genCollectedHeap.cpp 48.4 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 2000-2009 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_genCollectedHeap.cpp.incl"

GenCollectedHeap* GenCollectedHeap::_gch;
NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)

// The set of potentially parallel tasks in strong root scanning.
enum GCH_process_strong_roots_tasks {
  // We probably want to parallelize both of these internally, but for now...
  GCH_PS_younger_gens,
  // Leave this one last.
  GCH_PS_NumElements
};

GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  SharedHeap(policy),
  _gen_policy(policy),
  _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  _full_collections_completed(0)
{
  if (_gen_process_strong_tasks == NULL ||
      !_gen_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
  assert(policy != NULL, "Sanity check");
  _preloading_shared_classes = false;
}

jint GenCollectedHeap::initialize() {
  int i;
  _n_gens = gen_policy()->number_of_generations();

  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  // The heap must be at least as aligned as generations.
  size_t alignment = Generation::GenGrain;

  _gen_specs = gen_policy()->generations();
  PermanentGenerationSpec *perm_gen_spec =
                                collector_policy()->permanent_generation();

  // Make sure the sizes are all aligned.
  for (i = 0; i < _n_gens; i++) {
    _gen_specs[i]->align(alignment);
  }
  perm_gen_spec->align(alignment);

  // If we are dumping the heap, then allocate a wasted block of address
  // space in order to push the heap to a lower address.  This extra
  // address range allows for other (or larger) libraries to be loaded
  // without them occupying the space required for the shared spaces.

  if (DumpSharedSpaces) {
    uintx reserved = 0;
    uintx block_size = 64*1024*1024;
    while (reserved < SharedDummyBlockSize) {
      char* dummy = os::reserve_memory(block_size);
      reserved += block_size;
    }
  }

  // Allocate space for the heap.

  char* heap_address;
  size_t total_reserved = 0;
  int n_covered_regions = 0;
  ReservedSpace heap_rs(0);

  heap_address = allocate(alignment, perm_gen_spec, &total_reserved,
                          &n_covered_regions, &heap_rs);

  if (UseSharedSpaces) {
    if (!heap_rs.is_reserved() || heap_address != heap_rs.base()) {
      if (heap_rs.is_reserved()) {
        heap_rs.release();
      }
      FileMapInfo* mapinfo = FileMapInfo::current_info();
      mapinfo->fail_continue("Unable to reserve shared region.");
      allocate(alignment, perm_gen_spec, &total_reserved, &n_covered_regions,
               &heap_rs);
    }
  }

  if (!heap_rs.is_reserved()) {
    vm_shutdown_during_initialization(
      "Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }

  _reserved = MemRegion((HeapWord*)heap_rs.base(),
                        (HeapWord*)(heap_rs.base() + heap_rs.size()));

  // It is important to do this in a way such that concurrent readers can't
  // temporarily think somethings in the heap.  (Seen this happen in asserts.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  size_t actual_heap_size = heap_rs.size() - perm_gen_spec->misc_data_size()
                                           - perm_gen_spec->misc_code_size();
  _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));

  _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
  set_barrier_set(rem_set()->bs());
  _gch = this;

  for (i = 0; i < _n_gens; i++) {
    ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(),
                                              UseSharedSpaces, UseSharedSpaces);
    _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
    heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
  }
  _perm_gen = perm_gen_spec->init(heap_rs, PermSize, rem_set());

  clear_incremental_collection_will_fail();
  clear_last_incremental_collection_failed();

#ifndef SERIALGC
  // If we are running CMS, create the collector responsible
  // for collecting the CMS generations.
  if (collector_policy()->is_concurrent_mark_sweep_policy()) {
    bool success = create_cms_collector();
    if (!success) return JNI_ENOMEM;
  }
#endif // SERIALGC

  return JNI_OK;
}


char* GenCollectedHeap::allocate(size_t alignment,
                                 PermanentGenerationSpec* perm_gen_spec,
                                 size_t* _total_reserved,
                                 int* _n_covered_regions,
                                 ReservedSpace* heap_rs){
  const char overflow_msg[] = "The size of the object heap + VM data exceeds "
    "the maximum representable size";

  // Now figure out the total size.
  size_t total_reserved = 0;
  int n_covered_regions = 0;
  const size_t pageSize = UseLargePages ?
      os::large_page_size() : os::vm_page_size();

  for (int i = 0; i < _n_gens; i++) {
    total_reserved += _gen_specs[i]->max_size();
    if (total_reserved < _gen_specs[i]->max_size()) {
      vm_exit_during_initialization(overflow_msg);
    }
    n_covered_regions += _gen_specs[i]->n_covered_regions();
  }
  assert(total_reserved % pageSize == 0, "Gen size");
  total_reserved += perm_gen_spec->max_size();
  assert(total_reserved % pageSize == 0, "Perm Gen size");

  if (total_reserved < perm_gen_spec->max_size()) {
    vm_exit_during_initialization(overflow_msg);
  }
  n_covered_regions += perm_gen_spec->n_covered_regions();

  // Add the size of the data area which shares the same reserved area
  // as the heap, but which is not actually part of the heap.
  size_t s = perm_gen_spec->misc_data_size() + perm_gen_spec->misc_code_size();

  total_reserved += s;
  if (total_reserved < s) {
    vm_exit_during_initialization(overflow_msg);
  }

  if (UseLargePages) {
    assert(total_reserved != 0, "total_reserved cannot be 0");
    total_reserved = round_to(total_reserved, os::large_page_size());
    if (total_reserved < os::large_page_size()) {
      vm_exit_during_initialization(overflow_msg);
    }
  }

  // Calculate the address at which the heap must reside in order for
  // the shared data to be at the required address.

  char* heap_address;
  if (UseSharedSpaces) {

    // Calculate the address of the first word beyond the heap.
    FileMapInfo* mapinfo = FileMapInfo::current_info();
    int lr = CompactingPermGenGen::n_regions - 1;
    size_t capacity = align_size_up(mapinfo->space_capacity(lr), alignment);
    heap_address = mapinfo->region_base(lr) + capacity;

    // Calculate the address of the first word of the heap.
    heap_address -= total_reserved;
  } else {
    heap_address = NULL;  // any address will do.
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    if (UseCompressedOops) {
      heap_address = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
      *_total_reserved = total_reserved;
      *_n_covered_regions = n_covered_regions;
      *heap_rs = ReservedHeapSpace(total_reserved, alignment,
                                   UseLargePages, heap_address);

      if (heap_address != NULL && !heap_rs->is_reserved()) {
        // Failed to reserve at specified address - the requested memory
        // region is taken already, for example, by 'java' launcher.
        // Try again to reserver heap higher.
        heap_address = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
        *heap_rs = ReservedHeapSpace(total_reserved, alignment,
                                     UseLargePages, heap_address);

        if (heap_address != NULL && !heap_rs->is_reserved()) {
          // Failed to reserve at specified address again - give up.
          heap_address = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
          assert(heap_address == NULL, "");
          *heap_rs = ReservedHeapSpace(total_reserved, alignment,
                                       UseLargePages, heap_address);
        }
      }
      return heap_address;
    }
D
duke 已提交
246 247 248 249
  }

  *_total_reserved = total_reserved;
  *_n_covered_regions = n_covered_regions;
250 251
  *heap_rs = ReservedHeapSpace(total_reserved, alignment,
                               UseLargePages, heap_address);
D
duke 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

  return heap_address;
}


void GenCollectedHeap::post_initialize() {
  SharedHeap::post_initialize();
  TwoGenerationCollectorPolicy *policy =
    (TwoGenerationCollectorPolicy *)collector_policy();
  guarantee(policy->is_two_generation_policy(), "Illegal policy type");
  DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
  assert(def_new_gen->kind() == Generation::DefNew ||
         def_new_gen->kind() == Generation::ParNew ||
         def_new_gen->kind() == Generation::ASParNew,
         "Wrong generation kind");

  Generation* old_gen = get_gen(1);
  assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
         old_gen->kind() == Generation::ASConcurrentMarkSweep ||
         old_gen->kind() == Generation::MarkSweepCompact,
    "Wrong generation kind");

  policy->initialize_size_policy(def_new_gen->eden()->capacity(),
                                 old_gen->capacity(),
                                 def_new_gen->from()->capacity());
  policy->initialize_gc_policy_counters();
}

void GenCollectedHeap::ref_processing_init() {
  SharedHeap::ref_processing_init();
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->ref_processor_init();
  }
}

size_t GenCollectedHeap::capacity() const {
  size_t res = 0;
  for (int i = 0; i < _n_gens; i++) {
    res += _gens[i]->capacity();
  }
  return res;
}

size_t GenCollectedHeap::used() const {
  size_t res = 0;
  for (int i = 0; i < _n_gens; i++) {
    res += _gens[i]->used();
  }
  return res;
}

// Save the "used_region" for generations level and lower,
// and, if perm is true, for perm gen.
void GenCollectedHeap::save_used_regions(int level, bool perm) {
  assert(level < _n_gens, "Illegal level parameter");
  for (int i = level; i >= 0; i--) {
    _gens[i]->save_used_region();
  }
  if (perm) {
    perm_gen()->save_used_region();
  }
}

size_t GenCollectedHeap::max_capacity() const {
  size_t res = 0;
  for (int i = 0; i < _n_gens; i++) {
    res += _gens[i]->max_capacity();
  }
  return res;
}

// Update the _full_collections_completed counter
// at the end of a stop-world full GC.
unsigned int GenCollectedHeap::update_full_collections_completed() {
  MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  assert(_full_collections_completed <= _total_full_collections,
         "Can't complete more collections than were started");
  _full_collections_completed = _total_full_collections;
  ml.notify_all();
  return _full_collections_completed;
}

// Update the _full_collections_completed counter, as appropriate,
// at the end of a concurrent GC cycle. Note the conditional update
// below to allow this method to be called by a concurrent collector
// without synchronizing in any manner with the VM thread (which
// may already have initiated a STW full collection "concurrently").
unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
  MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  assert((_full_collections_completed <= _total_full_collections) &&
         (count <= _total_full_collections),
         "Can't complete more collections than were started");
  if (count > _full_collections_completed) {
    _full_collections_completed = count;
    ml.notify_all();
  }
  return _full_collections_completed;
}


#ifndef PRODUCT
// Override of memory state checking method in CollectedHeap:
// Some collectors (CMS for example) can't have badHeapWordVal written
// in the first two words of an object. (For instance , in the case of
// CMS these words hold state used to synchronize between certain
// (concurrent) GC steps and direct allocating mutators.)
// The skip_header_HeapWords() method below, allows us to skip
// over the requisite number of HeapWord's. Note that (for
// generational collectors) this means that those many words are
// skipped in each object, irrespective of the generation in which
// that object lives. The resultant loss of precision seems to be
// harmless and the pain of avoiding that imprecision appears somewhat
// higher than we are prepared to pay for such rudimentary debugging
// support.
void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
                                                         size_t size) {
  if (CheckMemoryInitialization && ZapUnusedHeapArea) {
    // We are asked to check a size in HeapWords,
    // but the memory is mangled in juint words.
    juint* start = (juint*) (addr + skip_header_HeapWords());
    juint* end   = (juint*) (addr + size);
    for (juint* slot = start; slot < end; slot += 1) {
      assert(*slot == badHeapWordVal,
             "Found non badHeapWordValue in pre-allocation check");
    }
  }
}
#endif

HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
                                               bool is_tlab,
                                               bool first_only) {
  HeapWord* res;
  for (int i = 0; i < _n_gens; i++) {
    if (_gens[i]->should_allocate(size, is_tlab)) {
      res = _gens[i]->allocate(size, is_tlab);
      if (res != NULL) return res;
      else if (first_only) break;
    }
  }
  // Otherwise...
  return NULL;
}

HeapWord* GenCollectedHeap::mem_allocate(size_t size,
                                         bool is_large_noref,
                                         bool is_tlab,
                                         bool* gc_overhead_limit_was_exceeded) {
  return collector_policy()->mem_allocate_work(size,
                                               is_tlab,
                                               gc_overhead_limit_was_exceeded);
}

bool GenCollectedHeap::must_clear_all_soft_refs() {
  return _gc_cause == GCCause::_last_ditch_collection;
}

bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  return (cause == GCCause::_java_lang_system_gc ||
          cause == GCCause::_gc_locker) &&
         UseConcMarkSweepGC && ExplicitGCInvokesConcurrent;
}

void GenCollectedHeap::do_collection(bool  full,
                                     bool   clear_all_soft_refs,
                                     size_t size,
                                     bool   is_tlab,
                                     int    max_level) {
  bool prepared_for_verification = false;
  ResourceMark rm;
  DEBUG_ONLY(Thread* my_thread = Thread::current();)

  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(my_thread->is_VM_thread() ||
         my_thread->is_ConcurrentGC_thread(),
         "incorrect thread type capability");
  assert(Heap_lock->is_locked(), "the requesting thread should have the Heap_lock");
  guarantee(!is_gc_active(), "collection is not reentrant");
  assert(max_level < n_gens(), "sanity check");

  if (GC_locker::check_active_before_gc()) {
    return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  }

  const size_t perm_prev_used = perm_gen()->used();

  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
    if (Verbose) {
      gclog_or_tty->print_cr("GC Cause: %s", GCCause::to_string(gc_cause()));
    }
  }

  {
    FlagSetting fl(_is_gc_active, true);

    bool complete = full && (max_level == (n_gens()-1));
    const char* gc_cause_str = "GC ";
    if (complete) {
      GCCause::Cause cause = gc_cause();
      if (cause == GCCause::_java_lang_system_gc) {
        gc_cause_str = "Full GC (System) ";
      } else {
        gc_cause_str = "Full GC ";
      }
    }
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    TraceTime t(gc_cause_str, PrintGCDetails, false, gclog_or_tty);

    gc_prologue(complete);
    increment_total_collections(complete);

    size_t gch_prev_used = used();

    int starting_level = 0;
    if (full) {
      // Search for the oldest generation which will collect all younger
      // generations, and start collection loop there.
      for (int i = max_level; i >= 0; i--) {
        if (_gens[i]->full_collects_younger_generations()) {
          starting_level = i;
          break;
        }
      }
    }

    bool must_restore_marks_for_biased_locking = false;

    int max_level_collected = starting_level;
    for (int i = starting_level; i <= max_level; i++) {
      if (_gens[i]->should_collect(full, size, is_tlab)) {
484
        if (i == n_gens() - 1) {  // a major collection is to happen
485 486 487 488
          if (!complete) {
            // The full_collections increment was missed above.
            increment_total_full_collections();
          }
489 490
          pre_full_gc_dump();    // do any pre full gc dumps
        }
D
duke 已提交
491 492 493 494 495 496 497 498 499
        // Timer for individual generations. Last argument is false: no CR
        TraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, gclog_or_tty);
        TraceCollectorStats tcs(_gens[i]->counters());
        TraceMemoryManagerStats tmms(_gens[i]->kind());

        size_t prev_used = _gens[i]->used();
        _gens[i]->stat_record()->invocations++;
        _gens[i]->stat_record()->accumulated_time.start();

500 501 502 503 504
        // Must be done anew before each collection because
        // a previous collection will do mangling and will
        // change top of some spaces.
        record_gen_tops_before_GC();

D
duke 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
        if (PrintGC && Verbose) {
          gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
                     i,
                     _gens[i]->stat_record()->invocations,
                     size*HeapWordSize);
        }

        if (VerifyBeforeGC && i >= VerifyGCLevel &&
            total_collections() >= VerifyGCStartAt) {
          HandleMark hm;  // Discard invalid handles created during verification
          if (!prepared_for_verification) {
            prepare_for_verify();
            prepared_for_verification = true;
          }
          gclog_or_tty->print(" VerifyBeforeGC:");
          Universe::verify(true);
        }
        COMPILER2_PRESENT(DerivedPointerTable::clear());

        if (!must_restore_marks_for_biased_locking &&
            _gens[i]->performs_in_place_marking()) {
          // We perform this mark word preservation work lazily
          // because it's only at this point that we know whether we
          // absolutely have to do it; we want to avoid doing it for
          // scavenge-only collections where it's unnecessary
          must_restore_marks_for_biased_locking = true;
          BiasedLocking::preserve_marks();
        }

        // Do collection work
        {
          // Note on ref discovery: For what appear to be historical reasons,
          // GCH enables and disabled (by enqueing) refs discovery.
          // In the future this should be moved into the generation's
          // collect method so that ref discovery and enqueueing concerns
          // are local to a generation. The collect method could return
          // an appropriate indication in the case that notification on
          // the ref lock was needed. This will make the treatment of
          // weak refs more uniform (and indeed remove such concerns
          // from GCH). XXX

          HandleMark hm;  // Discard invalid handles created during gc
          save_marks();   // save marks for all gens
          // We want to discover references, but not process them yet.
          // This mode is disabled in process_discovered_references if the
          // generation does some collection work, or in
          // enqueue_discovered_references if the generation returns
          // without doing any work.
          ReferenceProcessor* rp = _gens[i]->ref_processor();
          // If the discovery of ("weak") refs in this generation is
          // atomic wrt other collectors in this configuration, we
          // are guaranteed to have empty discovered ref lists.
          if (rp->discovery_is_atomic()) {
            rp->verify_no_references_recorded();
            rp->enable_discovery();
560
            rp->setup_policy(clear_all_soft_refs);
D
duke 已提交
561
          } else {
562
            // collect() below will enable discovery as appropriate
D
duke 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
          }
          _gens[i]->collect(full, clear_all_soft_refs, size, is_tlab);
          if (!rp->enqueuing_is_done()) {
            rp->enqueue_discovered_references();
          } else {
            rp->set_enqueuing_is_done(false);
          }
          rp->verify_no_references_recorded();
        }
        max_level_collected = i;

        // Determine if allocation request was met.
        if (size > 0) {
          if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
            if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
              size = 0;
            }
          }
        }

        COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

        _gens[i]->stat_record()->accumulated_time.stop();

        update_gc_stats(i, full);

        if (VerifyAfterGC && i >= VerifyGCLevel &&
            total_collections() >= VerifyGCStartAt) {
          HandleMark hm;  // Discard invalid handles created during verification
          gclog_or_tty->print(" VerifyAfterGC:");
          Universe::verify(false);
        }

        if (PrintGCDetails) {
          gclog_or_tty->print(":");
          _gens[i]->print_heap_change(prev_used);
        }
      }
    }

    // Update "complete" boolean wrt what actually transpired --
    // for instance, a promotion failure could have led to
    // a whole heap collection.
    complete = complete || (max_level_collected == n_gens() - 1);

608 609 610 611
    if (complete) { // We did a "major" collection
      post_full_gc_dump();   // do any post full gc dumps
    }

D
duke 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
    if (PrintGCDetails) {
      print_heap_change(gch_prev_used);

      // Print perm gen info for full GC with PrintGCDetails flag.
      if (complete) {
        print_perm_heap_change(perm_prev_used);
      }
    }

    for (int j = max_level_collected; j >= 0; j -= 1) {
      // Adjust generation sizes.
      _gens[j]->compute_new_size();
    }

    if (complete) {
      // Ask the permanent generation to adjust size for full collections
      perm()->compute_new_size();
      update_full_collections_completed();
    }

    // Track memory usage and detect low memory after GC finishes
    MemoryService::track_memory_usage();

    gc_epilogue(complete);

    if (must_restore_marks_for_biased_locking) {
      BiasedLocking::restore_marks();
    }
  }

  AdaptiveSizePolicy* sp = gen_policy()->size_policy();
  AdaptiveSizePolicyOutput(sp, total_collections());

  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }

649 650 651 652
#ifdef TRACESPINNING
  ParallelTaskTerminator::print_termination_counts();
#endif

D
duke 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
  if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
    tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
    vm_exit(-1);
  }
}

HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
  return collector_policy()->satisfy_failed_allocation(size, is_tlab);
}

void GenCollectedHeap::set_par_threads(int t) {
  SharedHeap::set_par_threads(t);
  _gen_process_strong_tasks->set_par_threads(t);
}

class AssertIsPermClosure: public OopClosure {
public:
  void do_oop(oop* p) {
    assert((*p) == NULL || (*p)->is_perm(), "Referent should be perm.");
  }
673
  void do_oop(narrowOop* p) { ShouldNotReachHere(); }
D
duke 已提交
674 675 676 677 678 679
};
static AssertIsPermClosure assert_is_perm_closure;

void GenCollectedHeap::
gen_process_strong_roots(int level,
                         bool younger_gens_as_roots,
680
                         bool activate_scope,
D
duke 已提交
681 682
                         bool collecting_perm_gen,
                         SharedHeap::ScanningOption so,
683 684 685
                         OopsInGenClosure* not_older_gens,
                         bool do_code_roots,
                         OopsInGenClosure* older_gens) {
D
duke 已提交
686
  // General strong roots.
687 688 689 690 691 692 693 694 695 696

  if (!do_code_roots) {
    SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
                                     not_older_gens, NULL, older_gens);
  } else {
    bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
    CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
    SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
                                     not_older_gens, &code_roots, older_gens);
  }
D
duke 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

  if (younger_gens_as_roots) {
    if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
      for (int i = 0; i < level; i++) {
        not_older_gens->set_generation(_gens[i]);
        _gens[i]->oop_iterate(not_older_gens);
      }
      not_older_gens->reset_generation();
    }
  }
  // When collection is parallel, all threads get to cooperate to do
  // older-gen scanning.
  for (int i = level+1; i < _n_gens; i++) {
    older_gens->set_generation(_gens[i]);
    rem_set()->younger_refs_iterate(_gens[i], older_gens);
    older_gens->reset_generation();
  }

  _gen_process_strong_tasks->all_tasks_completed();
}

void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
719
                                              CodeBlobClosure* code_roots,
D
duke 已提交
720
                                              OopClosure* non_root_closure) {
721
  SharedHeap::process_weak_roots(root_closure, code_roots, non_root_closure);
D
duke 已提交
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
  // "Local" "weak" refs
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->ref_processor()->weak_oops_do(root_closure);
  }
}

#define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
void GenCollectedHeap::                                                 \
oop_since_save_marks_iterate(int level,                                 \
                             OopClosureType* cur,                       \
                             OopClosureType* older) {                   \
  _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
  for (int i = level+1; i < n_gens(); i++) {                            \
    _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
  }                                                                     \
  perm_gen()->oop_since_save_marks_iterate##nv_suffix(older);           \
}

ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)

#undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN

bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
  for (int i = level; i < _n_gens; i++) {
    if (!_gens[i]->no_allocs_since_save_marks()) return false;
  }
  return perm_gen()->no_allocs_since_save_marks();
}

bool GenCollectedHeap::supports_inline_contig_alloc() const {
  return _gens[0]->supports_inline_contig_alloc();
}

HeapWord** GenCollectedHeap::top_addr() const {
  return _gens[0]->top_addr();
}

HeapWord** GenCollectedHeap::end_addr() const {
  return _gens[0]->end_addr();
}

size_t GenCollectedHeap::unsafe_max_alloc() {
  return _gens[0]->unsafe_max_alloc_nogc();
}

// public collection interfaces

void GenCollectedHeap::collect(GCCause::Cause cause) {
  if (should_do_concurrent_full_gc(cause)) {
#ifndef SERIALGC
    // mostly concurrent full collection
    collect_mostly_concurrent(cause);
#else  // SERIALGC
    ShouldNotReachHere();
#endif // SERIALGC
  } else {
#ifdef ASSERT
    if (cause == GCCause::_scavenge_alot) {
      // minor collection only
      collect(cause, 0);
    } else {
      // Stop-the-world full collection
      collect(cause, n_gens() - 1);
    }
#else
    // Stop-the-world full collection
    collect(cause, n_gens() - 1);
#endif
  }
}

void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
  // The caller doesn't have the Heap_lock
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  MutexLocker ml(Heap_lock);
  collect_locked(cause, max_level);
}

// This interface assumes that it's being called by the
// vm thread. It collects the heap assuming that the
// heap lock is already held and that we are executing in
// the context of the vm thread.
void GenCollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  assert(Thread::current()->is_VM_thread(), "Precondition#1");
  assert(Heap_lock->is_locked(), "Precondition#2");
  GCCauseSetter gcs(this, cause);
  switch (cause) {
    case GCCause::_heap_inspection:
    case GCCause::_heap_dump: {
      HandleMark hm;
      do_full_collection(false,         // don't clear all soft refs
                         n_gens() - 1);
      break;
    }
    default: // XXX FIX ME
      ShouldNotReachHere(); // Unexpected use of this function
  }
}

void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
  // The caller has the Heap_lock
  assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
  collect_locked(cause, n_gens() - 1);
}

// this is the private collection interface
// The Heap_lock is expected to be held on entry.

void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
  if (_preloading_shared_classes) {
    warning("\nThe permanent generation is not large enough to preload "
            "requested classes.\nUse -XX:PermSize= to increase the initial "
            "size of the permanent generation.\n");
    vm_exit(2);
  }
  // Read the GC count while holding the Heap_lock
  unsigned int gc_count_before      = total_collections();
  unsigned int full_gc_count_before = total_full_collections();
  {
    MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
    VM_GenCollectFull op(gc_count_before, full_gc_count_before,
                         cause, max_level);
    VMThread::execute(&op);
  }
}

#ifndef SERIALGC
bool GenCollectedHeap::create_cms_collector() {

  assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
         (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)) &&
         _perm_gen->as_gen()->kind() == Generation::ConcurrentMarkSweep,
         "Unexpected generation kinds");
  // Skip two header words in the block content verification
  NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
  CMSCollector* collector = new CMSCollector(
    (ConcurrentMarkSweepGeneration*)_gens[1],
    (ConcurrentMarkSweepGeneration*)_perm_gen->as_gen(),
    _rem_set->as_CardTableRS(),
    (ConcurrentMarkSweepPolicy*) collector_policy());

  if (collector == NULL || !collector->completed_initialization()) {
    if (collector) {
      delete collector;  // Be nice in embedded situation
    }
    vm_shutdown_during_initialization("Could not create CMS collector");
    return false;
  }
  return true;  // success
}

void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
  assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");

  MutexLocker ml(Heap_lock);
  // Read the GC counts while holding the Heap_lock
  unsigned int full_gc_count_before = total_full_collections();
  unsigned int gc_count_before      = total_collections();
  {
    MutexUnlocker mu(Heap_lock);
    VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
    VMThread::execute(&op);
  }
}
#endif // SERIALGC


void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
                                          int max_level) {
  int local_max_level;
  if (!incremental_collection_will_fail() &&
      gc_cause() == GCCause::_gc_locker) {
    local_max_level = 0;
  } else {
    local_max_level = max_level;
  }

  do_collection(true                 /* full */,
                clear_all_soft_refs  /* clear_all_soft_refs */,
                0                    /* size */,
                false                /* is_tlab */,
                local_max_level      /* max_level */);
  // Hack XXX FIX ME !!!
  // A scavenge may not have been attempted, or may have
  // been attempted and failed, because the old gen was too full
  if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
      incremental_collection_will_fail()) {
    if (PrintGCDetails) {
      gclog_or_tty->print_cr("GC locker: Trying a full collection "
                             "because scavenge failed");
    }
    // This time allow the old gen to be collected as well
    do_collection(true                 /* full */,
                  clear_all_soft_refs  /* clear_all_soft_refs */,
                  0                    /* size */,
                  false                /* is_tlab */,
                  n_gens() - 1         /* max_level */);
  }
}

// Returns "TRUE" iff "p" points into the allocated area of the heap.
bool GenCollectedHeap::is_in(const void* p) const {
  #ifndef ASSERT
  guarantee(VerifyBeforeGC   ||
            VerifyDuringGC   ||
            VerifyBeforeExit ||
            VerifyAfterGC, "too expensive");
  #endif
  // This might be sped up with a cache of the last generation that
  // answered yes.
  for (int i = 0; i < _n_gens; i++) {
    if (_gens[i]->is_in(p)) return true;
  }
  if (_perm_gen->as_gen()->is_in(p)) return true;
  // Otherwise...
  return false;
}

// Returns "TRUE" iff "p" points into the allocated area of the heap.
bool GenCollectedHeap::is_in_youngest(void* p) {
  return _gens[0]->is_in(p);
}

void GenCollectedHeap::oop_iterate(OopClosure* cl) {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->oop_iterate(cl);
  }
}

void GenCollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->oop_iterate(mr, cl);
  }
}

void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->object_iterate(cl);
  }
  perm_gen()->object_iterate(cl);
}

964 965 966 967 968 969 970
void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->safe_object_iterate(cl);
  }
  perm_gen()->safe_object_iterate(cl);
}

D
duke 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->object_iterate_since_last_GC(cl);
  }
}

Space* GenCollectedHeap::space_containing(const void* addr) const {
  for (int i = 0; i < _n_gens; i++) {
    Space* res = _gens[i]->space_containing(addr);
    if (res != NULL) return res;
  }
  Space* res = perm_gen()->space_containing(addr);
  if (res != NULL) return res;
  // Otherwise...
  assert(false, "Could not find containing space");
  return NULL;
}


HeapWord* GenCollectedHeap::block_start(const void* addr) const {
  assert(is_in_reserved(addr), "block_start of address outside of heap");
  for (int i = 0; i < _n_gens; i++) {
    if (_gens[i]->is_in_reserved(addr)) {
      assert(_gens[i]->is_in(addr),
             "addr should be in allocated part of generation");
      return _gens[i]->block_start(addr);
    }
  }
  if (perm_gen()->is_in_reserved(addr)) {
    assert(perm_gen()->is_in(addr),
           "addr should be in allocated part of perm gen");
    return perm_gen()->block_start(addr);
  }
  assert(false, "Some generation should contain the address");
  return NULL;
}

size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
  assert(is_in_reserved(addr), "block_size of address outside of heap");
  for (int i = 0; i < _n_gens; i++) {
    if (_gens[i]->is_in_reserved(addr)) {
      assert(_gens[i]->is_in(addr),
             "addr should be in allocated part of generation");
      return _gens[i]->block_size(addr);
    }
  }
  if (perm_gen()->is_in_reserved(addr)) {
    assert(perm_gen()->is_in(addr),
           "addr should be in allocated part of perm gen");
    return perm_gen()->block_size(addr);
  }
  assert(false, "Some generation should contain the address");
  return 0;
}

bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
  assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
  assert(block_start(addr) == addr, "addr must be a block start");
  for (int i = 0; i < _n_gens; i++) {
    if (_gens[i]->is_in_reserved(addr)) {
      return _gens[i]->block_is_obj(addr);
    }
  }
  if (perm_gen()->is_in_reserved(addr)) {
    return perm_gen()->block_is_obj(addr);
  }
  assert(false, "Some generation should contain the address");
  return false;
}

bool GenCollectedHeap::supports_tlab_allocation() const {
  for (int i = 0; i < _n_gens; i += 1) {
    if (_gens[i]->supports_tlab_allocation()) {
      return true;
    }
  }
  return false;
}

size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
  size_t result = 0;
  for (int i = 0; i < _n_gens; i += 1) {
    if (_gens[i]->supports_tlab_allocation()) {
      result += _gens[i]->tlab_capacity();
    }
  }
  return result;
}

size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
  size_t result = 0;
  for (int i = 0; i < _n_gens; i += 1) {
    if (_gens[i]->supports_tlab_allocation()) {
      result += _gens[i]->unsafe_max_tlab_alloc();
    }
  }
  return result;
}

HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
  bool gc_overhead_limit_was_exceeded;
  HeapWord* result = mem_allocate(size   /* size */,
                                  false  /* is_large_noref */,
                                  true   /* is_tlab */,
                                  &gc_overhead_limit_was_exceeded);
  return result;
}

// Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
// from the list headed by "*prev_ptr".
static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
  bool first = true;
  size_t min_size = 0;   // "first" makes this conceptually infinite.
  ScratchBlock **smallest_ptr, *smallest;
  ScratchBlock  *cur = *prev_ptr;
  while (cur) {
    assert(*prev_ptr == cur, "just checking");
    if (first || cur->num_words < min_size) {
      smallest_ptr = prev_ptr;
      smallest     = cur;
      min_size     = smallest->num_words;
      first        = false;
    }
    prev_ptr = &cur->next;
    cur     =  cur->next;
  }
  smallest      = *smallest_ptr;
  *smallest_ptr = smallest->next;
  return smallest;
}

// Sort the scratch block list headed by res into decreasing size order,
// and set "res" to the result.
static void sort_scratch_list(ScratchBlock*& list) {
  ScratchBlock* sorted = NULL;
  ScratchBlock* unsorted = list;
  while (unsorted) {
    ScratchBlock *smallest = removeSmallestScratch(&unsorted);
    smallest->next  = sorted;
    sorted          = smallest;
  }
  list = sorted;
}

ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
                                               size_t max_alloc_words) {
  ScratchBlock* res = NULL;
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
  }
  sort_scratch_list(res);
  return res;
}

1125 1126 1127 1128 1129 1130
void GenCollectedHeap::release_scratch() {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->reset_scratch();
  }
}

D
duke 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
size_t GenCollectedHeap::large_typearray_limit() {
  return gen_policy()->large_typearray_limit();
}

class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
  void do_generation(Generation* gen) {
    gen->prepare_for_verify();
  }
};

void GenCollectedHeap::prepare_for_verify() {
  ensure_parsability(false);        // no need to retire TLABs
  GenPrepareForVerifyClosure blk;
  generation_iterate(&blk, false);
  perm_gen()->prepare_for_verify();
}


void GenCollectedHeap::generation_iterate(GenClosure* cl,
                                          bool old_to_young) {
  if (old_to_young) {
    for (int i = _n_gens-1; i >= 0; i--) {
      cl->do_generation(_gens[i]);
    }
  } else {
    for (int i = 0; i < _n_gens; i++) {
      cl->do_generation(_gens[i]);
    }
  }
}

void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->space_iterate(cl, true);
  }
  perm_gen()->space_iterate(cl, true);
}

bool GenCollectedHeap::is_maximal_no_gc() const {
  for (int i = 0; i < _n_gens; i++) {  // skip perm gen
    if (!_gens[i]->is_maximal_no_gc()) {
      return false;
    }
  }
  return true;
}

void GenCollectedHeap::save_marks() {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->save_marks();
  }
  perm_gen()->save_marks();
}

void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
  for (int i = 0; i <= collectedGen; i++) {
    _gens[i]->compute_new_size();
  }
}

GenCollectedHeap* GenCollectedHeap::heap() {
  assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
  assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
  return _gch;
}


void GenCollectedHeap::prepare_for_compaction() {
  Generation* scanning_gen = _gens[_n_gens-1];
  // Start by compacting into same gen.
  CompactPoint cp(scanning_gen, NULL, NULL);
  while (scanning_gen != NULL) {
    scanning_gen->prepare_for_compaction(&cp);
    scanning_gen = prev_gen(scanning_gen);
  }
}

GCStats* GenCollectedHeap::gc_stats(int level) const {
  return _gens[level]->gc_stats();
}

1212
void GenCollectedHeap::verify(bool allow_dirty, bool silent, bool option /* ignored */) {
D
duke 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
  if (!silent) {
    gclog_or_tty->print("permgen ");
  }
  perm_gen()->verify(allow_dirty);
  for (int i = _n_gens-1; i >= 0; i--) {
    Generation* g = _gens[i];
    if (!silent) {
      gclog_or_tty->print(g->name());
      gclog_or_tty->print(" ");
    }
    g->verify(allow_dirty);
  }
  if (!silent) {
    gclog_or_tty->print("remset ");
  }
  rem_set()->verify();
  if (!silent) {
     gclog_or_tty->print("ref_proc ");
  }
  ReferenceProcessor::verify();
}

void GenCollectedHeap::print() const { print_on(tty); }
void GenCollectedHeap::print_on(outputStream* st) const {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->print_on(st);
  }
  perm_gen()->print_on(st);
}

void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  if (workers() != NULL) {
    workers()->threads_do(tc);
  }
#ifndef SERIALGC
  if (UseConcMarkSweepGC) {
    ConcurrentMarkSweepThread::threads_do(tc);
  }
#endif // SERIALGC
}

void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
#ifndef SERIALGC
  if (UseParNewGC) {
    workers()->print_worker_threads_on(st);
  }
  if (UseConcMarkSweepGC) {
    ConcurrentMarkSweepThread::print_all_on(st);
  }
#endif // SERIALGC
}

void GenCollectedHeap::print_tracing_info() const {
  if (TraceGen0Time) {
    get_gen(0)->print_summary_info();
  }
  if (TraceGen1Time) {
    get_gen(1)->print_summary_info();
  }
}

void GenCollectedHeap::print_heap_change(size_t prev_used) const {
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print(" "  SIZE_FORMAT
                        "->" SIZE_FORMAT
                        "("  SIZE_FORMAT ")",
                        prev_used, used(), capacity());
  } else {
    gclog_or_tty->print(" "  SIZE_FORMAT "K"
                        "->" SIZE_FORMAT "K"
                        "("  SIZE_FORMAT "K)",
                        prev_used / K, used() / K, capacity() / K);
  }
}

//New method to print perm gen info with PrintGCDetails flag
void GenCollectedHeap::print_perm_heap_change(size_t perm_prev_used) const {
  gclog_or_tty->print(", [%s :", perm_gen()->short_name());
  perm_gen()->print_heap_change(perm_prev_used);
  gclog_or_tty->print("]");
}

class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
 private:
  bool _full;
 public:
  void do_generation(Generation* gen) {
    gen->gc_prologue(_full);
  }
  GenGCPrologueClosure(bool full) : _full(full) {};
};

void GenCollectedHeap::gc_prologue(bool full) {
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");

  always_do_update_barrier = false;
  // Fill TLAB's and such
  CollectedHeap::accumulate_statistics_all_tlabs();
  ensure_parsability(true);   // retire TLABs

  // Call allocation profiler
  AllocationProfiler::iterate_since_last_gc();
  // Walk generations
  GenGCPrologueClosure blk(full);
  generation_iterate(&blk, false);  // not old-to-young.
  perm_gen()->gc_prologue(full);
};

class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
 private:
  bool _full;
 public:
  void do_generation(Generation* gen) {
    gen->gc_epilogue(_full);
  }
  GenGCEpilogueClosure(bool full) : _full(full) {};
};

void GenCollectedHeap::gc_epilogue(bool full) {
  // Remember if a partial collection of the heap failed, and
  // we did a complete collection.
  if (full && incremental_collection_will_fail()) {
    set_last_incremental_collection_failed();
  } else {
    clear_last_incremental_collection_failed();
  }
  // Clear the flag, if set; the generation gc_epilogues will set the
  // flag again if the condition persists despite the collection.
  clear_incremental_collection_will_fail();

#ifdef COMPILER2
  assert(DerivedPointerTable::is_empty(), "derived pointer present");
  size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
  guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
#endif /* COMPILER2 */

  resize_all_tlabs();

  GenGCEpilogueClosure blk(full);
  generation_iterate(&blk, false);  // not old-to-young.
  perm_gen()->gc_epilogue(full);

  always_do_update_barrier = UseConcMarkSweepGC;
};

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
#ifndef PRODUCT
class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
 private:
 public:
  void do_generation(Generation* gen) {
    gen->record_spaces_top();
  }
};

void GenCollectedHeap::record_gen_tops_before_GC() {
  if (ZapUnusedHeapArea) {
    GenGCSaveTopsBeforeGCClosure blk;
    generation_iterate(&blk, false);  // not old-to-young.
    perm_gen()->record_spaces_top();
  }
}
#endif  // not PRODUCT

D
duke 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
 public:
  void do_generation(Generation* gen) {
    gen->ensure_parsability();
  }
};

void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
  CollectedHeap::ensure_parsability(retire_tlabs);
  GenEnsureParsabilityClosure ep_cl;
  generation_iterate(&ep_cl, false);
  perm_gen()->ensure_parsability();
}

oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
                                              oop obj,
1392
                                              size_t obj_size) {
D
duke 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
  assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  HeapWord* result = NULL;

  // First give each higher generation a chance to allocate the promoted object.
  Generation* allocator = next_gen(gen);
  if (allocator != NULL) {
    do {
      result = allocator->allocate(obj_size, false);
    } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
  }

  if (result == NULL) {
    // Then give gen and higher generations a chance to expand and allocate the
    // object.
    do {
      result = gen->expand_and_allocate(obj_size, false);
    } while (result == NULL && (gen = next_gen(gen)) != NULL);
  }

  if (result != NULL) {
    Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
  }
  return oop(result);
}

class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
  jlong _time;   // in ms
  jlong _now;    // in ms

 public:
  GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }

  jlong time() { return _time; }

  void do_generation(Generation* gen) {
    _time = MIN2(_time, gen->time_of_last_gc(_now));
  }
};

jlong GenCollectedHeap::millis_since_last_gc() {
  jlong now = os::javaTimeMillis();
  GenTimeOfLastGCClosure tolgc_cl(now);
  // iterate over generations getting the oldest
  // time that a generation was collected
  generation_iterate(&tolgc_cl, false);
  tolgc_cl.do_generation(perm_gen());
  // XXX Despite the assert above, since javaTimeMillis()
  // doesnot guarantee monotonically increasing return
  // values (note, i didn't say "strictly monotonic"),
  // we need to guard against getting back a time
  // later than now. This should be fixed by basing
  // on someting like gethrtime() which guarantees
  // monotonicity. Note that cond_wait() is susceptible
  // to a similar problem, because its interface is
  // based on absolute time in the form of the
  // system time's notion of UCT. See also 4506635
  // for yet another problem of similar nature. XXX
  jlong retVal = now - tolgc_cl.time();
  if (retVal < 0) {
    NOT_PRODUCT(warning("time warp: %d", retVal);)
    return 0;
  }
  return retVal;
}