macroAssembler_x86.hpp 51.6 KB
Newer Older
1
/*
2
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
#define CPU_X86_VM_MACROASSEMBLER_X86_HPP

#include "asm/assembler.hpp"
29
#include "utilities/macros.hpp"
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297


// MacroAssembler extends Assembler by frequently used macros.
//
// Instructions for which a 'better' code sequence exists depending
// on arguments should also go in here.

class MacroAssembler: public Assembler {
  friend class LIR_Assembler;
  friend class Runtime1;      // as_Address()

 protected:

  Address as_Address(AddressLiteral adr);
  Address as_Address(ArrayAddress adr);

  // Support for VM calls
  //
  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  // may customize this version by overriding it for its purposes (e.g., to save/restore
  // additional registers when doing a VM call).
#ifdef CC_INTERP
  // c++ interpreter never wants to use interp_masm version of call_VM
  #define VIRTUAL
#else
  #define VIRTUAL virtual
#endif

  VIRTUAL void call_VM_leaf_base(
    address entry_point,               // the entry point
    int     number_of_arguments        // the number of arguments to pop after the call
  );

  // This is the base routine called by the different versions of call_VM. The interpreter
  // may customize this version by overriding it for its purposes (e.g., to save/restore
  // additional registers when doing a VM call).
  //
  // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  // returns the register which contains the thread upon return. If a thread register has been
  // specified, the return value will correspond to that register. If no last_java_sp is specified
  // (noreg) than rsp will be used instead.
  VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
    Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
    Register java_thread,              // the thread if computed before     ; use noreg otherwise
    Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
    address  entry_point,              // the entry point
    int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
    bool     check_exceptions          // whether to check for pending exceptions after return
  );

  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  // The implementation is only non-empty for the InterpreterMacroAssembler,
  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  virtual void check_and_handle_popframe(Register java_thread);
  virtual void check_and_handle_earlyret(Register java_thread);

  void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);

  // helpers for FPU flag access
  // tmp is a temporary register, if none is available use noreg
  void save_rax   (Register tmp);
  void restore_rax(Register tmp);

 public:
  MacroAssembler(CodeBuffer* code) : Assembler(code) {}

  // Support for NULL-checks
  //
  // Generates code that causes a NULL OS exception if the content of reg is NULL.
  // If the accessed location is M[reg + offset] and the offset is known, provide the
  // offset. No explicit code generation is needed if the offset is within a certain
  // range (0 <= offset <= page_size).

  void null_check(Register reg, int offset = -1);
  static bool needs_explicit_null_check(intptr_t offset);

  // Required platform-specific helpers for Label::patch_instructions.
  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  void pd_patch_instruction(address branch, address target) {
    unsigned char op = branch[0];
    assert(op == 0xE8 /* call */ ||
        op == 0xE9 /* jmp */ ||
        op == 0xEB /* short jmp */ ||
        (op & 0xF0) == 0x70 /* short jcc */ ||
        op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */,
        "Invalid opcode at patch point");

    if (op == 0xEB || (op & 0xF0) == 0x70) {
      // short offset operators (jmp and jcc)
      char* disp = (char*) &branch[1];
      int imm8 = target - (address) &disp[1];
      guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
      *disp = imm8;
    } else {
      int* disp = (int*) &branch[(op == 0x0F)? 2: 1];
      int imm32 = target - (address) &disp[1];
      *disp = imm32;
    }
  }

  // The following 4 methods return the offset of the appropriate move instruction

  // Support for fast byte/short loading with zero extension (depending on particular CPU)
  int load_unsigned_byte(Register dst, Address src);
  int load_unsigned_short(Register dst, Address src);

  // Support for fast byte/short loading with sign extension (depending on particular CPU)
  int load_signed_byte(Register dst, Address src);
  int load_signed_short(Register dst, Address src);

  // Support for sign-extension (hi:lo = extend_sign(lo))
  void extend_sign(Register hi, Register lo);

  // Load and store values by size and signed-ness
  void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
  void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);

  // Support for inc/dec with optimal instruction selection depending on value

  void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }

  void decrementl(Address dst, int value = 1);
  void decrementl(Register reg, int value = 1);

  void decrementq(Register reg, int value = 1);
  void decrementq(Address dst, int value = 1);

  void incrementl(Address dst, int value = 1);
  void incrementl(Register reg, int value = 1);

  void incrementq(Register reg, int value = 1);
  void incrementq(Address dst, int value = 1);


  // Support optimal SSE move instructions.
  void movflt(XMMRegister dst, XMMRegister src) {
    if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
    else                       { movss (dst, src); return; }
  }
  void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  void movflt(XMMRegister dst, AddressLiteral src);
  void movflt(Address dst, XMMRegister src) { movss(dst, src); }

  void movdbl(XMMRegister dst, XMMRegister src) {
    if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
    else                       { movsd (dst, src); return; }
  }

  void movdbl(XMMRegister dst, AddressLiteral src);

  void movdbl(XMMRegister dst, Address src) {
    if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
    else                         { movlpd(dst, src); return; }
  }
  void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }

  void incrementl(AddressLiteral dst);
  void incrementl(ArrayAddress dst);

  // Alignment
  void align(int modulus);

  // A 5 byte nop that is safe for patching (see patch_verified_entry)
  void fat_nop();

  // Stack frame creation/removal
  void enter();
  void leave();

  // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  // The pointer will be loaded into the thread register.
  void get_thread(Register thread);


  // Support for VM calls
  //
  // It is imperative that all calls into the VM are handled via the call_VM macros.
  // They make sure that the stack linkage is setup correctly. call_VM's correspond
  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.


  void call_VM(Register oop_result,
               address entry_point,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1, Register arg_2,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               address entry_point,
               Register arg_1, Register arg_2, Register arg_3,
               bool check_exceptions = true);

  // Overloadings with last_Java_sp
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               int number_of_arguments = 0,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, bool
               check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, Register arg_2,
               bool check_exceptions = true);
  void call_VM(Register oop_result,
               Register last_java_sp,
               address entry_point,
               Register arg_1, Register arg_2, Register arg_3,
               bool check_exceptions = true);

  void get_vm_result  (Register oop_result, Register thread);
  void get_vm_result_2(Register metadata_result, Register thread);

  // These always tightly bind to MacroAssembler::call_VM_base
  // bypassing the virtual implementation
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);

  void call_VM_leaf(address entry_point,
                    int number_of_arguments = 0);
  void call_VM_leaf(address entry_point,
                    Register arg_1);
  void call_VM_leaf(address entry_point,
                    Register arg_1, Register arg_2);
  void call_VM_leaf(address entry_point,
                    Register arg_1, Register arg_2, Register arg_3);

  // These always tightly bind to MacroAssembler::call_VM_leaf_base
  // bypassing the virtual implementation
  void super_call_VM_leaf(address entry_point);
  void super_call_VM_leaf(address entry_point, Register arg_1);
  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
  void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);

  // last Java Frame (fills frame anchor)
  void set_last_Java_frame(Register thread,
                           Register last_java_sp,
                           Register last_java_fp,
                           address last_java_pc);

  // thread in the default location (r15_thread on 64bit)
  void set_last_Java_frame(Register last_java_sp,
                           Register last_java_fp,
                           address last_java_pc);

  void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);

  // thread in the default location (r15_thread on 64bit)
  void reset_last_Java_frame(bool clear_fp, bool clear_pc);

  // Stores
  void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)

298
#if INCLUDE_ALL_GCS
299 300 301 302 303 304 305 306 307 308 309 310 311 312

  void g1_write_barrier_pre(Register obj,
                            Register pre_val,
                            Register thread,
                            Register tmp,
                            bool tosca_live,
                            bool expand_call);

  void g1_write_barrier_post(Register store_addr,
                             Register new_val,
                             Register thread,
                             Register tmp,
                             Register tmp2);

313
#endif // INCLUDE_ALL_GCS
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

  // split store_check(Register obj) to enhance instruction interleaving
  void store_check_part_1(Register obj);
  void store_check_part_2(Register obj);

  // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  void c2bool(Register x);

  // C++ bool manipulation

  void movbool(Register dst, Address src);
  void movbool(Address dst, bool boolconst);
  void movbool(Address dst, Register src);
  void testbool(Register dst);

  // oop manipulations
  void load_klass(Register dst, Register src);
  void store_klass(Register dst, Register src);

  void load_heap_oop(Register dst, Address src);
  void load_heap_oop_not_null(Register dst, Address src);
  void store_heap_oop(Address dst, Register src);
  void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);

  // Used for storing NULL. All other oop constants should be
  // stored using routines that take a jobject.
  void store_heap_oop_null(Address dst);

  void load_prototype_header(Register dst, Register src);

#ifdef _LP64
  void store_klass_gap(Register dst, Register src);

  // This dummy is to prevent a call to store_heap_oop from
  // converting a zero (like NULL) into a Register by giving
  // the compiler two choices it can't resolve

  void store_heap_oop(Address dst, void* dummy);

  void encode_heap_oop(Register r);
  void decode_heap_oop(Register r);
  void encode_heap_oop_not_null(Register r);
  void decode_heap_oop_not_null(Register r);
  void encode_heap_oop_not_null(Register dst, Register src);
  void decode_heap_oop_not_null(Register dst, Register src);

  void set_narrow_oop(Register dst, jobject obj);
  void set_narrow_oop(Address dst, jobject obj);
  void cmp_narrow_oop(Register dst, jobject obj);
  void cmp_narrow_oop(Address dst, jobject obj);

  void encode_klass_not_null(Register r);
  void decode_klass_not_null(Register r);
  void encode_klass_not_null(Register dst, Register src);
  void decode_klass_not_null(Register dst, Register src);
  void set_narrow_klass(Register dst, Klass* k);
  void set_narrow_klass(Address dst, Klass* k);
  void cmp_narrow_klass(Register dst, Klass* k);
  void cmp_narrow_klass(Address dst, Klass* k);

374 375 376 377
  // Returns the byte size of the instructions generated by decode_klass_not_null()
  // when compressed klass pointers are being used.
  static int instr_size_for_decode_klass_not_null();

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
  // if heap base register is used - reinit it with the correct value
  void reinit_heapbase();

  DEBUG_ONLY(void verify_heapbase(const char* msg);)

#endif // _LP64

  // Int division/remainder for Java
  // (as idivl, but checks for special case as described in JVM spec.)
  // returns idivl instruction offset for implicit exception handling
  int corrected_idivl(Register reg);

  // Long division/remainder for Java
  // (as idivq, but checks for special case as described in JVM spec.)
  // returns idivq instruction offset for implicit exception handling
  int corrected_idivq(Register reg);

  void int3();

  // Long operation macros for a 32bit cpu
  // Long negation for Java
  void lneg(Register hi, Register lo);

  // Long multiplication for Java
  // (destroys contents of eax, ebx, ecx and edx)
  void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y

  // Long shifts for Java
  // (semantics as described in JVM spec.)
  void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)

  // Long compare for Java
  // (semantics as described in JVM spec.)
  void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)


  // misc

  // Sign extension
  void sign_extend_short(Register reg);
  void sign_extend_byte(Register reg);

  // Division by power of 2, rounding towards 0
  void division_with_shift(Register reg, int shift_value);

  // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  //
  // CF (corresponds to C0) if x < y
  // PF (corresponds to C2) if unordered
  // ZF (corresponds to C3) if x = y
  //
  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  void fcmp(Register tmp);
  // Variant of the above which allows y to be further down the stack
  // and which only pops x and y if specified. If pop_right is
  // specified then pop_left must also be specified.
  void fcmp(Register tmp, int index, bool pop_left, bool pop_right);

  // Floating-point comparison for Java
  // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  // (semantics as described in JVM spec.)
  void fcmp2int(Register dst, bool unordered_is_less);
  // Variant of the above which allows y to be further down the stack
  // and which only pops x and y if specified. If pop_right is
  // specified then pop_left must also be specified.
  void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);

  // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  // tmp is a temporary register, if none is available use noreg
  void fremr(Register tmp);


  // same as fcmp2int, but using SSE2
  void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);

  // Inlined sin/cos generator for Java; must not use CPU instruction
  // directly on Intel as it does not have high enough precision
  // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  // number of FPU stack slots in use; all but the topmost will
  // require saving if a slow case is necessary. Assumes argument is
  // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  // this code.
  void trigfunc(char trig, int num_fpu_regs_in_use = 1);

  // branch to L if FPU flag C2 is set/not set
  // tmp is a temporary register, if none is available use noreg
  void jC2 (Register tmp, Label& L);
  void jnC2(Register tmp, Label& L);

  // Pop ST (ffree & fincstp combined)
  void fpop();

  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  void push_fTOS();

  // pops double TOS element from CPU stack and pushes on FPU stack
  void pop_fTOS();

  void empty_FPU_stack();

  void push_IU_state();
  void pop_IU_state();

  void push_FPU_state();
  void pop_FPU_state();

  void push_CPU_state();
  void pop_CPU_state();

  // Round up to a power of two
  void round_to(Register reg, int modulus);

  // Callee saved registers handling
  void push_callee_saved_registers();
  void pop_callee_saved_registers();

  // allocation
  void eden_allocate(
    Register obj,                      // result: pointer to object after successful allocation
    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
    int      con_size_in_bytes,        // object size in bytes if   known at compile time
    Register t1,                       // temp register
    Label&   slow_case                 // continuation point if fast allocation fails
  );
  void tlab_allocate(
    Register obj,                      // result: pointer to object after successful allocation
    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
    int      con_size_in_bytes,        // object size in bytes if   known at compile time
    Register t1,                       // temp register
    Register t2,                       // temp register
    Label&   slow_case                 // continuation point if fast allocation fails
  );
  Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
  void incr_allocated_bytes(Register thread,
                            Register var_size_in_bytes, int con_size_in_bytes,
                            Register t1 = noreg);

  // interface method calling
  void lookup_interface_method(Register recv_klass,
                               Register intf_klass,
                               RegisterOrConstant itable_index,
                               Register method_result,
                               Register scan_temp,
                               Label& no_such_interface);

  // virtual method calling
  void lookup_virtual_method(Register recv_klass,
                             RegisterOrConstant vtable_index,
                             Register method_result);

  // Test sub_klass against super_klass, with fast and slow paths.

  // The fast path produces a tri-state answer: yes / no / maybe-slow.
  // One of the three labels can be NULL, meaning take the fall-through.
  // If super_check_offset is -1, the value is loaded up from super_klass.
  // No registers are killed, except temp_reg.
  void check_klass_subtype_fast_path(Register sub_klass,
                                     Register super_klass,
                                     Register temp_reg,
                                     Label* L_success,
                                     Label* L_failure,
                                     Label* L_slow_path,
                RegisterOrConstant super_check_offset = RegisterOrConstant(-1));

  // The rest of the type check; must be wired to a corresponding fast path.
  // It does not repeat the fast path logic, so don't use it standalone.
  // The temp_reg and temp2_reg can be noreg, if no temps are available.
  // Updates the sub's secondary super cache as necessary.
  // If set_cond_codes, condition codes will be Z on success, NZ on failure.
  void check_klass_subtype_slow_path(Register sub_klass,
                                     Register super_klass,
                                     Register temp_reg,
                                     Register temp2_reg,
                                     Label* L_success,
                                     Label* L_failure,
                                     bool set_cond_codes = false);

  // Simplified, combined version, good for typical uses.
  // Falls through on failure.
  void check_klass_subtype(Register sub_klass,
                           Register super_klass,
                           Register temp_reg,
                           Label& L_success);

  // method handles (JSR 292)
  Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);

  //----
  void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0

  // Debugging

  // only if +VerifyOops
  // TODO: Make these macros with file and line like sparc version!
  void verify_oop(Register reg, const char* s = "broken oop");
  void verify_oop_addr(Address addr, const char * s = "broken oop addr");

  // TODO: verify method and klass metadata (compare against vptr?)
  void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
  void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}

#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)

  // only if +VerifyFPU
  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");

589 590 591
  // Verify or restore cpu control state after JNI call
  void restore_cpu_control_state_after_jni();

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
  // prints msg, dumps registers and stops execution
  void stop(const char* msg);

  // prints msg and continues
  void warn(const char* msg);

  // dumps registers and other state
  void print_state();

  static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  static void debug64(char* msg, int64_t pc, int64_t regs[]);
  static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
  static void print_state64(int64_t pc, int64_t regs[]);

  void os_breakpoint();

  void untested()                                { stop("untested"); }

  void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }

  void should_not_reach_here()                   { stop("should not reach here"); }

  void print_CPU_state();

  // Stack overflow checking
  void bang_stack_with_offset(int offset) {
    // stack grows down, caller passes positive offset
    assert(offset > 0, "must bang with negative offset");
    movl(Address(rsp, (-offset)), rax);
  }

  // Writes to stack successive pages until offset reached to check for
  // stack overflow + shadow pages.  Also, clobbers tmp
  void bang_stack_size(Register size, Register tmp);

  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
                                                Register tmp,
                                                int offset);

  // Support for serializing memory accesses between threads
  void serialize_memory(Register thread, Register tmp);

  void verify_tlab();

  // Biased locking support
  // lock_reg and obj_reg must be loaded up with the appropriate values.
  // swap_reg must be rax, and is killed.
  // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  // be killed; if not supplied, push/pop will be used internally to
  // allocate a temporary (inefficient, avoid if possible).
  // Optional slow case is for implementations (interpreter and C1) which branch to
  // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  // Returns offset of first potentially-faulting instruction for null
  // check info (currently consumed only by C1). If
  // swap_reg_contains_mark is true then returns -1 as it is assumed
  // the calling code has already passed any potential faults.
  int biased_locking_enter(Register lock_reg, Register obj_reg,
                           Register swap_reg, Register tmp_reg,
                           bool swap_reg_contains_mark,
                           Label& done, Label* slow_case = NULL,
                           BiasedLockingCounters* counters = NULL);
  void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
654 655 656 657 658 659
#ifdef COMPILER2
  // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
  // See full desription in macroAssembler_x86.cpp.
  void fast_lock(Register obj, Register box, Register tmp, Register scr, BiasedLockingCounters* counters);
  void fast_unlock(Register obj, Register box, Register tmp);
#endif
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

  Condition negate_condition(Condition cond);

  // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  // operands. In general the names are modified to avoid hiding the instruction in Assembler
  // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  // here in MacroAssembler. The major exception to this rule is call

  // Arithmetics


  void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  void addptr(Address dst, Register src);

  void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  void addptr(Register dst, int32_t src);
  void addptr(Register dst, Register src);
  void addptr(Register dst, RegisterOrConstant src) {
    if (src.is_constant()) addptr(dst, (int) src.as_constant());
    else                   addptr(dst,       src.as_register());
  }

  void andptr(Register dst, int32_t src);
  void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }

  void cmp8(AddressLiteral src1, int imm);

  // renamed to drag out the casting of address to int32_t/intptr_t
  void cmp32(Register src1, int32_t imm);

  void cmp32(AddressLiteral src1, int32_t imm);
  // compare reg - mem, or reg - &mem
  void cmp32(Register src1, AddressLiteral src2);

  void cmp32(Register src1, Address src2);

#ifndef _LP64
  void cmpklass(Address dst, Metadata* obj);
  void cmpklass(Register dst, Metadata* obj);
  void cmpoop(Address dst, jobject obj);
  void cmpoop(Register dst, jobject obj);
#endif // _LP64

  // NOTE src2 must be the lval. This is NOT an mem-mem compare
  void cmpptr(Address src1, AddressLiteral src2);

  void cmpptr(Register src1, AddressLiteral src2);

  void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }

  void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }

  // cmp64 to avoild hiding cmpq
  void cmp64(Register src1, AddressLiteral src);

  void cmpxchgptr(Register reg, Address adr);

  void locked_cmpxchgptr(Register reg, AddressLiteral adr);


  void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }


  void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }

  void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }

  void shlptr(Register dst, int32_t shift);
  void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }

  void shrptr(Register dst, int32_t shift);
  void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }

  void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }

  void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }

  void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  void subptr(Register dst, int32_t src);
  // Force generation of a 4 byte immediate value even if it fits into 8bit
  void subptr_imm32(Register dst, int32_t src);
  void subptr(Register dst, Register src);
  void subptr(Register dst, RegisterOrConstant src) {
    if (src.is_constant()) subptr(dst, (int) src.as_constant());
    else                   subptr(dst,       src.as_register());
  }

  void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }

  void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }

  void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }



  // Helper functions for statistics gathering.
  // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  void cond_inc32(Condition cond, AddressLiteral counter_addr);
  // Unconditional atomic increment.
  void atomic_incl(AddressLiteral counter_addr);

  void lea(Register dst, AddressLiteral adr);
  void lea(Address dst, AddressLiteral adr);
  void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }

  void leal32(Register dst, Address src) { leal(dst, src); }

  // Import other testl() methods from the parent class or else
  // they will be hidden by the following overriding declaration.
  using Assembler::testl;
  void testl(Register dst, AddressLiteral src);

  void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
781
  void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911

  void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  void testptr(Register src1, Register src2);

  void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }

  // Calls

  void call(Label& L, relocInfo::relocType rtype);
  void call(Register entry);

  // NOTE: this call tranfers to the effective address of entry NOT
  // the address contained by entry. This is because this is more natural
  // for jumps/calls.
  void call(AddressLiteral entry);

  // Emit the CompiledIC call idiom
  void ic_call(address entry);

  // Jumps

  // NOTE: these jumps tranfer to the effective address of dst NOT
  // the address contained by dst. This is because this is more natural
  // for jumps/calls.
  void jump(AddressLiteral dst);
  void jump_cc(Condition cc, AddressLiteral dst);

  // 32bit can do a case table jump in one instruction but we no longer allow the base
  // to be installed in the Address class. This jump will tranfers to the address
  // contained in the location described by entry (not the address of entry)
  void jump(ArrayAddress entry);

  // Floating

  void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  void andpd(XMMRegister dst, AddressLiteral src);

  void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
  void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
  void andps(XMMRegister dst, AddressLiteral src);

  void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
  void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  void comiss(XMMRegister dst, AddressLiteral src);

  void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
  void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  void comisd(XMMRegister dst, AddressLiteral src);

  void fadd_s(Address src)        { Assembler::fadd_s(src); }
  void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }

  void fldcw(Address src) { Assembler::fldcw(src); }
  void fldcw(AddressLiteral src);

  void fld_s(int index)   { Assembler::fld_s(index); }
  void fld_s(Address src) { Assembler::fld_s(src); }
  void fld_s(AddressLiteral src);

  void fld_d(Address src) { Assembler::fld_d(src); }
  void fld_d(AddressLiteral src);

  void fld_x(Address src) { Assembler::fld_x(src); }
  void fld_x(AddressLiteral src);

  void fmul_s(Address src)        { Assembler::fmul_s(src); }
  void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }

  void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  void ldmxcsr(AddressLiteral src);

  // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
  // all corner cases and may result in NaN and require fallback to a
  // runtime call.
  void fast_pow();
  void fast_exp();
  void increase_precision();
  void restore_precision();

  // computes exp(x). Fallback to runtime call included.
  void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
  // computes pow(x,y). Fallback to runtime call included.
  void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }

private:

  // call runtime as a fallback for trig functions and pow/exp.
  void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);

  // computes 2^(Ylog2X); Ylog2X in ST(0)
  void pow_exp_core_encoding();

  // computes pow(x,y) or exp(x). Fallback to runtime call included.
  void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);

  // these are private because users should be doing movflt/movdbl

  void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  void movss(XMMRegister dst, AddressLiteral src);

  void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
  void movlpd(XMMRegister dst, AddressLiteral src);

public:

  void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
  void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
  void addsd(XMMRegister dst, AddressLiteral src);

  void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
  void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
  void addss(XMMRegister dst, AddressLiteral src);

  void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
  void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
  void divsd(XMMRegister dst, AddressLiteral src);

  void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
  void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
  void divss(XMMRegister dst, AddressLiteral src);

  // Move Unaligned Double Quadword
  void movdqu(Address     dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
  void movdqu(XMMRegister dst, Address src)       { Assembler::movdqu(dst, src); }
  void movdqu(XMMRegister dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
  void movdqu(XMMRegister dst, AddressLiteral src);

912 913 914 915 916
  // Move Aligned Double Quadword
  void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
  void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
  void movdqa(XMMRegister dst, AddressLiteral src);

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
  void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
  void movsd(XMMRegister dst, AddressLiteral src);

  void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
  void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
  void mulsd(XMMRegister dst, AddressLiteral src);

  void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
  void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
  void mulss(XMMRegister dst, AddressLiteral src);

  void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
  void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
  void sqrtsd(XMMRegister dst, AddressLiteral src);

  void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
  void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
  void sqrtss(XMMRegister dst, AddressLiteral src);

  void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
  void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
  void subsd(XMMRegister dst, AddressLiteral src);

  void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
  void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
  void subss(XMMRegister dst, AddressLiteral src);

  void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
  void ucomiss(XMMRegister dst, AddressLiteral src);

  void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
  void ucomisd(XMMRegister dst, AddressLiteral src);

  // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  void xorpd(XMMRegister dst, AddressLiteral src);

  // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  void xorps(XMMRegister dst, AddressLiteral src);

  // Shuffle Bytes
  void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
  void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
  void pshufb(XMMRegister dst, AddressLiteral src);
  // AVX 3-operands instructions

  void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
  void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
  void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
  void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
  void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
  void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
  void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);

  void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
  void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
  void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);

  void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
  void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
  void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
  void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
  void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
  void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
  void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
  void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
  void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
  void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
  void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
  void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
  void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);

  // AVX Vector instructions

  void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
  void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
  void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);

  void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);

  void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
    if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
      Assembler::vpxor(dst, nds, src, vector256);
    else
      Assembler::vxorpd(dst, nds, src, vector256);
  }
  void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
    if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
      Assembler::vpxor(dst, nds, src, vector256);
    else
      Assembler::vxorpd(dst, nds, src, vector256);
  }

1033 1034 1035 1036
  // Simple version for AVX2 256bit vectors
  void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
  void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }

1037 1038 1039 1040 1041 1042 1043 1044
  // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
  void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
    if (UseAVX > 1) // vinserti128h is available only in AVX2
      Assembler::vinserti128h(dst, nds, src);
    else
      Assembler::vinsertf128h(dst, nds, src);
  }

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
  // Carry-Less Multiplication Quadword
  void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
    // 0x00 - multiply lower 64 bits [0:63]
    Assembler::vpclmulqdq(dst, nds, src, 0x00);
  }
  void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
    // 0x11 - multiply upper 64 bits [64:127]
    Assembler::vpclmulqdq(dst, nds, src, 0x11);
  }

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
  // Data

  void cmov32( Condition cc, Register dst, Address  src);
  void cmov32( Condition cc, Register dst, Register src);

  void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }

  void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }

  void movoop(Register dst, jobject obj);
  void movoop(Address dst, jobject obj);

  void mov_metadata(Register dst, Metadata* obj);
  void mov_metadata(Address dst, Metadata* obj);

  void movptr(ArrayAddress dst, Register src);
  // can this do an lea?
  void movptr(Register dst, ArrayAddress src);

  void movptr(Register dst, Address src);

  void movptr(Register dst, AddressLiteral src);

  void movptr(Register dst, intptr_t src);
  void movptr(Register dst, Register src);
  void movptr(Address dst, intptr_t src);

  void movptr(Address dst, Register src);

  void movptr(Register dst, RegisterOrConstant src) {
    if (src.is_constant()) movptr(dst, src.as_constant());
    else                   movptr(dst, src.as_register());
  }

#ifdef _LP64
  // Generally the next two are only used for moving NULL
  // Although there are situations in initializing the mark word where
  // they could be used. They are dangerous.

  // They only exist on LP64 so that int32_t and intptr_t are not the same
  // and we have ambiguous declarations.

  void movptr(Address dst, int32_t imm32);
  void movptr(Register dst, int32_t imm32);
#endif // _LP64

  // to avoid hiding movl
  void mov32(AddressLiteral dst, Register src);
  void mov32(Register dst, AddressLiteral src);

  // to avoid hiding movb
  void movbyte(ArrayAddress dst, int src);

  // Import other mov() methods from the parent class or else
  // they will be hidden by the following overriding declaration.
  using Assembler::movdl;
  using Assembler::movq;
  void movdl(XMMRegister dst, AddressLiteral src);
  void movq(XMMRegister dst, AddressLiteral src);

  // Can push value or effective address
  void pushptr(AddressLiteral src);

  void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }

  void pushoop(jobject obj);
  void pushklass(Metadata* obj);

  // sign extend as need a l to ptr sized element
  void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }

  // C2 compiled method's prolog code.
  void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);

1132 1133 1134
  // clear memory of size 'cnt' qwords, starting at 'base'.
  void clear_mem(Register base, Register cnt, Register rtmp);

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
  // IndexOf strings.
  // Small strings are loaded through stack if they cross page boundary.
  void string_indexof(Register str1, Register str2,
                      Register cnt1, Register cnt2,
                      int int_cnt2,  Register result,
                      XMMRegister vec, Register tmp);

  // IndexOf for constant substrings with size >= 8 elements
  // which don't need to be loaded through stack.
  void string_indexofC8(Register str1, Register str2,
                      Register cnt1, Register cnt2,
                      int int_cnt2,  Register result,
                      XMMRegister vec, Register tmp);

    // Smallest code: we don't need to load through stack,
    // check string tail.

  // Compare strings.
  void string_compare(Register str1, Register str2,
                      Register cnt1, Register cnt2, Register result,
                      XMMRegister vec1);

  // Compare char[] arrays.
  void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
                          Register limit, Register result, Register chr,
                          XMMRegister vec1, XMMRegister vec2);

  // Fill primitive arrays
  void generate_fill(BasicType t, bool aligned,
                     Register to, Register value, Register count,
                     Register rtmp, XMMRegister xtmp);

1167 1168 1169 1170
  void encode_iso_array(Register src, Register dst, Register len,
                        XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
                        XMMRegister tmp4, Register tmp5, Register result);

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
  // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
  void update_byte_crc32(Register crc, Register val, Register table);
  void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
  // Fold 128-bit data chunk
  void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
  void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
  // Fold 8-bit data
  void fold_8bit_crc32(Register crc, Register table, Register tmp);
  void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
#undef VIRTUAL

};

/**
 * class SkipIfEqual:
 *
 * Instantiating this class will result in assembly code being output that will
 * jump around any code emitted between the creation of the instance and it's
 * automatic destruction at the end of a scope block, depending on the value of
 * the flag passed to the constructor, which will be checked at run-time.
 */
class SkipIfEqual {
 private:
  MacroAssembler* _masm;
  Label _label;

 public:
   SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
   ~SkipIfEqual();
};

#endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP