SafePoint()) {
        SafePointNode* sfpt = use->as_SafePoint();
484
        if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
          // Object is passed as argument.
          DEBUG_ONLY(disq_node = use;)
          NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
          can_eliminate = false;
        }
        Node* sfptMem = sfpt->memory();
        if (sfptMem == NULL || sfptMem->is_top()) {
          DEBUG_ONLY(disq_node = use;)
          NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
          can_eliminate = false;
        } else {
          safepoints.append_if_missing(sfpt);
        }
      } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
        if (use->is_Phi()) {
          if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
            NOT_PRODUCT(fail_eliminate = "Object is return value";)
          } else {
            NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
          }
          DEBUG_ONLY(disq_node = use;)
        } else {
          if (use->Opcode() == Op_Return) {
            NOT_PRODUCT(fail_eliminate = "Object is return value";)
          }else {
            NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
          }
          DEBUG_ONLY(disq_node = use;)
        }
        can_eliminate = false;
      }
    }
  }

#ifndef PRODUCT
  if (PrintEliminateAllocations) {
    if (can_eliminate) {
      tty->print("Scalar ");
      if (res == NULL)
        alloc->dump();
      else
        res->dump();
    } else {
      tty->print("NotScalar (%s)", fail_eliminate);
      if (res == NULL)
        alloc->dump();
      else
        res->dump();
#ifdef ASSERT
      if (disq_node != NULL) {
          tty->print("  >>>> ");
          disq_node->dump();
      }
#endif /*ASSERT*/
    }
  }
#endif
  return can_eliminate;
}

// Do scalar replacement.
bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
  GrowableArray <SafePointNode *> safepoints_done;

  ciKlass* klass = NULL;
  ciInstanceKlass* iklass = NULL;
  int nfields = 0;
  int array_base;
  int element_size;
  BasicType basic_elem_type;
  ciType* elem_type;

  Node* res = alloc->result_cast();
  const TypeOopPtr* res_type = NULL;
  if (res != NULL) { // Could be NULL when there are no users
    res_type = _igvn.type(res)->isa_oopptr();
  }

  if (res != NULL) {
    klass = res_type->klass();
    if (res_type->isa_instptr()) {
      // find the fields of the class which will be needed for safepoint debug information
      assert(klass->is_instance_klass(), "must be an instance klass.");
      iklass = klass->as_instance_klass();
      nfields = iklass->nof_nonstatic_fields();
    } else {
      // find the array's elements which will be needed for safepoint debug information
      nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
      assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
      elem_type = klass->as_array_klass()->element_type();
      basic_elem_type = elem_type->basic_type();
      array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
      element_size = type2aelembytes(basic_elem_type);
    }
  }
  //
  // Process the safepoint uses
  //
  while (safepoints.length() > 0) {
    SafePointNode* sfpt = safepoints.pop();
    Node* mem = sfpt->memory();
    uint first_ind = sfpt->req();
    SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
#ifdef ASSERT
                                                 alloc,
#endif
                                                 first_ind, nfields);
    sobj->init_req(0, sfpt->in(TypeFunc::Control));
    transform_later(sobj);

    // Scan object's fields adding an input to the safepoint for each field.
    for (int j = 0; j < nfields; j++) {
597
      intptr_t offset;
598 599 600 601 602 603 604
      ciField* field = NULL;
      if (iklass != NULL) {
        field = iklass->nonstatic_field_at(j);
        offset = field->offset();
        elem_type = field->type();
        basic_elem_type = field->layout_type();
      } else {
605
        offset = array_base + j * (intptr_t)element_size;
606 607 608 609
      }

      const Type *field_type;
      // The next code is taken from Parse::do_get_xxx().
610
      if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
611 612 613 614 615 616 617 618 619 620 621 622
        if (!elem_type->is_loaded()) {
          field_type = TypeInstPtr::BOTTOM;
        } else if (field != NULL && field->is_constant()) {
          // This can happen if the constant oop is non-perm.
          ciObject* con = field->constant_value().as_object();
          // Do not "join" in the previous type; it doesn't add value,
          // and may yield a vacuous result if the field is of interface type.
          field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
          assert(field_type != NULL, "field singleton type must be consistent");
        } else {
          field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
        }
623
        if (UseCompressedOops) {
624
          field_type = field_type->make_narrowoop();
625 626
          basic_elem_type = T_NARROWOOP;
        }
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
      } else {
        field_type = Type::get_const_basic_type(basic_elem_type);
      }

      const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();

      Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
      if (field_val == NULL) {
        // we weren't able to find a value for this field,
        // give up on eliminating this allocation
        alloc->_is_scalar_replaceable = false;  // don't try again
        // remove any extra entries we added to the safepoint
        uint last = sfpt->req() - 1;
        for (int k = 0;  k < j; k++) {
          sfpt->del_req(last--);
        }
        // rollback processed safepoints
        while (safepoints_done.length() > 0) {
          SafePointNode* sfpt_done = safepoints_done.pop();
          // remove any extra entries we added to the safepoint
          last = sfpt_done->req() - 1;
          for (int k = 0;  k < nfields; k++) {
            sfpt_done->del_req(last--);
          }
          JVMState *jvms = sfpt_done->jvms();
          jvms->set_endoff(sfpt_done->req());
          // Now make a pass over the debug information replacing any references
          // to SafePointScalarObjectNode with the allocated object.
          int start = jvms->debug_start();
          int end   = jvms->debug_end();
          for (int i = start; i < end; i++) {
            if (sfpt_done->in(i)->is_SafePointScalarObject()) {
              SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
              if (scobj->first_index() == sfpt_done->req() &&
                  scobj->n_fields() == (uint)nfields) {
                assert(scobj->alloc() == alloc, "sanity");
                sfpt_done->set_req(i, res);
              }
            }
          }
        }
#ifndef PRODUCT
        if (PrintEliminateAllocations) {
          if (field != NULL) {
            tty->print("=== At SafePoint node %d can't find value of Field: ",
                       sfpt->_idx);
            field->print();
            int field_idx = C->get_alias_index(field_addr_type);
            tty->print(" (alias_idx=%d)", field_idx);
          } else { // Array's element
            tty->print("=== At SafePoint node %d can't find value of array element [%d]",
                       sfpt->_idx, j);
          }
          tty->print(", which prevents elimination of: ");
          if (res == NULL)
            alloc->dump();
          else
            res->dump();
        }
#endif
        return false;
      }
689 690 691
      if (UseCompressedOops && field_type->isa_narrowoop()) {
        // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
        // to be able scalar replace the allocation.
692 693 694 695 696
        if (field_val->is_EncodeP()) {
          field_val = field_val->in(1);
        } else {
          field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
        }
697
      }
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
      sfpt->add_req(field_val);
    }
    JVMState *jvms = sfpt->jvms();
    jvms->set_endoff(sfpt->req());
    // Now make a pass over the debug information replacing any references
    // to the allocated object with "sobj"
    int start = jvms->debug_start();
    int end   = jvms->debug_end();
    for (int i = start; i < end; i++) {
      if (sfpt->in(i) == res) {
        sfpt->set_req(i, sobj);
      }
    }
    safepoints_done.append_if_missing(sfpt); // keep it for rollback
  }
  return true;
}

// Process users of eliminated allocation.
void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
  Node* res = alloc->result_cast();
  if (res != NULL) {
    for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
      Node *use = res->last_out(j);
      uint oc1 = res->outcnt();

      if (use->is_AddP()) {
        for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
          Node *n = use->last_out(k);
          uint oc2 = use->outcnt();
          if (n->is_Store()) {
            _igvn.replace_node(n, n->in(MemNode::Memory));
          } else {
            assert( n->Opcode() == Op_CastP2X, "CastP2X required");
            eliminate_card_mark(n);
          }
          k -= (oc2 - use->outcnt());
        }
      } else {
        assert( !use->is_SafePoint(), "safepoint uses must have been already elimiated");
        assert( use->Opcode() == Op_CastP2X, "CastP2X required");
        eliminate_card_mark(use);
      }
      j -= (oc1 - res->outcnt());
    }
    assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
    _igvn.remove_dead_node(res);
  }

  //
  // Process other users of allocation's projections
  //
  if (_resproj != NULL && _resproj->outcnt() != 0) {
    for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
      Node *use = _resproj->last_out(j);
      uint oc1 = _resproj->outcnt();
      if (use->is_Initialize()) {
        // Eliminate Initialize node.
        InitializeNode *init = use->as_Initialize();
        assert(init->outcnt() <= 2, "only a control and memory projection expected");
        Node *ctrl_proj = init->proj_out(TypeFunc::Control);
        if (ctrl_proj != NULL) {
           assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
          _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
        }
        Node *mem_proj = init->proj_out(TypeFunc::Memory);
        if (mem_proj != NULL) {
          Node *mem = init->in(TypeFunc::Memory);
#ifdef ASSERT
          if (mem->is_MergeMem()) {
            assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
          } else {
            assert(mem == _memproj_fallthrough, "allocation memory projection");
          }
#endif
          _igvn.replace_node(mem_proj, mem);
        }
      } else if (use->is_AddP()) {
        // raw memory addresses used only by the initialization
        _igvn.hash_delete(use);
        _igvn.subsume_node(use, C->top());
      } else  {
        assert(false, "only Initialize or AddP expected");
      }
      j -= (oc1 - _resproj->outcnt());
    }
  }
  if (_fallthroughcatchproj != NULL) {
    _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
  }
  if (_memproj_fallthrough != NULL) {
    _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
  }
  if (_memproj_catchall != NULL) {
    _igvn.replace_node(_memproj_catchall, C->top());
  }
  if (_ioproj_fallthrough != NULL) {
    _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
  }
  if (_ioproj_catchall != NULL) {
    _igvn.replace_node(_ioproj_catchall, C->top());
  }
  if (_catchallcatchproj != NULL) {
    _igvn.replace_node(_catchallcatchproj, C->top());
  }
}

bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {

  if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
    return false;
  }

  extract_call_projections(alloc);

  GrowableArray <SafePointNode *> safepoints;
  if (!can_eliminate_allocation(alloc, safepoints)) {
    return false;
  }

  if (!scalar_replacement(alloc, safepoints)) {
    return false;
  }

  process_users_of_allocation(alloc);

#ifndef PRODUCT
if (PrintEliminateAllocations) {
  if (alloc->is_AllocateArray())
    tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
  else
    tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
}
#endif

  return true;
}

D
duke 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

//---------------------------set_eden_pointers-------------------------
void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
  if (UseTLAB) {                // Private allocation: load from TLS
    Node* thread = transform_later(new (C, 1) ThreadLocalNode());
    int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
    int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
    eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
    eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
  } else {                      // Shared allocation: load from globals
    CollectedHeap* ch = Universe::heap();
    address top_adr = (address)ch->top_addr();
    address end_adr = (address)ch->end_addr();
    eden_top_adr = makecon(TypeRawPtr::make(top_adr));
    eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
  }
}


Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
  Node* adr = basic_plus_adr(base, offset);
  const TypePtr* adr_type = TypeRawPtr::BOTTOM;
858
  Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
D
duke 已提交
859 860 861 862 863 864 865
  transform_later(value);
  return value;
}


Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
  Node* adr = basic_plus_adr(base, offset);
866
  mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
D
duke 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
  transform_later(mem);
  return mem;
}

//=============================================================================
//
//                              A L L O C A T I O N
//
// Allocation attempts to be fast in the case of frequent small objects.
// It breaks down like this:
//
// 1) Size in doublewords is computed.  This is a constant for objects and
// variable for most arrays.  Doubleword units are used to avoid size
// overflow of huge doubleword arrays.  We need doublewords in the end for
// rounding.
//
// 2) Size is checked for being 'too large'.  Too-large allocations will go
// the slow path into the VM.  The slow path can throw any required
// exceptions, and does all the special checks for very large arrays.  The
// size test can constant-fold away for objects.  For objects with
// finalizers it constant-folds the otherway: you always go slow with
// finalizers.
//
// 3) If NOT using TLABs, this is the contended loop-back point.
// Load-Locked the heap top.  If using TLABs normal-load the heap top.
//
// 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
// NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
// "size*8" we always enter the VM, where "largish" is a constant picked small
// enough that there's always space between the eden max and 4Gig (old space is
// there so it's quite large) and large enough that the cost of entering the VM
// is dwarfed by the cost to initialize the space.
//
// 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
// down.  If contended, repeat at step 3.  If using TLABs normal-store
// adjusted heap top back down; there is no contention.
//
// 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
// fields.
//
// 7) Merge with the slow-path; cast the raw memory pointer to the correct
// oop flavor.
//
//=============================================================================
// FastAllocateSizeLimit value is in DOUBLEWORDS.
// Allocations bigger than this always go the slow route.
// This value must be small enough that allocation attempts that need to
// trigger exceptions go the slow route.  Also, it must be small enough so
// that heap_top + size_in_bytes does not wrap around the 4Gig limit.
//=============================================================================j//
// %%% Here is an old comment from parseHelper.cpp; is it outdated?
// The allocator will coalesce int->oop copies away.  See comment in
// coalesce.cpp about how this works.  It depends critically on the exact
// code shape produced here, so if you are changing this code shape
// make sure the GC info for the heap-top is correct in and around the
// slow-path call.
//

void PhaseMacroExpand::expand_allocate_common(
            AllocateNode* alloc, // allocation node to be expanded
            Node* length,  // array length for an array allocation
            const TypeFunc* slow_call_type, // Type of slow call
            address slow_call_address  // Address of slow call
    )
{

  Node* ctrl = alloc->in(TypeFunc::Control);
  Node* mem  = alloc->in(TypeFunc::Memory);
  Node* i_o  = alloc->in(TypeFunc::I_O);
  Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
  Node* klass_node        = alloc->in(AllocateNode::KlassNode);
  Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);

940 941 942 943 944 945 946
  // With escape analysis, the entire memory state was needed to be able to
  // eliminate the allocation.  Since the allocations cannot be eliminated,
  // optimize it to the raw slice.
  if (mem->is_MergeMem()) {
    mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
  }

D
duke 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
  Node* eden_top_adr;
  Node* eden_end_adr;
  set_eden_pointers(eden_top_adr, eden_end_adr);

  uint raw_idx = C->get_alias_index(TypeRawPtr::BOTTOM);
  assert(ctrl != NULL, "must have control");

  // Load Eden::end.  Loop invariant and hoisted.
  //
  // Note: We set the control input on "eden_end" and "old_eden_top" when using
  //       a TLAB to work around a bug where these values were being moved across
  //       a safepoint.  These are not oops, so they cannot be include in the oop
  //       map, but the can be changed by a GC.   The proper way to fix this would
  //       be to set the raw memory state when generating a  SafepointNode.  However
  //       this will require extensive changes to the loop optimization in order to
  //       prevent a degradation of the optimization.
  //       See comment in memnode.hpp, around line 227 in class LoadPNode.
  Node* eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);

  // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
  // they will not be used if "always_slow" is set
  enum { slow_result_path = 1, fast_result_path = 2 };
  Node *result_region;
  Node *result_phi_rawmem;
  Node *result_phi_rawoop;
  Node *result_phi_i_o;

  // The initial slow comparison is a size check, the comparison
  // we want to do is a BoolTest::gt
  bool always_slow = false;
  int tv = _igvn.find_int_con(initial_slow_test, -1);
  if (tv >= 0) {
    always_slow = (tv == 1);
    initial_slow_test = NULL;
  } else {
    initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
  }

  if (DTraceAllocProbes) {
    // Force slow-path allocation
    always_slow = true;
    initial_slow_test = NULL;
  }

  enum { too_big_or_final_path = 1, need_gc_path = 2 };
  Node *slow_region = NULL;
  Node *toobig_false = ctrl;

  assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
  // generate the initial test if necessary
  if (initial_slow_test != NULL ) {
    slow_region = new (C, 3) RegionNode(3);

    // Now make the initial failure test.  Usually a too-big test but
    // might be a TRUE for finalizers or a fancy class check for
    // newInstance0.
    IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
    transform_later(toobig_iff);
    // Plug the failing-too-big test into the slow-path region
    Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
    transform_later(toobig_true);
    slow_region    ->init_req( too_big_or_final_path, toobig_true );
    toobig_false = new (C, 1) IfFalseNode( toobig_iff );
    transform_later(toobig_false);
  } else {         // No initial test, just fall into next case
    toobig_false = ctrl;
    debug_only(slow_region = NodeSentinel);
  }

  Node *slow_mem = mem;  // save the current memory state for slow path
  // generate the fast allocation code unless we know that the initial test will always go slow
  if (!always_slow) {
    // allocate the Region and Phi nodes for the result
    result_region = new (C, 3) RegionNode(3);
    result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
    result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
    result_phi_i_o    = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch

    // We need a Region for the loop-back contended case.
    enum { fall_in_path = 1, contended_loopback_path = 2 };
    Node *contended_region;
    Node *contended_phi_rawmem;
    if( UseTLAB ) {
      contended_region = toobig_false;
      contended_phi_rawmem = mem;
    } else {
      contended_region = new (C, 3) RegionNode(3);
      contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
      // Now handle the passing-too-big test.  We fall into the contended
      // loop-back merge point.
      contended_region    ->init_req( fall_in_path, toobig_false );
      contended_phi_rawmem->init_req( fall_in_path, mem );
      transform_later(contended_region);
      transform_later(contended_phi_rawmem);
    }

    // Load(-locked) the heap top.
    // See note above concerning the control input when using a TLAB
    Node *old_eden_top = UseTLAB
      ? new (C, 3) LoadPNode     ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
      : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );

    transform_later(old_eden_top);
    // Add to heap top to get a new heap top
    Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
    transform_later(new_eden_top);
    // Check for needing a GC; compare against heap end
    Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
    transform_later(needgc_cmp);
    Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
    transform_later(needgc_bol);
    IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
    transform_later(needgc_iff);

    // Plug the failing-heap-space-need-gc test into the slow-path region
    Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
    transform_later(needgc_true);
    if( initial_slow_test ) {
      slow_region    ->init_req( need_gc_path, needgc_true );
      // This completes all paths into the slow merge point
      transform_later(slow_region);
    } else {                      // No initial slow path needed!
      // Just fall from the need-GC path straight into the VM call.
      slow_region    = needgc_true;
    }
    // No need for a GC.  Setup for the Store-Conditional
    Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
    transform_later(needgc_false);

    // Grab regular I/O before optional prefetch may change it.
    // Slow-path does no I/O so just set it to the original I/O.
    result_phi_i_o->init_req( slow_result_path, i_o );

    i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
                              old_eden_top, new_eden_top, length);

    // Store (-conditional) the modified eden top back down.
    // StorePConditional produces flags for a test PLUS a modified raw
    // memory state.
    Node *store_eden_top;
    Node *fast_oop_ctrl;
    if( UseTLAB ) {
      store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
      transform_later(store_eden_top);
      fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
    } else {
      store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
      transform_later(store_eden_top);
      Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
      transform_later(contention_check);
      store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
      transform_later(store_eden_top);

      // If not using TLABs, check to see if there was contention.
      IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
      transform_later(contention_iff);
      Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
      transform_later(contention_true);
      // If contention, loopback and try again.
      contended_region->init_req( contended_loopback_path, contention_true );
      contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );

      // Fast-path succeeded with no contention!
      Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
      transform_later(contention_false);
      fast_oop_ctrl = contention_false;
    }

    // Rename successful fast-path variables to make meaning more obvious
    Node* fast_oop        = old_eden_top;
    Node* fast_oop_rawmem = store_eden_top;
    fast_oop_rawmem = initialize_object(alloc,
                                        fast_oop_ctrl, fast_oop_rawmem, fast_oop,
                                        klass_node, length, size_in_bytes);

    if (ExtendedDTraceProbes) {
      // Slow-path call
      int size = TypeFunc::Parms + 2;
      CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
                                                      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
                                                      "dtrace_object_alloc",
                                                      TypeRawPtr::BOTTOM);

      // Get base of thread-local storage area
      Node* thread = new (C, 1) ThreadLocalNode();
      transform_later(thread);

      call->init_req(TypeFunc::Parms+0, thread);
      call->init_req(TypeFunc::Parms+1, fast_oop);
      call->init_req( TypeFunc::Control, fast_oop_ctrl );
      call->init_req( TypeFunc::I_O    , top() )        ;   // does no i/o
      call->init_req( TypeFunc::Memory , fast_oop_rawmem );
      call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
      call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
      transform_later(call);
      fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
      transform_later(fast_oop_ctrl);
      fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
      transform_later(fast_oop_rawmem);
    }

    // Plug in the successful fast-path into the result merge point
    result_region    ->init_req( fast_result_path, fast_oop_ctrl );
    result_phi_rawoop->init_req( fast_result_path, fast_oop );
    result_phi_i_o   ->init_req( fast_result_path, i_o );
    result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
  } else {
    slow_region = ctrl;
  }

  // Generate slow-path call
  CallNode *call = new (C, slow_call_type->domain()->cnt())
    CallStaticJavaNode(slow_call_type, slow_call_address,
                       OptoRuntime::stub_name(slow_call_address),
                       alloc->jvms()->bci(),
                       TypePtr::BOTTOM);
  call->init_req( TypeFunc::Control, slow_region );
  call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
  call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );

  call->init_req(TypeFunc::Parms+0, klass_node);
  if (length != NULL) {
    call->init_req(TypeFunc::Parms+1, length);
  }

  // Copy debug information and adjust JVMState information, then replace
  // allocate node with the call
  copy_call_debug_info((CallNode *) alloc,  call);
  if (!always_slow) {
    call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
  }
  _igvn.hash_delete(alloc);
  _igvn.subsume_node(alloc, call);
  transform_later(call);

  // Identify the output projections from the allocate node and
  // adjust any references to them.
  // The control and io projections look like:
  //
  //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
  //  Allocate                   Catch
  //        ^---Proj(io) <-------+   ^---CatchProj(io)
  //
  //  We are interested in the CatchProj nodes.
  //
  extract_call_projections(call);

  // An allocate node has separate memory projections for the uses on the control and i_o paths
  // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
  if (!always_slow && _memproj_fallthrough != NULL) {
    for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
      Node *use = _memproj_fallthrough->fast_out(i);
      _igvn.hash_delete(use);
      imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
      _igvn._worklist.push(use);
      // back up iterator
      --i;
    }
  }
  // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
  // we end up with a call that has only 1 memory projection
  if (_memproj_catchall != NULL ) {
    if (_memproj_fallthrough == NULL) {
      _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
      transform_later(_memproj_fallthrough);
    }
    for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
      Node *use = _memproj_catchall->fast_out(i);
      _igvn.hash_delete(use);
      imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
      _igvn._worklist.push(use);
      // back up iterator
      --i;
    }
  }

  mem = result_phi_rawmem;

  // An allocate node has separate i_o projections for the uses on the control and i_o paths
  // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
  if (_ioproj_fallthrough == NULL) {
    _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
    transform_later(_ioproj_fallthrough);
  } else if (!always_slow) {
    for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
      Node *use = _ioproj_fallthrough->fast_out(i);

      _igvn.hash_delete(use);
      imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
      _igvn._worklist.push(use);
      // back up iterator
      --i;
    }
  }
  // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
  // we end up with a call that has only 1 control projection
  if (_ioproj_catchall != NULL ) {
    for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
      Node *use = _ioproj_catchall->fast_out(i);
      _igvn.hash_delete(use);
      imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
      _igvn._worklist.push(use);
      // back up iterator
      --i;
    }
  }

  // if we generated only a slow call, we are done
  if (always_slow)
    return;


  if (_fallthroughcatchproj != NULL) {
    ctrl = _fallthroughcatchproj->clone();
    transform_later(ctrl);
    _igvn.hash_delete(_fallthroughcatchproj);
    _igvn.subsume_node(_fallthroughcatchproj, result_region);
  } else {
    ctrl = top();
  }
  Node *slow_result;
  if (_resproj == NULL) {
    // no uses of the allocation result
    slow_result = top();
  } else {
    slow_result = _resproj->clone();
    transform_later(slow_result);
    _igvn.hash_delete(_resproj);
    _igvn.subsume_node(_resproj, result_phi_rawoop);
  }

  // Plug slow-path into result merge point
  result_region    ->init_req( slow_result_path, ctrl );
  result_phi_rawoop->init_req( slow_result_path, slow_result);
  result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
  transform_later(result_region);
  transform_later(result_phi_rawoop);
  transform_later(result_phi_rawmem);
  transform_later(result_phi_i_o);
  // This completes all paths into the result merge point
}


// Helper for PhaseMacroExpand::expand_allocate_common.
// Initializes the newly-allocated storage.
Node*
PhaseMacroExpand::initialize_object(AllocateNode* alloc,
                                    Node* control, Node* rawmem, Node* object,
                                    Node* klass_node, Node* length,
                                    Node* size_in_bytes) {
  InitializeNode* init = alloc->initialization();
  // Store the klass & mark bits
  Node* mark_node = NULL;
  // For now only enable fast locking for non-array types
  if (UseBiasedLocking && (length == NULL)) {
    mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
  } else {
    mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
  }
  rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1309

D
duke 已提交
1310 1311 1312 1313 1314 1315 1316
  rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
  int header_size = alloc->minimum_header_size();  // conservatively small

  // Array length
  if (length != NULL) {         // Arrays need length field
    rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
    // conservatively small header size:
1317
    header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
D
duke 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
    ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
    if (k->is_array_klass())    // we know the exact header size in most cases:
      header_size = Klass::layout_helper_header_size(k->layout_helper());
  }

  // Clear the object body, if necessary.
  if (init == NULL) {
    // The init has somehow disappeared; be cautious and clear everything.
    //
    // This can happen if a node is allocated but an uncommon trap occurs
    // immediately.  In this case, the Initialize gets associated with the
    // trap, and may be placed in a different (outer) loop, if the Allocate
    // is in a loop.  If (this is rare) the inner loop gets unrolled, then
    // there can be two Allocates to one Initialize.  The answer in all these
    // edge cases is safety first.  It is always safe to clear immediately
    // within an Allocate, and then (maybe or maybe not) clear some more later.
    if (!ZeroTLAB)
      rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
                                            header_size, size_in_bytes,
                                            &_igvn);
  } else {
    if (!init->is_complete()) {
      // Try to win by zeroing only what the init does not store.
      // We can also try to do some peephole optimizations,
      // such as combining some adjacent subword stores.
      rawmem = init->complete_stores(control, rawmem, object,
                                     header_size, size_in_bytes, &_igvn);
    }
    // We have no more use for this link, since the AllocateNode goes away:
    init->set_req(InitializeNode::RawAddress, top());
    // (If we keep the link, it just confuses the register allocator,
    // who thinks he sees a real use of the address by the membar.)
  }

  return rawmem;
}

// Generate prefetch instructions for next allocations.
Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
                                        Node*& contended_phi_rawmem,
                                        Node* old_eden_top, Node* new_eden_top,
                                        Node* length) {
   if( UseTLAB && AllocatePrefetchStyle == 2 ) {
      // Generate prefetch allocation with watermark check.
      // As an allocation hits the watermark, we will prefetch starting
      // at a "distance" away from watermark.
      enum { fall_in_path = 1, pf_path = 2 };

      Node *pf_region = new (C, 3) RegionNode(3);
      Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
                                                TypeRawPtr::BOTTOM );
      // I/O is used for Prefetch
      Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );

      Node *thread = new (C, 1) ThreadLocalNode();
      transform_later(thread);

      Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
                   _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
      transform_later(eden_pf_adr);

      Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
                                   contended_phi_rawmem, eden_pf_adr,
                                   TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
      transform_later(old_pf_wm);

      // check against new_eden_top
      Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
      transform_later(need_pf_cmp);
      Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
      transform_later(need_pf_bol);
      IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
                                       PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
      transform_later(need_pf_iff);

      // true node, add prefetchdistance
      Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
      transform_later(need_pf_true);

      Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
      transform_later(need_pf_false);

      Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
                                    _igvn.MakeConX(AllocatePrefetchDistance) );
      transform_later(new_pf_wmt );
      new_pf_wmt->set_req(0, need_pf_true);

      Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
                                       contended_phi_rawmem, eden_pf_adr,
                                       TypeRawPtr::BOTTOM, new_pf_wmt );
      transform_later(store_new_wmt);

      // adding prefetches
      pf_phi_abio->init_req( fall_in_path, i_o );

      Node *prefetch_adr;
      Node *prefetch;
      uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
      uint step_size = AllocatePrefetchStepSize;
      uint distance = 0;

      for ( uint i = 0; i < lines; i++ ) {
        prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
                                            _igvn.MakeConX(distance) );
        transform_later(prefetch_adr);
        prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
        transform_later(prefetch);
        distance += step_size;
        i_o = prefetch;
      }
      pf_phi_abio->set_req( pf_path, i_o );

      pf_region->init_req( fall_in_path, need_pf_false );
      pf_region->init_req( pf_path, need_pf_true );

      pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
      pf_phi_rawmem->init_req( pf_path, store_new_wmt );

      transform_later(pf_region);
      transform_later(pf_phi_rawmem);
      transform_later(pf_phi_abio);

      needgc_false = pf_region;
      contended_phi_rawmem = pf_phi_rawmem;
      i_o = pf_phi_abio;
   } else if( AllocatePrefetchStyle > 0 ) {
      // Insert a prefetch for each allocation only on the fast-path
      Node *prefetch_adr;
      Node *prefetch;
      // Generate several prefetch instructions only for arrays.
      uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
      uint step_size = AllocatePrefetchStepSize;
      uint distance = AllocatePrefetchDistance;
      for ( uint i = 0; i < lines; i++ ) {
        prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
                                            _igvn.MakeConX(distance) );
        transform_later(prefetch_adr);
        prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
        // Do not let it float too high, since if eden_top == eden_end,
        // both might be null.
        if( i == 0 ) { // Set control for first prefetch, next follows it
          prefetch->init_req(0, needgc_false);
        }
        transform_later(prefetch);
        distance += step_size;
        i_o = prefetch;
      }
   }
   return i_o;
}


void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
  expand_allocate_common(alloc, NULL,
                         OptoRuntime::new_instance_Type(),
                         OptoRuntime::new_instance_Java());
}

void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
  Node* length = alloc->in(AllocateNode::ALength);
  expand_allocate_common(alloc, length,
                         OptoRuntime::new_array_Type(),
                         OptoRuntime::new_array_Java());
}


// we have determined that this lock/unlock can be eliminated, we simply
// eliminate the node without expanding it.
//
// Note:  The membar's associated with the lock/unlock are currently not
//        eliminated.  This should be investigated as a future enhancement.
//
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {

  if (!alock->is_eliminated()) {
    return false;
  }
  // Mark the box lock as eliminated if all correspondent locks are eliminated
  // to construct correct debug info.
  BoxLockNode* box = alock->box_node()->as_BoxLock();
  if (!box->is_eliminated()) {
    bool eliminate = true;
    for (DUIterator_Fast imax, i = box->fast_outs(imax); i < imax; i++) {
      Node *lck = box->fast_out(i);
      if (lck->is_Lock() && !lck->as_AbstractLock()->is_eliminated()) {
        eliminate = false;
        break;
      }
    }
    if (eliminate)
      box->set_eliminated();
  }

  #ifndef PRODUCT
  if (PrintEliminateLocks) {
    if (alock->is_Lock()) {
      tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
    } else {
      tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
    }
  }
  #endif

  Node* mem  = alock->in(TypeFunc::Memory);
  Node* ctrl = alock->in(TypeFunc::Control);

  extract_call_projections(alock);
  // There are 2 projections from the lock.  The lock node will
  // be deleted when its last use is subsumed below.
  assert(alock->outcnt() == 2 &&
         _fallthroughproj != NULL &&
         _memproj_fallthrough != NULL,
         "Unexpected projections from Lock/Unlock");

  Node* fallthroughproj = _fallthroughproj;
  Node* memproj_fallthrough = _memproj_fallthrough;
D
duke 已提交
1534 1535 1536 1537 1538

  // The memory projection from a lock/unlock is RawMem
  // The input to a Lock is merged memory, so extract its RawMem input
  // (unless the MergeMem has been optimized away.)
  if (alock->is_Lock()) {
1539 1540 1541 1542 1543 1544 1545 1546 1547
    // Seach for MemBarAcquire node and delete it also.
    MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
    assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
    Node* ctrlproj = membar->proj_out(TypeFunc::Control);
    Node* memproj = membar->proj_out(TypeFunc::Memory);
    _igvn.hash_delete(ctrlproj);
    _igvn.subsume_node(ctrlproj, fallthroughproj);
    _igvn.hash_delete(memproj);
    _igvn.subsume_node(memproj, memproj_fallthrough);
D
duke 已提交
1548 1549
  }

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
  // Seach for MemBarRelease node and delete it also.
  if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
      ctrl->in(0)->is_MemBar()) {
    MemBarNode* membar = ctrl->in(0)->as_MemBar();
    assert(membar->Opcode() == Op_MemBarRelease &&
           mem->is_Proj() && membar == mem->in(0), "");
    _igvn.hash_delete(fallthroughproj);
    _igvn.subsume_node(fallthroughproj, ctrl);
    _igvn.hash_delete(memproj_fallthrough);
    _igvn.subsume_node(memproj_fallthrough, mem);
    fallthroughproj = ctrl;
    memproj_fallthrough = mem;
    ctrl = membar->in(TypeFunc::Control);
    mem  = membar->in(TypeFunc::Memory);
  }

  _igvn.hash_delete(fallthroughproj);
  _igvn.subsume_node(fallthroughproj, ctrl);
  _igvn.hash_delete(memproj_fallthrough);
  _igvn.subsume_node(memproj_fallthrough, mem);
  return true;
D
duke 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
}


//------------------------------expand_lock_node----------------------
void PhaseMacroExpand::expand_lock_node(LockNode *lock) {

  Node* ctrl = lock->in(TypeFunc::Control);
  Node* mem = lock->in(TypeFunc::Memory);
  Node* obj = lock->obj_node();
  Node* box = lock->box_node();
1581
  Node* flock = lock->fastlock_node();
D
duke 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

  // Make the merge point
  Node *region = new (C, 3) RegionNode(3);

  Node *bol = transform_later(new (C, 2) BoolNode(flock,BoolTest::ne));
  Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
  // Optimize test; set region slot 2
  Node *slow_path = opt_iff(region,iff);

  // Make slow path call
  CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );

  extract_call_projections(call);

  // Slow path can only throw asynchronous exceptions, which are always
  // de-opted.  So the compiler thinks the slow-call can never throw an
  // exception.  If it DOES throw an exception we would need the debug
  // info removed first (since if it throws there is no monitor).
  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");

  // Capture slow path
  // disconnect fall-through projection from call and create a new one
  // hook up users of fall-through projection to region
  Node *slow_ctrl = _fallthroughproj->clone();
  transform_later(slow_ctrl);
  _igvn.hash_delete(_fallthroughproj);
  _fallthroughproj->disconnect_inputs(NULL);
  region->init_req(1, slow_ctrl);
  // region inputs are now complete
  transform_later(region);
  _igvn.subsume_node(_fallthroughproj, region);

  // create a Phi for the memory state
  Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  Node *memproj = transform_later( new (C, 1) ProjNode(call, TypeFunc::Memory) );
  mem_phi->init_req(1, memproj );
  mem_phi->init_req(2, mem);
  transform_later(mem_phi);
    _igvn.hash_delete(_memproj_fallthrough);
  _igvn.subsume_node(_memproj_fallthrough, mem_phi);


}

//------------------------------expand_unlock_node----------------------
void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {

1630
  Node* ctrl = unlock->in(TypeFunc::Control);
D
duke 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
  Node* mem = unlock->in(TypeFunc::Memory);
  Node* obj = unlock->obj_node();
  Node* box = unlock->box_node();

  // No need for a null check on unlock

  // Make the merge point
  RegionNode *region = new (C, 3) RegionNode(3);

  FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
  funlock = transform_later( funlock )->as_FastUnlock();
  Node *bol = transform_later(new (C, 2) BoolNode(funlock,BoolTest::ne));
  Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
  // Optimize test; set region slot 2
  Node *slow_path = opt_iff(region,iff);

  CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );

  extract_call_projections(call);

  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");

  // No exceptions for unlocking
  // Capture slow path
  // disconnect fall-through projection from call and create a new one
  // hook up users of fall-through projection to region
  Node *slow_ctrl = _fallthroughproj->clone();
  transform_later(slow_ctrl);
  _igvn.hash_delete(_fallthroughproj);
  _fallthroughproj->disconnect_inputs(NULL);
  region->init_req(1, slow_ctrl);
  // region inputs are now complete
  transform_later(region);
  _igvn.subsume_node(_fallthroughproj, region);

  // create a Phi for the memory state
  Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  mem_phi->init_req(1, memproj );
  mem_phi->init_req(2, mem);
  transform_later(mem_phi);
    _igvn.hash_delete(_memproj_fallthrough);
  _igvn.subsume_node(_memproj_fallthrough, mem_phi);


}

//------------------------------expand_macro_nodes----------------------
//  Returns true if a failure occurred.
bool PhaseMacroExpand::expand_macro_nodes() {
  if (C->macro_count() == 0)
    return false;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
  // attempt to eliminate allocations
  bool progress = true;
  while (progress) {
    progress = false;
    for (int i = C->macro_count(); i > 0; i--) {
      Node * n = C->macro_node(i-1);
      bool success = false;
      debug_only(int old_macro_count = C->macro_count(););
      switch (n->class_id()) {
      case Node::Class_Allocate:
      case Node::Class_AllocateArray:
        success = eliminate_allocate_node(n->as_Allocate());
        break;
      case Node::Class_Lock:
      case Node::Class_Unlock:
        success = eliminate_locking_node(n->as_AbstractLock());
        break;
      default:
1702 1703 1704 1705 1706 1707 1708 1709
        if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
          _igvn.add_users_to_worklist(n);
          _igvn.hash_delete(n);
          _igvn.subsume_node(n, n->in(1));
          success = true;
        } else {
          assert(false, "unknown node type in macro list");
        }
1710 1711 1712 1713 1714 1715 1716 1717
      }
      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
      progress = progress || success;
    }
  }
  // Make sure expansion will not cause node limit to be exceeded.
  // Worst case is a macro node gets expanded into about 50 nodes.
  // Allow 50% more for optimization.
D
duke 已提交
1718 1719
  if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
    return true;
1720

D
duke 已提交
1721 1722 1723
  // expand "macro" nodes
  // nodes are removed from the macro list as they are processed
  while (C->macro_count() > 0) {
1724 1725
    int macro_count = C->macro_count();
    Node * n = C->macro_node(macro_count-1);
D
duke 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
    assert(n->is_macro(), "only macro nodes expected here");
    if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
      // node is unreachable, so don't try to expand it
      C->remove_macro_node(n);
      continue;
    }
    switch (n->class_id()) {
    case Node::Class_Allocate:
      expand_allocate(n->as_Allocate());
      break;
    case Node::Class_AllocateArray:
      expand_allocate_array(n->as_AllocateArray());
      break;
    case Node::Class_Lock:
      expand_lock_node(n->as_Lock());
      break;
    case Node::Class_Unlock:
      expand_unlock_node(n->as_Unlock());
      break;
    default:
      assert(false, "unknown node type in macro list");
    }
1748
    assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
D
duke 已提交
1749 1750
    if (C->failing())  return true;
  }
1751 1752

  _igvn.set_delay_transform(false);
D
duke 已提交
1753 1754 1755
  _igvn.optimize();
  return false;
}