dependencies.hpp 21.4 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
/*
 * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

//** Dependencies represent assertions (approximate invariants) within
// the class hierarchy.  An example is an assertion that a given
// method is not overridden; another example is that a type has only
// one concrete subtype.  Compiled code which relies on such
// assertions must be discarded if they are overturned by changes in
// the class hierarchy.  We can think of these assertions as
// approximate invariants, because we expect them to be overturned
// very infrequently.  We are willing to perform expensive recovery
// operations when they are overturned.  The benefit, of course, is
// performing optimistic optimizations (!) on the object code.
//
// Changes in the class hierarchy due to dynamic linking or
// class evolution can violate dependencies.  There is enough
// indexing between classes and nmethods to make dependency
// checking reasonably efficient.

class ciEnv;
class nmethod;
class OopRecorder;
class xmlStream;
class CompileLog;
class DepChange;
class No_Safepoint_Verifier;

class Dependencies: public ResourceObj {
 public:
  // Note: In the comments on dependency types, most uses of the terms
  // subtype and supertype are used in a "non-strict" or "inclusive"
  // sense, and are starred to remind the reader of this fact.
  // Strict uses of the terms use the word "proper".
  //
  // Specifically, every class is its own subtype* and supertype*.
  // (This trick is easier than continually saying things like "Y is a
  // subtype of X or X itself".)
  //
  // Sometimes we write X > Y to mean X is a proper supertype of Y.
  // The notation X > {Y, Z} means X has proper subtypes Y, Z.
  // The notation X.m > Y means that Y inherits m from X, while
  // X.m > Y.m means Y overrides X.m.  A star denotes abstractness,
  // as *I > A, meaning (abstract) interface I is a super type of A,
  // or A.*m > B.m, meaning B.m implements abstract method A.m.
  //
  // In this module, the terms "subtype" and "supertype" refer to
  // Java-level reference type conversions, as detected by
  // "instanceof" and performed by "checkcast" operations.  The method
  // Klass::is_subtype_of tests these relations.  Note that "subtype"
  // is richer than "subclass" (as tested by Klass::is_subclass_of),
  // since it takes account of relations involving interface and array
  // types.
  //
  // To avoid needless complexity, dependencies involving array types
  // are not accepted.  If you need to make an assertion about an
  // array type, make the assertion about its corresponding element
  // types.  Any assertion that might change about an array type can
  // be converted to an assertion about its element type.
  //
  // Most dependencies are evaluated over a "context type" CX, which
  // stands for the set Subtypes(CX) of every Java type that is a subtype*
  // of CX.  When the system loads a new class or interface N, it is
  // responsible for re-evaluating changed dependencies whose context
  // type now includes N, that is, all super types of N.
  //
  enum DepType {
    end_marker = 0,

    // An 'evol' dependency simply notes that the contents of the
    // method were used.  If it evolves (is replaced), the nmethod
    // must be recompiled.  No other dependencies are implied.
    evol_method,
    FIRST_TYPE = evol_method,

    // A context type CX is a leaf it if has no proper subtype.
    leaf_type,

    // An abstract class CX has exactly one concrete subtype CC.
    abstract_with_unique_concrete_subtype,

    // The type CX is purely abstract, with no concrete subtype* at all.
    abstract_with_no_concrete_subtype,

    // The concrete CX is free of concrete proper subtypes.
    concrete_with_no_concrete_subtype,

    // Given a method M1 and a context class CX, the set MM(CX, M1) of
    // "concrete matching methods" in CX of M1 is the set of every
    // concrete M2 for which it is possible to create an invokevirtual
    // or invokeinterface call site that can reach either M1 or M2.
    // That is, M1 and M2 share a name, signature, and vtable index.
    // We wish to notice when the set MM(CX, M1) is just {M1}, or
    // perhaps a set of two {M1,M2}, and issue dependencies on this.

    // The set MM(CX, M1) can be computed by starting with any matching
    // concrete M2 that is inherited into CX, and then walking the
    // subtypes* of CX looking for concrete definitions.

    // The parameters to this dependency are the method M1 and the
    // context class CX.  M1 must be either inherited in CX or defined
    // in a subtype* of CX.  It asserts that MM(CX, M1) is no greater
    // than {M1}.
    unique_concrete_method,       // one unique concrete method under CX

    // An "exclusive" assertion concerns two methods or subtypes, and
    // declares that there are at most two (or perhaps later N>2)
    // specific items that jointly satisfy the restriction.
    // We list all items explicitly rather than just giving their
    // count, for robustness in the face of complex schema changes.

    // A context class CX (which may be either abstract or concrete)
    // has two exclusive concrete subtypes* C1, C2 if every concrete
    // subtype* of CX is either C1 or C2.  Note that if neither C1 or C2
    // are equal to CX, then CX itself must be abstract.  But it is
    // also possible (for example) that C1 is CX (a concrete class)
    // and C2 is a proper subtype of C1.
    abstract_with_exclusive_concrete_subtypes_2,

    // This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
    exclusive_concrete_methods_2,

    // This dependency asserts that no instances of class or it's
    // subclasses require finalization registration.
    no_finalizable_subclasses,

    TYPE_LIMIT
  };
  enum {
    LG2_TYPE_LIMIT = 4,  // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))

    // handy categorizations of dependency types:
    all_types      = ((1<<TYPE_LIMIT)-1) & ((-1)<<FIRST_TYPE),
    non_ctxk_types = (1<<evol_method),
    ctxk_types     = all_types & ~non_ctxk_types,

    max_arg_count = 3,   // current maximum number of arguments (incl. ctxk)

    // A "context type" is a class or interface that
    // provides context for evaluating a dependency.
    // When present, it is one of the arguments (dep_context_arg).
    //
    // If a dependency does not have a context type, there is a
    // default context, depending on the type of the dependency.
    // This bit signals that a default context has been compressed away.
    default_context_type_bit = (1<<LG2_TYPE_LIMIT)
  };

  static const char* dep_name(DepType dept);
  static int         dep_args(DepType dept);
  static int  dep_context_arg(DepType dept) {
    return dept_in_mask(dept, ctxk_types)? 0: -1;
  }

 private:
  // State for writing a new set of dependencies:
  GrowableArray<int>*       _dep_seen;  // (seen[h->ident] & (1<<dept))
  GrowableArray<ciObject*>* _deps[TYPE_LIMIT];

  static const char* _dep_name[TYPE_LIMIT];
  static int         _dep_args[TYPE_LIMIT];

  static bool dept_in_mask(DepType dept, int mask) {
    return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
  }

  bool note_dep_seen(int dept, ciObject* x) {
    assert(dept < BitsPerInt, "oob");
    int x_id = x->ident();
    assert(_dep_seen != NULL, "deps must be writable");
    int seen = _dep_seen->at_grow(x_id, 0);
    _dep_seen->at_put(x_id, seen | (1<<dept));
    // return true if we've already seen dept/x
    return (seen & (1<<dept)) != 0;
  }

  bool maybe_merge_ctxk(GrowableArray<ciObject*>* deps,
                        int ctxk_i, ciKlass* ctxk);

  void sort_all_deps();
  size_t estimate_size_in_bytes();

  // Initialize _deps, etc.
  void initialize(ciEnv* env);

  // State for making a new set of dependencies:
  OopRecorder* _oop_recorder;

  // Logging support
  CompileLog* _log;

  address  _content_bytes;  // everything but the oop references, encoded
  size_t   _size_in_bytes;

 public:
  // Make a new empty dependencies set.
  Dependencies(ciEnv* env) {
    initialize(env);
  }

 private:
  // Check for a valid context type.
  // Enforce the restriction against array types.
  static void check_ctxk(ciKlass* ctxk) {
    assert(ctxk->is_instance_klass(), "java types only");
  }
  static void check_ctxk_concrete(ciKlass* ctxk) {
    assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
  }
  static void check_ctxk_abstract(ciKlass* ctxk) {
    check_ctxk(ctxk);
    assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
  }

  void assert_common_1(DepType dept, ciObject* x);
  void assert_common_2(DepType dept, ciKlass* ctxk, ciObject* x);
  void assert_common_3(DepType dept, ciKlass* ctxk, ciObject* x, ciObject* x2);

 public:
  // Adding assertions to a new dependency set at compile time:
  void assert_evol_method(ciMethod* m);
  void assert_leaf_type(ciKlass* ctxk);
  void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
  void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk);
  void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk);
  void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
  void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2);
  void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2);
  void assert_has_no_finalizable_subclasses(ciKlass* ctxk);

  // Define whether a given method or type is concrete.
  // These methods define the term "concrete" as used in this module.
  // For this module, an "abstract" class is one which is non-concrete.
  //
  // Future optimizations may allow some classes to remain
  // non-concrete until their first instantiation, and allow some
  // methods to remain non-concrete until their first invocation.
  // In that case, there would be a middle ground between concrete
  // and abstract (as defined by the Java language and VM).
  static bool is_concrete_klass(klassOop k);    // k is instantiable
  static bool is_concrete_method(methodOop m);  // m is invocable
  static Klass* find_finalizable_subclass(Klass* k);

  // These versions of the concreteness queries work through the CI.
  // The CI versions are allowed to skew sometimes from the VM
  // (oop-based) versions.  The cost of such a difference is a
  // (safely) aborted compilation, or a deoptimization, or a missed
  // optimization opportunity.
  //
  // In order to prevent spurious assertions, query results must
  // remain stable within any single ciEnv instance.  (I.e., they must
  // not go back into the VM to get their value; they must cache the
  // bit in the CI, either eagerly or lazily.)
  static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
  static bool is_concrete_method(ciMethod* m);       // m appears invocable
  static bool has_finalizable_subclass(ciInstanceKlass* k);

  // As a general rule, it is OK to compile under the assumption that
  // a given type or method is concrete, even if it at some future
  // point becomes abstract.  So dependency checking is one-sided, in
  // that it permits supposedly concrete classes or methods to turn up
  // as really abstract.  (This shouldn't happen, except during class
  // evolution, but that's the logic of the checking.)  However, if a
  // supposedly abstract class or method suddenly becomes concrete, a
  // dependency on it must fail.

  // Checking old assertions at run-time (in the VM only):
  static klassOop check_evol_method(methodOop m);
  static klassOop check_leaf_type(klassOop ctxk);
  static klassOop check_abstract_with_unique_concrete_subtype(klassOop ctxk, klassOop conck,
                                                              DepChange* changes = NULL);
  static klassOop check_abstract_with_no_concrete_subtype(klassOop ctxk,
                                                          DepChange* changes = NULL);
  static klassOop check_concrete_with_no_concrete_subtype(klassOop ctxk,
                                                          DepChange* changes = NULL);
  static klassOop check_unique_concrete_method(klassOop ctxk, methodOop uniqm,
                                               DepChange* changes = NULL);
  static klassOop check_abstract_with_exclusive_concrete_subtypes(klassOop ctxk, klassOop k1, klassOop k2,
                                                                  DepChange* changes = NULL);
  static klassOop check_exclusive_concrete_methods(klassOop ctxk, methodOop m1, methodOop m2,
                                                   DepChange* changes = NULL);
  static klassOop check_has_no_finalizable_subclasses(klassOop ctxk,
                                                      DepChange* changes = NULL);
  // A returned klassOop is NULL if the dependency assertion is still
  // valid.  A non-NULL klassOop is a 'witness' to the assertion
  // failure, a point in the class hierarchy where the assertion has
  // been proven false.  For example, if check_leaf_type returns
  // non-NULL, the value is a subtype of the supposed leaf type.  This
  // witness value may be useful for logging the dependency failure.
  // Note that, when a dependency fails, there may be several possible
  // witnesses to the failure.  The value returned from the check_foo
  // method is chosen arbitrarily.

  // The 'changes' value, if non-null, requests a limited spot-check
  // near the indicated recent changes in the class hierarchy.
  // It is used by DepStream::spot_check_dependency_at.

  // Detecting possible new assertions:
  static klassOop  find_unique_concrete_subtype(klassOop ctxk);
  static methodOop find_unique_concrete_method(klassOop ctxk, methodOop m);
  static int       find_exclusive_concrete_subtypes(klassOop ctxk, int klen, klassOop k[]);
  static int       find_exclusive_concrete_methods(klassOop ctxk, int mlen, methodOop m[]);

  // Create the encoding which will be stored in an nmethod.
  void encode_content_bytes();

  address content_bytes() {
    assert(_content_bytes != NULL, "encode it first");
    return _content_bytes;
  }
  size_t size_in_bytes() {
    assert(_content_bytes != NULL, "encode it first");
    return _size_in_bytes;
  }

  OopRecorder* oop_recorder() { return _oop_recorder; }
  CompileLog*  log()          { return _log; }

  void copy_to(nmethod* nm);

  void log_all_dependencies();
  void log_dependency(DepType dept, int nargs, ciObject* args[]) {
    write_dependency_to(log(), dept, nargs, args);
  }
  void log_dependency(DepType dept,
                      ciObject* x0,
                      ciObject* x1 = NULL,
                      ciObject* x2 = NULL) {
    if (log() == NULL)  return;
    ciObject* args[max_arg_count];
    args[0] = x0;
    args[1] = x1;
    args[2] = x2;
    assert(2 < max_arg_count, "");
    log_dependency(dept, dep_args(dept), args);
  }

  static void write_dependency_to(CompileLog* log,
                                  DepType dept,
                                  int nargs, ciObject* args[],
                                  klassOop witness = NULL);
  static void write_dependency_to(CompileLog* log,
                                  DepType dept,
                                  int nargs, oop args[],
                                  klassOop witness = NULL);
  static void write_dependency_to(xmlStream* xtty,
                                  DepType dept,
                                  int nargs, oop args[],
                                  klassOop witness = NULL);
  static void print_dependency(DepType dept,
                               int nargs, oop args[],
                               klassOop witness = NULL);

 private:
  // helper for encoding common context types as zero:
  static ciKlass* ctxk_encoded_as_null(DepType dept, ciObject* x);

  static klassOop ctxk_encoded_as_null(DepType dept, oop x);

 public:
  // Use this to iterate over an nmethod's dependency set.
  // Works on new and old dependency sets.
  // Usage:
  //
  // ;
  // Dependencies::DepType dept;
  // for (Dependencies::DepStream deps(nm); deps.next(); ) {
  //   ...
  // }
  //
  // The caller must be in the VM, since oops are not wrapped in handles.
  class DepStream {
  private:
    nmethod*              _code;   // null if in a compiler thread
    Dependencies*         _deps;   // null if not in a compiler thread
    CompressedReadStream  _bytes;
#ifdef ASSERT
    size_t                _byte_limit;
#endif

    // iteration variables:
    DepType               _type;
    int                   _xi[max_arg_count+1];

    void initial_asserts(size_t byte_limit) NOT_DEBUG({});

    inline oop recorded_oop_at(int i);
        // => _code? _code->oop_at(i): *_deps->_oop_recorder->handle_at(i)

    klassOop check_dependency_impl(DepChange* changes);

  public:
    DepStream(Dependencies* deps)
      : _deps(deps),
        _code(NULL),
        _bytes(deps->content_bytes())
    {
      initial_asserts(deps->size_in_bytes());
    }
    DepStream(nmethod* code)
      : _deps(NULL),
        _code(code),
        _bytes(code->dependencies_begin())
    {
      initial_asserts(code->dependencies_size());
    }

    bool next();

    DepType type()               { return _type; }
    int argument_count()         { return dep_args(type()); }
    int argument_index(int i)    { assert(0 <= i && i < argument_count(), "oob");
                                   return _xi[i]; }
    oop argument(int i);         // => recorded_oop_at(argument_index(i))
    klassOop context_type();

    methodOop method_argument(int i) {
      oop x = argument(i);
      assert(x->is_method(), "type");
      return (methodOop) x;
    }
    klassOop type_argument(int i) {
      oop x = argument(i);
      assert(x->is_klass(), "type");
      return (klassOop) x;
    }

    // The point of the whole exercise:  Is this dep is still OK?
    klassOop check_dependency() {
      return check_dependency_impl(NULL);
    }
    // A lighter version:  Checks only around recent changes in a class
    // hierarchy.  (See Universe::flush_dependents_on.)
    klassOop spot_check_dependency_at(DepChange& changes);

    // Log the current dependency to xtty or compilation log.
    void log_dependency(klassOop witness = NULL);

    // Print the current dependency to tty.
    void print_dependency(klassOop witness = NULL, bool verbose = false);
  };
  friend class Dependencies::DepStream;

  static void print_statistics() PRODUCT_RETURN;
};

// A class hierarchy change coming through the VM (under the Compile_lock).
// The change is structured as a single new type with any number of supers
// and implemented interface types.  Other than the new type, any of the
// super types can be context types for a relevant dependency, which the
// new type could invalidate.
class DepChange : public StackObj {
 private:
  enum ChangeType {
    NO_CHANGE = 0,              // an uninvolved klass
    Change_new_type,            // a newly loaded type
    Change_new_sub,             // a super with a new subtype
    Change_new_impl,            // an interface with a new implementation
    CHANGE_LIMIT,
    Start_Klass = CHANGE_LIMIT  // internal indicator for ContextStream
  };

  // each change set is rooted in exactly one new type (at present):
  KlassHandle _new_type;

  void initialize();

 public:
  // notes the new type, marks it and all its super-types
  DepChange(KlassHandle new_type)
    : _new_type(new_type)
  {
    initialize();
  }

  // cleans up the marks
  ~DepChange();

  klassOop new_type()                   { return _new_type(); }

  // involves_context(k) is true if k is new_type or any of the super types
  bool involves_context(klassOop k);

  // Usage:
  // for (DepChange::ContextStream str(changes); str.next(); ) {
  //   klassOop k = str.klass();
  //   switch (str.change_type()) {
  //     ...
  //   }
  // }
  class ContextStream : public StackObj {
   private:
    DepChange&       _changes;
    friend class DepChange;

    // iteration variables:
    ChangeType            _change_type;
    klassOop              _klass;
    objArrayOop           _ti_base;    // i.e., transitive_interfaces
    int                   _ti_index;
    int                   _ti_limit;

    // start at the beginning:
    void start() {
      klassOop new_type = _changes.new_type();
      _change_type = (new_type == NULL ? NO_CHANGE: Start_Klass);
      _klass = new_type;
      _ti_base = NULL;
      _ti_index = 0;
      _ti_limit = 0;
    }

    ContextStream(DepChange& changes)
      : _changes(changes)
    { start(); }

   public:
    ContextStream(DepChange& changes, No_Safepoint_Verifier& nsv)
      : _changes(changes)
      // the nsv argument makes it safe to hold oops like _klass
    { start(); }

    bool next();

    klassOop   klass()           { return _klass; }
  };
  friend class DepChange::ContextStream;

  void print();
};