c1_Runtime1.cpp 47.9 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/*
 * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_c1_Runtime1.cpp.incl"


// Implementation of StubAssembler

StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  _name = name;
  _must_gc_arguments = false;
  _frame_size = no_frame_size;
  _num_rt_args = 0;
  _stub_id = stub_id;
}


void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  _name = name;
  _must_gc_arguments = must_gc_arguments;
}


void StubAssembler::set_frame_size(int size) {
  if (_frame_size == no_frame_size) {
    _frame_size = size;
  }
  assert(_frame_size == size, "can't change the frame size");
}


void StubAssembler::set_num_rt_args(int args) {
  if (_num_rt_args == 0) {
    _num_rt_args = args;
  }
  assert(_num_rt_args == args, "can't change the number of args");
}

// Implementation of Runtime1

bool      Runtime1::_is_initialized = false;
CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
const char *Runtime1::_blob_names[] = {
  RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
};

#ifndef PRODUCT
// statistics
int Runtime1::_generic_arraycopy_cnt = 0;
int Runtime1::_primitive_arraycopy_cnt = 0;
int Runtime1::_oop_arraycopy_cnt = 0;
int Runtime1::_arraycopy_slowcase_cnt = 0;
int Runtime1::_new_type_array_slowcase_cnt = 0;
int Runtime1::_new_object_array_slowcase_cnt = 0;
int Runtime1::_new_instance_slowcase_cnt = 0;
int Runtime1::_new_multi_array_slowcase_cnt = 0;
int Runtime1::_monitorenter_slowcase_cnt = 0;
int Runtime1::_monitorexit_slowcase_cnt = 0;
int Runtime1::_patch_code_slowcase_cnt = 0;
int Runtime1::_throw_range_check_exception_count = 0;
int Runtime1::_throw_index_exception_count = 0;
int Runtime1::_throw_div0_exception_count = 0;
int Runtime1::_throw_null_pointer_exception_count = 0;
int Runtime1::_throw_class_cast_exception_count = 0;
int Runtime1::_throw_incompatible_class_change_error_count = 0;
int Runtime1::_throw_array_store_exception_count = 0;
int Runtime1::_throw_count = 0;
#endif

BufferBlob* Runtime1::_buffer_blob  = NULL;

// Simple helper to see if the caller of a runtime stub which
// entered the VM has been deoptimized

static bool caller_is_deopted() {
  JavaThread* thread = JavaThread::current();
  RegisterMap reg_map(thread, false);
  frame runtime_frame = thread->last_frame();
  frame caller_frame = runtime_frame.sender(&reg_map);
  assert(caller_frame.is_compiled_frame(), "must be compiled");
  return caller_frame.is_deoptimized_frame();
}

// Stress deoptimization
static void deopt_caller() {
  if ( !caller_is_deopted()) {
    JavaThread* thread = JavaThread::current();
    RegisterMap reg_map(thread, false);
    frame runtime_frame = thread->last_frame();
    frame caller_frame = runtime_frame.sender(&reg_map);
    VM_DeoptimizeFrame deopt(thread, caller_frame.id());
    VMThread::execute(&deopt);
    assert(caller_is_deopted(), "Must be deoptimized");
  }
}


BufferBlob* Runtime1::get_buffer_blob() {
  // Allocate code buffer space only once
  BufferBlob* blob = _buffer_blob;
  if (blob == NULL) {
    // setup CodeBuffer.  Preallocate a BufferBlob of size
    // NMethodSizeLimit plus some extra space for constants.
    int code_buffer_size = desired_max_code_buffer_size() + desired_max_constant_size();
    blob = BufferBlob::create("Compiler1 temporary CodeBuffer",
                              code_buffer_size);
    guarantee(blob != NULL, "must create initial code buffer");
    _buffer_blob = blob;
  }
  return _buffer_blob;
}

void Runtime1::setup_code_buffer(CodeBuffer* code, int call_stub_estimate) {
  // Preinitialize the consts section to some large size:
  int locs_buffer_size = 20 * (relocInfo::length_limit + sizeof(relocInfo));
  char* locs_buffer = NEW_RESOURCE_ARRAY(char, locs_buffer_size);
  code->insts()->initialize_shared_locs((relocInfo*)locs_buffer,
                                        locs_buffer_size / sizeof(relocInfo));
  code->initialize_consts_size(desired_max_constant_size());
  // Call stubs + deopt/exception handler
  code->initialize_stubs_size((call_stub_estimate * LIR_Assembler::call_stub_size) +
                              LIR_Assembler::exception_handler_size +
                              LIR_Assembler::deopt_handler_size);
}


void Runtime1::generate_blob_for(StubID id) {
  assert(0 <= id && id < number_of_ids, "illegal stub id");
  ResourceMark rm;
  // create code buffer for code storage
  CodeBuffer code(get_buffer_blob()->instructions_begin(),
                  get_buffer_blob()->instructions_size());

  setup_code_buffer(&code, 0);

  // create assembler for code generation
  StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
  // generate code for runtime stub
  OopMapSet* oop_maps;
  oop_maps = generate_code_for(id, sasm);
  assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
         "if stub has an oop map it must have a valid frame size");

#ifdef ASSERT
  // Make sure that stubs that need oopmaps have them
  switch (id) {
    // These stubs don't need to have an oopmap
    case dtrace_object_alloc_id:
    case slow_subtype_check_id:
    case fpu2long_stub_id:
    case unwind_exception_id:
#ifndef TIERED
    case counter_overflow_id: // Not generated outside the tiered world
#endif
#ifdef SPARC
    case handle_exception_nofpu_id:  // Unused on sparc
#endif
      break;

    // All other stubs should have oopmaps
    default:
      assert(oop_maps != NULL, "must have an oopmap");
  }
#endif

  // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
  sasm->align(BytesPerWord);
  // make sure all code is in code buffer
  sasm->flush();
  // create blob - distinguish a few special cases
  CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
                                                 &code,
                                                 CodeOffsets::frame_never_safe,
                                                 sasm->frame_size(),
                                                 oop_maps,
                                                 sasm->must_gc_arguments());
  // install blob
  assert(blob != NULL, "blob must exist");
  _blobs[id] = blob;
}


void Runtime1::initialize() {
  // Warning: If we have more than one compilation running in parallel, we
  //          need a lock here with the current setup (lazy initialization).
  if (!is_initialized()) {
    _is_initialized = true;

    // platform-dependent initialization
    initialize_pd();
    // generate stubs
    for (int id = 0; id < number_of_ids; id++) generate_blob_for((StubID)id);
    // printing
#ifndef PRODUCT
    if (PrintSimpleStubs) {
      ResourceMark rm;
      for (int id = 0; id < number_of_ids; id++) {
        _blobs[id]->print();
        if (_blobs[id]->oop_maps() != NULL) {
          _blobs[id]->oop_maps()->print();
        }
      }
    }
#endif
  }
}


CodeBlob* Runtime1::blob_for(StubID id) {
  assert(0 <= id && id < number_of_ids, "illegal stub id");
  if (!is_initialized()) initialize();
  return _blobs[id];
}


const char* Runtime1::name_for(StubID id) {
  assert(0 <= id && id < number_of_ids, "illegal stub id");
  return _blob_names[id];
}

const char* Runtime1::name_for_address(address entry) {
  for (int id = 0; id < number_of_ids; id++) {
    if (entry == entry_for((StubID)id)) return name_for((StubID)id);
  }

#define FUNCTION_CASE(a, f) \
  if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f

  FUNCTION_CASE(entry, os::javaTimeMillis);
  FUNCTION_CASE(entry, os::javaTimeNanos);
  FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
  FUNCTION_CASE(entry, SharedRuntime::d2f);
  FUNCTION_CASE(entry, SharedRuntime::d2i);
  FUNCTION_CASE(entry, SharedRuntime::d2l);
  FUNCTION_CASE(entry, SharedRuntime::dcos);
  FUNCTION_CASE(entry, SharedRuntime::dexp);
  FUNCTION_CASE(entry, SharedRuntime::dlog);
  FUNCTION_CASE(entry, SharedRuntime::dlog10);
  FUNCTION_CASE(entry, SharedRuntime::dpow);
  FUNCTION_CASE(entry, SharedRuntime::drem);
  FUNCTION_CASE(entry, SharedRuntime::dsin);
  FUNCTION_CASE(entry, SharedRuntime::dtan);
  FUNCTION_CASE(entry, SharedRuntime::f2i);
  FUNCTION_CASE(entry, SharedRuntime::f2l);
  FUNCTION_CASE(entry, SharedRuntime::frem);
  FUNCTION_CASE(entry, SharedRuntime::l2d);
  FUNCTION_CASE(entry, SharedRuntime::l2f);
  FUNCTION_CASE(entry, SharedRuntime::ldiv);
  FUNCTION_CASE(entry, SharedRuntime::lmul);
  FUNCTION_CASE(entry, SharedRuntime::lrem);
  FUNCTION_CASE(entry, SharedRuntime::lrem);
  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
  FUNCTION_CASE(entry, trace_block_entry);

#undef FUNCTION_CASE

  return "<unknown function>";
}


JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
  NOT_PRODUCT(_new_instance_slowcase_cnt++;)

  assert(oop(klass)->is_klass(), "not a class");
  instanceKlassHandle h(thread, klass);
  h->check_valid_for_instantiation(true, CHECK);
  // make sure klass is initialized
  h->initialize(CHECK);
  // allocate instance and return via TLS
  oop obj = h->allocate_instance(CHECK);
  thread->set_vm_result(obj);
JRT_END


JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
  NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
  // Note: no handle for klass needed since they are not used
  //       anymore after new_typeArray() and no GC can happen before.
  //       (This may have to change if this code changes!)
  assert(oop(klass)->is_klass(), "not a class");
  BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
  oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
  thread->set_vm_result(obj);
  // This is pretty rare but this runtime patch is stressful to deoptimization
  // if we deoptimize here so force a deopt to stress the path.
  if (DeoptimizeALot) {
    deopt_caller();
  }

JRT_END


JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
  NOT_PRODUCT(_new_object_array_slowcase_cnt++;)

  // Note: no handle for klass needed since they are not used
  //       anymore after new_objArray() and no GC can happen before.
  //       (This may have to change if this code changes!)
  assert(oop(array_klass)->is_klass(), "not a class");
  klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
  objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
  thread->set_vm_result(obj);
  // This is pretty rare but this runtime patch is stressful to deoptimization
  // if we deoptimize here so force a deopt to stress the path.
  if (DeoptimizeALot) {
    deopt_caller();
  }
JRT_END


JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
  NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)

  assert(oop(klass)->is_klass(), "not a class");
  assert(rank >= 1, "rank must be nonzero");
#ifdef _LP64
// In 64 bit mode, the sizes are stored in the top 32 bits
// of each 64 bit stack entry.
// dims is actually an intptr_t * because the arguments
// are pushed onto a 64 bit stack.
// We must create an array of jints to pass to multi_allocate.
// We reuse the current stack because it will be popped
// after this bytecode is completed.
  if ( rank > 1 ) {
    int index;
    for ( index = 1; index < rank; index++ ) {  // First size is ok
        dims[index] = dims[index*2];
    }
  }
#endif
  oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
  thread->set_vm_result(obj);
JRT_END


JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
  tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
JRT_END


JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
  THROW(vmSymbolHandles::java_lang_ArrayStoreException());
JRT_END


JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
  if (JvmtiExport::can_post_exceptions()) {
    vframeStream vfst(thread, true);
    address bcp = vfst.method()->bcp_from(vfst.bci());
    JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
  }
JRT_END

#ifdef TIERED
JRT_ENTRY(void, Runtime1::counter_overflow(JavaThread* thread, int bci))
  RegisterMap map(thread, false);
  frame fr =  thread->last_frame().sender(&map);
  nmethod* nm = (nmethod*) fr.cb();
  assert(nm!= NULL && nm->is_nmethod(), "what?");
  methodHandle method(thread, nm->method());
  if (bci == 0) {
    // invocation counter overflow
    if (!Tier1CountOnly) {
      CompilationPolicy::policy()->method_invocation_event(method, CHECK);
    } else {
      method()->invocation_counter()->reset();
    }
  } else {
    if (!Tier1CountOnly) {
      // Twe have a bci but not the destination bci and besides a backedge
      // event is more for OSR which we don't want here.
      CompilationPolicy::policy()->method_invocation_event(method, CHECK);
    } else {
      method()->backedge_counter()->reset();
    }
  }
JRT_END
#endif // TIERED

extern void vm_exit(int code);

// Enter this method from compiled code handler below. This is where we transition
// to VM mode. This is done as a helper routine so that the method called directly
// from compiled code does not have to transition to VM. This allows the entry
// method to see if the nmethod that we have just looked up a handler for has
// been deoptimized while we were in the vm. This simplifies the assembly code
// cpu directories.
//
// We are entering here from exception stub (via the entry method below)
// If there is a compiled exception handler in this method, we will continue there;
// otherwise we will unwind the stack and continue at the caller of top frame method
// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
// control the area where we can allow a safepoint. After we exit the safepoint area we can
// check to see if the handler we are going to return is now in a nmethod that has
// been deoptimized. If that is the case we return the deopt blob
// unpack_with_exception entry instead. This makes life for the exception blob easier
// because making that same check and diverting is painful from assembly language.
//


JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))

  Handle exception(thread, ex);
  nm = CodeCache::find_nmethod(pc);
  assert(nm != NULL, "this is not an nmethod");
  // Adjust the pc as needed/
  if (nm->is_deopt_pc(pc)) {
    RegisterMap map(thread, false);
    frame exception_frame = thread->last_frame().sender(&map);
    // if the frame isn't deopted then pc must not correspond to the caller of last_frame
    assert(exception_frame.is_deoptimized_frame(), "must be deopted");
    pc = exception_frame.pc();
  }
#ifdef ASSERT
  assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
  assert(exception->is_oop(), "just checking");
  // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
  if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
    if (ExitVMOnVerifyError) vm_exit(-1);
    ShouldNotReachHere();
  }
#endif

  // Check the stack guard pages and reenable them if necessary and there is
  // enough space on the stack to do so.  Use fast exceptions only if the guard
  // pages are enabled.
  bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
  if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();

  if (JvmtiExport::can_post_exceptions()) {
    // To ensure correct notification of exception catches and throws
    // we have to deoptimize here.  If we attempted to notify the
    // catches and throws during this exception lookup it's possible
    // we could deoptimize on the way out of the VM and end back in
    // the interpreter at the throw site.  This would result in double
    // notifications since the interpreter would also notify about
    // these same catches and throws as it unwound the frame.

    RegisterMap reg_map(thread);
    frame stub_frame = thread->last_frame();
    frame caller_frame = stub_frame.sender(&reg_map);

    // We don't really want to deoptimize the nmethod itself since we
    // can actually continue in the exception handler ourselves but I
    // don't see an easy way to have the desired effect.
    VM_DeoptimizeFrame deopt(thread, caller_frame.id());
    VMThread::execute(&deopt);

    return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
  }

  // ExceptionCache is used only for exceptions at call and not for implicit exceptions
  if (guard_pages_enabled) {
    address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
    if (fast_continuation != NULL) {
      if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
      return fast_continuation;
    }
  }

  // If the stack guard pages are enabled, check whether there is a handler in
  // the current method.  Otherwise (guard pages disabled), force an unwind and
  // skip the exception cache update (i.e., just leave continuation==NULL).
  address continuation = NULL;
  if (guard_pages_enabled) {

    // New exception handling mechanism can support inlined methods
    // with exception handlers since the mappings are from PC to PC

    // debugging support
    // tracing
    if (TraceExceptions) {
      ttyLocker ttyl;
      ResourceMark rm;
      tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
                    exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
    }
    // for AbortVMOnException flag
    NOT_PRODUCT(Exceptions::debug_check_abort(exception));

    // Clear out the exception oop and pc since looking up an
    // exception handler can cause class loading, which might throw an
    // exception and those fields are expected to be clear during
    // normal bytecode execution.
    thread->set_exception_oop(NULL);
    thread->set_exception_pc(NULL);

    continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
    // If an exception was thrown during exception dispatch, the exception oop may have changed
    thread->set_exception_oop(exception());
    thread->set_exception_pc(pc);

    // the exception cache is used only by non-implicit exceptions
    if (continuation == NULL) {
      nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
    } else {
      nm->add_handler_for_exception_and_pc(exception, pc, continuation);
    }
  }

  thread->set_vm_result(exception());

  if (TraceExceptions) {
    ttyLocker ttyl;
    ResourceMark rm;
    tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
                  thread, continuation, pc);
  }

  return continuation;
JRT_END

// Enter this method from compiled code only if there is a Java exception handler
// in the method handling the exception
// We are entering here from exception stub. We don't do a normal VM transition here.
// We do it in a helper. This is so we can check to see if the nmethod we have just
// searched for an exception handler has been deoptimized in the meantime.
address  Runtime1::exception_handler_for_pc(JavaThread* thread) {
  oop exception = thread->exception_oop();
  address pc = thread->exception_pc();
  // Still in Java mode
  debug_only(ResetNoHandleMark rnhm);
  nmethod* nm = NULL;
  address continuation = NULL;
  {
    // Enter VM mode by calling the helper

    ResetNoHandleMark rnhm;
    continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
  }
  // Back in JAVA, use no oops DON'T safepoint

  // Now check to see if the nmethod we were called from is now deoptimized.
  // If so we must return to the deopt blob and deoptimize the nmethod

  if (nm != NULL && caller_is_deopted()) {
    continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
  }

  return continuation;
}


JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
  NOT_PRODUCT(_throw_range_check_exception_count++;)
  Events::log("throw_range_check");
  char message[jintAsStringSize];
  sprintf(message, "%d", index);
  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
JRT_END


JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
  NOT_PRODUCT(_throw_index_exception_count++;)
  Events::log("throw_index");
  char message[16];
  sprintf(message, "%d", index);
  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
JRT_END


JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
  NOT_PRODUCT(_throw_div0_exception_count++;)
  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
JRT_END


JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
  NOT_PRODUCT(_throw_null_pointer_exception_count++;)
  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
JRT_END


JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
  NOT_PRODUCT(_throw_class_cast_exception_count++;)
  ResourceMark rm(thread);
  char* message = SharedRuntime::generate_class_cast_message(
    thread, Klass::cast(object->klass())->external_name());
  SharedRuntime::throw_and_post_jvmti_exception(
    thread, vmSymbols::java_lang_ClassCastException(), message);
JRT_END


JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
  NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
  ResourceMark rm(thread);
  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
JRT_END


JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
  NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
  if (PrintBiasedLockingStatistics) {
    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  }
  Handle h_obj(thread, obj);
  assert(h_obj()->is_oop(), "must be NULL or an object");
  if (UseBiasedLocking) {
    // Retry fast entry if bias is revoked to avoid unnecessary inflation
    ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
  } else {
    if (UseFastLocking) {
      // When using fast locking, the compiled code has already tried the fast case
      assert(obj == lock->obj(), "must match");
      ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
    } else {
      lock->set_obj(obj);
      ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
    }
  }
JRT_END


JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
  NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
  assert(thread == JavaThread::current(), "threads must correspond");
  assert(thread->last_Java_sp(), "last_Java_sp must be set");
  // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
  EXCEPTION_MARK;

  oop obj = lock->obj();
  assert(obj->is_oop(), "must be NULL or an object");
  if (UseFastLocking) {
    // When using fast locking, the compiled code has already tried the fast case
    ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
  } else {
    ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
  }
JRT_END


static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
  Bytecode_field* field_access = Bytecode_field_at(caller(), caller->bcp_from(bci));
  // This can be static or non-static field access
  Bytecodes::Code code       = field_access->code();

  // We must load class, initialize class and resolvethe field
  FieldAccessInfo result; // initialize class if needed
  constantPoolHandle constants(THREAD, caller->constants());
  LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
  return result.klass()();
}


//
// This routine patches sites where a class wasn't loaded or
// initialized at the time the code was generated.  It handles
// references to classes, fields and forcing of initialization.  Most
// of the cases are straightforward and involving simply forcing
// resolution of a class, rewriting the instruction stream with the
// needed constant and replacing the call in this function with the
// patched code.  The case for static field is more complicated since
// the thread which is in the process of initializing a class can
// access it's static fields but other threads can't so the code
// either has to deoptimize when this case is detected or execute a
// check that the current thread is the initializing thread.  The
// current
//
// Patches basically look like this:
//
//
// patch_site: jmp patch stub     ;; will be patched
// continue:   ...
//             ...
//             ...
//             ...
//
// They have a stub which looks like this:
//
//             ;; patch body
//             movl <const>, reg           (for class constants)
//        <or> movl [reg1 + <const>], reg  (for field offsets)
//        <or> movl reg, [reg1 + <const>]  (for field offsets)
//             <being_init offset> <bytes to copy> <bytes to skip>
// patch_stub: call Runtime1::patch_code (through a runtime stub)
//             jmp patch_site
//
//
// A normal patch is done by rewriting the patch body, usually a move,
// and then copying it into place over top of the jmp instruction
// being careful to flush caches and doing it in an MP-safe way.  The
// constants following the patch body are used to find various pieces
// of the patch relative to the call site for Runtime1::patch_code.
// The case for getstatic and putstatic is more complicated because
// getstatic and putstatic have special semantics when executing while
// the class is being initialized.  getstatic/putstatic on a class
// which is being_initialized may be executed by the initializing
// thread but other threads have to block when they execute it.  This
// is accomplished in compiled code by executing a test of the current
// thread against the initializing thread of the class.  It's emitted
// as boilerplate in their stub which allows the patched code to be
// executed before it's copied back into the main body of the nmethod.
//
// being_init: get_thread(<tmp reg>
//             cmpl [reg1 + <init_thread_offset>], <tmp reg>
//             jne patch_stub
//             movl [reg1 + <const>], reg  (for field offsets)  <or>
//             movl reg, [reg1 + <const>]  (for field offsets)
//             jmp continue
//             <being_init offset> <bytes to copy> <bytes to skip>
// patch_stub: jmp Runtim1::patch_code (through a runtime stub)
//             jmp patch_site
//
// If the class is being initialized the patch body is rewritten and
// the patch site is rewritten to jump to being_init, instead of
// patch_stub.  Whenever this code is executed it checks the current
// thread against the intializing thread so other threads will enter
// the runtime and end up blocked waiting the class to finish
// initializing inside the calls to resolve_field below.  The
// initializing class will continue on it's way.  Once the class is
// fully_initialized, the intializing_thread of the class becomes
// NULL, so the next thread to execute this code will fail the test,
// call into patch_code and complete the patching process by copying
// the patch body back into the main part of the nmethod and resume
// executing.
//
//

JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
  NOT_PRODUCT(_patch_code_slowcase_cnt++;)

  ResourceMark rm(thread);
  RegisterMap reg_map(thread, false);
  frame runtime_frame = thread->last_frame();
  frame caller_frame = runtime_frame.sender(&reg_map);

  // last java frame on stack
  vframeStream vfst(thread, true);
  assert(!vfst.at_end(), "Java frame must exist");

  methodHandle caller_method(THREAD, vfst.method());
  // Note that caller_method->code() may not be same as caller_code because of OSR's
  // Note also that in the presence of inlining it is not guaranteed
  // that caller_method() == caller_code->method()


  int bci = vfst.bci();

  Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());

  Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();

#ifndef PRODUCT
  // this is used by assertions in the access_field_patching_id
  BasicType patch_field_type = T_ILLEGAL;
#endif // PRODUCT
  bool deoptimize_for_volatile = false;
  int patch_field_offset = -1;
  KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
  Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
  if (stub_id == Runtime1::access_field_patching_id) {

    Bytecode_field* field_access = Bytecode_field_at(caller_method(), caller_method->bcp_from(bci));
    FieldAccessInfo result; // initialize class if needed
    Bytecodes::Code code = field_access->code();
    constantPoolHandle constants(THREAD, caller_method->constants());
    LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
    patch_field_offset = result.field_offset();

    // If we're patching a field which is volatile then at compile it
    // must not have been know to be volatile, so the generated code
    // isn't correct for a volatile reference.  The nmethod has to be
    // deoptimized so that the code can be regenerated correctly.
    // This check is only needed for access_field_patching since this
    // is the path for patching field offsets.  load_klass is only
    // used for patching references to oops which don't need special
    // handling in the volatile case.
    deoptimize_for_volatile = result.access_flags().is_volatile();

#ifndef PRODUCT
    patch_field_type = result.field_type();
#endif
  } else if (stub_id == Runtime1::load_klass_patching_id) {
    oop k;
    switch (code) {
      case Bytecodes::_putstatic:
      case Bytecodes::_getstatic:
        { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
          // Save a reference to the class that has to be checked for initialization
          init_klass = KlassHandle(THREAD, klass);
          k = klass;
        }
        break;
      case Bytecodes::_new:
        { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
          k = caller_method->constants()->klass_at(bnew->index(), CHECK);
        }
        break;
      case Bytecodes::_multianewarray:
        { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
          k = caller_method->constants()->klass_at(mna->index(), CHECK);
        }
        break;
      case Bytecodes::_instanceof:
        { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
          k = caller_method->constants()->klass_at(io->index(), CHECK);
        }
        break;
      case Bytecodes::_checkcast:
        { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
          k = caller_method->constants()->klass_at(cc->index(), CHECK);
        }
        break;
      case Bytecodes::_anewarray:
        { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
          klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
          k = Klass::cast(ek)->array_klass(CHECK);
        }
        break;
      case Bytecodes::_ldc:
      case Bytecodes::_ldc_w:
        {
          Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method(),
                                                               caller_method->bcp_from(bci));
          klassOop resolved = caller_method->constants()->klass_at(cc->index(), CHECK);
          // ldc wants the java mirror.
          k = resolved->klass_part()->java_mirror();
        }
        break;
      default: Unimplemented();
    }
    // convert to handle
    load_klass = Handle(THREAD, k);
  } else {
    ShouldNotReachHere();
  }

  if (deoptimize_for_volatile) {
    // At compile time we assumed the field wasn't volatile but after
    // loading it turns out it was volatile so we have to throw the
    // compiled code out and let it be regenerated.
    if (TracePatching) {
      tty->print_cr("Deoptimizing for patching volatile field reference");
    }
    VM_DeoptimizeFrame deopt(thread, caller_frame.id());
    VMThread::execute(&deopt);

    // Return to the now deoptimized frame.
  }


  // Now copy code back

  {
    MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
    //
    // Deoptimization may have happened while we waited for the lock.
    // In that case we don't bother to do any patching we just return
    // and let the deopt happen
    if (!caller_is_deopted()) {
      NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
      address instr_pc = jump->jump_destination();
      NativeInstruction* ni = nativeInstruction_at(instr_pc);
      if (ni->is_jump() ) {
        // the jump has not been patched yet
        // The jump destination is slow case and therefore not part of the stubs
        // (stubs are only for StaticCalls)

        // format of buffer
        //    ....
        //    instr byte 0     <-- copy_buff
        //    instr byte 1
        //    ..
        //    instr byte n-1
        //      n
        //    ....             <-- call destination

        address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
        unsigned char* byte_count = (unsigned char*) (stub_location - 1);
        unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
        unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
        address copy_buff = stub_location - *byte_skip - *byte_count;
        address being_initialized_entry = stub_location - *being_initialized_entry_offset;
        if (TracePatching) {
          tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
                        instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
          nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
          assert(caller_code != NULL, "nmethod not found");

          // NOTE we use pc() not original_pc() because we already know they are
          // identical otherwise we'd have never entered this block of code

          OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
          assert(map != NULL, "null check");
          map->print();
          tty->cr();

          Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
        }
        // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
        bool do_patch = true;
        if (stub_id == Runtime1::access_field_patching_id) {
          // The offset may not be correct if the class was not loaded at code generation time.
          // Set it now.
          NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
          assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
          assert(patch_field_offset >= 0, "illegal offset");
          n_move->add_offset_in_bytes(patch_field_offset);
        } else if (stub_id == Runtime1::load_klass_patching_id) {
          // If a getstatic or putstatic is referencing a klass which
          // isn't fully initialized, the patch body isn't copied into
          // place until initialization is complete.  In this case the
          // patch site is setup so that any threads besides the
          // initializing thread are forced to come into the VM and
          // block.
          do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
                     instanceKlass::cast(init_klass())->is_initialized();
          NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
          if (jump->jump_destination() == being_initialized_entry) {
            assert(do_patch == true, "initialization must be complete at this point");
          } else {
            // patch the instruction <move reg, klass>
            NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
            assert(n_copy->data() == 0, "illegal init value");
            assert(load_klass() != NULL, "klass not set");
            n_copy->set_data((intx) (load_klass()));

            if (TracePatching) {
              Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
            }

#ifdef SPARC
            // Update the oop location in the nmethod with the proper
            // oop.  When the code was generated, a NULL was stuffed
            // in the oop table and that table needs to be update to
            // have the right value.  On intel the value is kept
            // directly in the instruction instead of in the oop
            // table, so set_data above effectively updated the value.
            nmethod* nm = CodeCache::find_nmethod(instr_pc);
            assert(nm != NULL, "invalid nmethod_pc");
            RelocIterator oops(nm, copy_buff, copy_buff + 1);
            bool found = false;
            while (oops.next() && !found) {
              if (oops.type() == relocInfo::oop_type) {
                oop_Relocation* r = oops.oop_reloc();
                oop* oop_adr = r->oop_addr();
                *oop_adr = load_klass();
                r->fix_oop_relocation();
                found = true;
              }
            }
            assert(found, "the oop must exist!");
#endif

          }
        } else {
          ShouldNotReachHere();
        }
        if (do_patch) {
          // replace instructions
          // first replace the tail, then the call
          for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
            address ptr = copy_buff + i;
            int a_byte = (*ptr) & 0xFF;
            address dst = instr_pc + i;
            *(unsigned char*)dst = (unsigned char) a_byte;
          }
          ICache::invalidate_range(instr_pc, *byte_count);
          NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);

          if (stub_id == Runtime1::load_klass_patching_id) {
            // update relocInfo to oop
            nmethod* nm = CodeCache::find_nmethod(instr_pc);
            assert(nm != NULL, "invalid nmethod_pc");

            // The old patch site is now a move instruction so update
            // the reloc info so that it will get updated during
            // future GCs.
            RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
            relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
                                                     relocInfo::none, relocInfo::oop_type);
#ifdef SPARC
            // Sparc takes two relocations for an oop so update the second one.
            address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
                                                     relocInfo::none, relocInfo::oop_type);
#endif
          }

        } else {
          ICache::invalidate_range(copy_buff, *byte_count);
          NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
        }
      }
    }
  }
JRT_END

//
// Entry point for compiled code. We want to patch a nmethod.
// We don't do a normal VM transition here because we want to
// know after the patching is complete and any safepoint(s) are taken
// if the calling nmethod was deoptimized. We do this by calling a
// helper method which does the normal VM transition and when it
// completes we can check for deoptimization. This simplifies the
// assembly code in the cpu directories.
//
int Runtime1::move_klass_patching(JavaThread* thread) {
//
// NOTE: we are still in Java
//
  Thread* THREAD = thread;
  debug_only(NoHandleMark nhm;)
  {
    // Enter VM mode

    ResetNoHandleMark rnhm;
    patch_code(thread, load_klass_patching_id);
  }
  // Back in JAVA, use no oops DON'T safepoint

  // Return true if calling code is deoptimized

  return caller_is_deopted();
}

//
// Entry point for compiled code. We want to patch a nmethod.
// We don't do a normal VM transition here because we want to
// know after the patching is complete and any safepoint(s) are taken
// if the calling nmethod was deoptimized. We do this by calling a
// helper method which does the normal VM transition and when it
// completes we can check for deoptimization. This simplifies the
// assembly code in the cpu directories.
//

int Runtime1::access_field_patching(JavaThread* thread) {
//
// NOTE: we are still in Java
//
  Thread* THREAD = thread;
  debug_only(NoHandleMark nhm;)
  {
    // Enter VM mode

    ResetNoHandleMark rnhm;
    patch_code(thread, access_field_patching_id);
  }
  // Back in JAVA, use no oops DON'T safepoint

  // Return true if calling code is deoptimized

  return caller_is_deopted();
JRT_END


JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
  // for now we just print out the block id
  tty->print("%d ", block_id);
JRT_END


1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
// Array copy return codes.
enum {
  ac_failed = -1, // arraycopy failed
  ac_ok = 0       // arraycopy succeeded
};


template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
                                          oopDesc* dst, T* dst_addr,
                                          int length) {

  // For performance reasons, we assume we are using a card marking write
  // barrier. The assert will fail if this is not the case.
  // Note that we use the non-virtual inlineable variant of write_ref_array.
  BarrierSet* bs = Universe::heap()->barrier_set();
  assert(bs->has_write_ref_array_opt(),
         "Barrier set must have ref array opt");
  if (src == dst) {
    // same object, no check
    Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
    bs->write_ref_array(MemRegion((HeapWord*)dst_addr,
                                  (HeapWord*)(dst_addr + length)));
    return ac_ok;
  } else {
    klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
    klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
    if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
      // Elements are guaranteed to be subtypes, so no check necessary
      Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
      bs->write_ref_array(MemRegion((HeapWord*)dst_addr,
                                    (HeapWord*)(dst_addr + length)));
      return ac_ok;
    }
  }
  return ac_failed;
}

D
duke 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
// fast and direct copy of arrays; returning -1, means that an exception may be thrown
// and we did not copy anything
JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
#ifndef PRODUCT
  _generic_arraycopy_cnt++;        // Slow-path oop array copy
#endif

  if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
  if (!dst->is_array() || !src->is_array()) return ac_failed;
  if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
  if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;

  if (length == 0) return ac_ok;
  if (src->is_typeArray()) {
    const klassOop klass_oop = src->klass();
    if (klass_oop != dst->klass()) return ac_failed;
    typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
    const int l2es = klass->log2_element_size();
    const int ihs = klass->array_header_in_bytes() / wordSize;
    char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
    char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
    // Potential problem: memmove is not guaranteed to be word atomic
    // Revisit in Merlin
    memmove(dst_addr, src_addr, length << l2es);
    return ac_ok;
  } else if (src->is_objArray() && dst->is_objArray()) {
1140 1141 1142 1143
    if (UseCompressedOops) {  // will need for tiered
      narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
      narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
D
duke 已提交
1144
    } else {
1145 1146 1147
      oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
      oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
D
duke 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    }
  }
  return ac_failed;
JRT_END


JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
#ifndef PRODUCT
  _primitive_arraycopy_cnt++;
#endif

  if (length == 0) return;
  // Not guaranteed to be word atomic, but that doesn't matter
  // for anything but an oop array, which is covered by oop_arraycopy.
  Copy::conjoint_bytes(src, dst, length);
JRT_END

JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
#ifndef PRODUCT
  _oop_arraycopy_cnt++;
#endif

  if (num == 0) return;
  Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
  BarrierSet* bs = Universe::heap()->barrier_set();
  bs->write_ref_array(MemRegion(dst, dst + num));
JRT_END


#ifndef PRODUCT
void Runtime1::print_statistics() {
  tty->print_cr("C1 Runtime statistics:");
  tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
  tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
  tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
  tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
  tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
  tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
  tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
  tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_cnt);
  tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);

  tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
  tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
  tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
  tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
  tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
  tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
  tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);

  tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
  tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
  tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
  tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
  tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
  tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
  tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
  tty->print_cr(" _throw_count:                                  %d:", _throw_count);

  SharedRuntime::print_ic_miss_histogram();
  tty->cr();
}
#endif // PRODUCT