ps_core.c 33.6 KB
Newer Older
N
never 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
/*
 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include <jni.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <stdlib.h>
#include <stddef.h>
#include <elf.h>
#include <link.h>
#include "libproc_impl.h"
#include "salibelf.h"

// This file has the libproc implementation to read core files.
// For live processes, refer to ps_proc.c. Portions of this is adapted
// /modelled after Solaris libproc.so (in particular Pcore.c)

//----------------------------------------------------------------------
// ps_prochandle cleanup helper functions

// close all file descriptors
static void close_elf_files(struct ps_prochandle* ph) {
   lib_info* lib = NULL;

   // close core file descriptor
   if (ph->core->core_fd >= 0)
     close(ph->core->core_fd);

   // close exec file descriptor
   if (ph->core->exec_fd >= 0)
     close(ph->core->exec_fd);

   // close interp file descriptor
   if (ph->core->interp_fd >= 0)
     close(ph->core->interp_fd);

   // close class share archive file
   if (ph->core->classes_jsa_fd >= 0)
     close(ph->core->classes_jsa_fd);

   // close all library file descriptors
   lib = ph->libs;
   while (lib) {
      int fd = lib->fd;
      if (fd >= 0 && fd != ph->core->exec_fd) close(fd);
      lib = lib->next;
   }
}

// clean all map_info stuff
static void destroy_map_info(struct ps_prochandle* ph) {
  map_info* map = ph->core->maps;
  while (map) {
     map_info* next = map->next;
     free(map);
     map = next;
  }

  if (ph->core->map_array) {
     free(ph->core->map_array);
  }

  // Part of the class sharing workaround
  map = ph->core->class_share_maps;
  while (map) {
     map_info* next = map->next;
     free(map);
     map = next;
  }
}

// ps_prochandle operations
static void core_release(struct ps_prochandle* ph) {
   if (ph->core) {
      close_elf_files(ph);
      destroy_map_info(ph);
      free(ph->core);
   }
}

static map_info* allocate_init_map(int fd, off_t offset, uintptr_t vaddr, size_t memsz) {
   map_info* map;
   if ( (map = (map_info*) calloc(1, sizeof(map_info))) == NULL) {
      print_debug("can't allocate memory for map_info\n");
      return NULL;
   }

   // initialize map
   map->fd     = fd;
   map->offset = offset;
   map->vaddr  = vaddr;
   map->memsz  = memsz;
   return map;
}

// add map info with given fd, offset, vaddr and memsz
static map_info* add_map_info(struct ps_prochandle* ph, int fd, off_t offset,
                             uintptr_t vaddr, size_t memsz) {
   map_info* map;
   if ((map = allocate_init_map(fd, offset, vaddr, memsz)) == NULL) {
      return NULL;
   }

   // add this to map list
   map->next  = ph->core->maps;
   ph->core->maps   = map;
   ph->core->num_maps++;

   return map;
}

// Part of the class sharing workaround
static map_info* add_class_share_map_info(struct ps_prochandle* ph, off_t offset,
                             uintptr_t vaddr, size_t memsz) {
   map_info* map;
   if ((map = allocate_init_map(ph->core->classes_jsa_fd,
                                offset, vaddr, memsz)) == NULL) {
      return NULL;
   }

   map->next = ph->core->class_share_maps;
   ph->core->class_share_maps = map;
   return map;
}

// Return the map_info for the given virtual address.  We keep a sorted
// array of pointers in ph->map_array, so we can binary search.
static map_info* core_lookup(struct ps_prochandle *ph, uintptr_t addr)
{
   int mid, lo = 0, hi = ph->core->num_maps - 1;
   map_info *mp;

   while (hi - lo > 1) {
     mid = (lo + hi) / 2;
      if (addr >= ph->core->map_array[mid]->vaddr)
         lo = mid;
      else
         hi = mid;
   }

   if (addr < ph->core->map_array[hi]->vaddr)
      mp = ph->core->map_array[lo];
   else
      mp = ph->core->map_array[hi];

   if (addr >= mp->vaddr && addr < mp->vaddr + mp->memsz)
      return (mp);


   // Part of the class sharing workaround
   // Unfortunately, we have no way of detecting -Xshare state.
   // Check out the share maps atlast, if we don't find anywhere.
   // This is done this way so to avoid reading share pages
   // ahead of other normal maps. For eg. with -Xshare:off we don't
   // want to prefer class sharing data to data from core.
   mp = ph->core->class_share_maps;
   if (mp) {
      print_debug("can't locate map_info at 0x%lx, trying class share maps\n",
             addr);
   }
   while (mp) {
      if (addr >= mp->vaddr && addr < mp->vaddr + mp->memsz) {
         print_debug("located map_info at 0x%lx from class share maps\n",
                  addr);
         return (mp);
      }
      mp = mp->next;
   }

   print_debug("can't locate map_info at 0x%lx\n", addr);
   return (NULL);
}

//---------------------------------------------------------------
// Part of the class sharing workaround:
//
// With class sharing, pages are mapped from classes[_g].jsa file.
// The read-only class sharing pages are mapped as MAP_SHARED,
// PROT_READ pages. These pages are not dumped into core dump.
// With this workaround, these pages are read from classes[_g].jsa.

// FIXME: !HACK ALERT!
// The format of sharing achive file header is needed to read shared heap
// file mappings. For now, I am hard coding portion of FileMapHeader here.
// Refer to filemap.hpp.

// FileMapHeader describes the shared space data in the file to be
// mapped.  This structure gets written to a file.  It is not a class,
// so that the compilers don't add any compiler-private data to it.

// Refer to CompactingPermGenGen::n_regions in compactingPermGenGen.hpp
#define NUM_SHARED_MAPS 4

// Refer to FileMapInfo::_current_version in filemap.hpp
#define CURRENT_ARCHIVE_VERSION 1

struct FileMapHeader {
  int   _magic;              // identify file type.
  int   _version;            // (from enum, above.)
  size_t _alignment;         // how shared archive should be aligned

  struct space_info {
    int    _file_offset;     // sizeof(this) rounded to vm page size
    char*  _base;            // copy-on-write base address
    size_t _capacity;        // for validity checking
    size_t _used;            // for setting space top on read

    // 4991491 NOTICE These are C++ bool's in filemap.hpp and must match up with
    // the C type matching the C++ bool type on any given platform. For
    // Hotspot on BSD we assume the corresponding C type is char but
    // licensees on BSD versions may need to adjust the type of these fields.
    char   _read_only;       // read only space?
    char   _allow_exec;      // executable code in space?

  } _space[NUM_SHARED_MAPS]; // was _space[CompactingPermGenGen::n_regions];

  // Ignore the rest of the FileMapHeader. We don't need those fields here.
};

static bool read_jboolean(struct ps_prochandle* ph, uintptr_t addr, jboolean* pvalue) {
   jboolean i;
   if (ps_pread(ph, (psaddr_t) addr, &i, sizeof(i)) == PS_OK) {
      *pvalue = i;
      return true;
   } else {
      return false;
   }
}

static bool read_pointer(struct ps_prochandle* ph, uintptr_t addr, uintptr_t* pvalue) {
   uintptr_t uip;
   if (ps_pread(ph, (psaddr_t) addr, &uip, sizeof(uip)) == PS_OK) {
      *pvalue = uip;
      return true;
   } else {
      return false;
   }
}

// used to read strings from debuggee
static bool read_string(struct ps_prochandle* ph, uintptr_t addr, char* buf, size_t size) {
   size_t i = 0;
   char  c = ' ';

   while (c != '\0') {
     if (ps_pread(ph, (psaddr_t) addr, &c, sizeof(char)) != PS_OK)
         return false;
      if (i < size - 1)
         buf[i] = c;
      else // smaller buffer
         return false;
      i++; addr++;
   }

   buf[i] = '\0';
   return true;
}

#define USE_SHARED_SPACES_SYM "UseSharedSpaces"
// mangled name of Arguments::SharedArchivePath
#define SHARED_ARCHIVE_PATH_SYM "_ZN9Arguments17SharedArchivePathE"

static bool init_classsharing_workaround(struct ps_prochandle* ph) {
   lib_info* lib = ph->libs;
   while (lib != NULL) {
      // we are iterating over shared objects from the core dump. look for
      // libjvm[_g].so.
      const char *jvm_name = 0;
      if ((jvm_name = strstr(lib->name, "/libjvm.so")) != 0 ||
          (jvm_name = strstr(lib->name, "/libjvm_g.so")) != 0) {
         char classes_jsa[PATH_MAX];
         struct FileMapHeader header;
         size_t n = 0;
         int fd = -1, m = 0;
         uintptr_t base = 0, useSharedSpacesAddr = 0;
         uintptr_t sharedArchivePathAddrAddr = 0, sharedArchivePathAddr = 0;
         jboolean useSharedSpaces = 0;

         memset(classes_jsa, 0, sizeof(classes_jsa));
         jvm_name = lib->name;
         useSharedSpacesAddr = lookup_symbol(ph, jvm_name, USE_SHARED_SPACES_SYM);
         if (useSharedSpacesAddr == 0) {
            print_debug("can't lookup 'UseSharedSpaces' flag\n");
            return false;
         }

         // Hotspot vm types are not exported to build this library. So
         // using equivalent type jboolean to read the value of
         // UseSharedSpaces which is same as hotspot type "bool".
         if (read_jboolean(ph, useSharedSpacesAddr, &useSharedSpaces) != true) {
            print_debug("can't read the value of 'UseSharedSpaces' flag\n");
            return false;
         }

         if ((int)useSharedSpaces == 0) {
            print_debug("UseSharedSpaces is false, assuming -Xshare:off!\n");
            return true;
         }

         sharedArchivePathAddrAddr = lookup_symbol(ph, jvm_name, SHARED_ARCHIVE_PATH_SYM);
         if (sharedArchivePathAddrAddr == 0) {
            print_debug("can't lookup shared archive path symbol\n");
            return false;
         }

         if (read_pointer(ph, sharedArchivePathAddrAddr, &sharedArchivePathAddr) != true) {
            print_debug("can't read shared archive path pointer\n");
            return false;
         }

         if (read_string(ph, sharedArchivePathAddr, classes_jsa, sizeof(classes_jsa)) != true) {
            print_debug("can't read shared archive path value\n");
            return false;
         }

         print_debug("looking for %s\n", classes_jsa);
         // open the class sharing archive file
         fd = pathmap_open(classes_jsa);
         if (fd < 0) {
            print_debug("can't open %s!\n", classes_jsa);
            ph->core->classes_jsa_fd = -1;
            return false;
         } else {
            print_debug("opened %s\n", classes_jsa);
         }

         // read FileMapHeader from the file
         memset(&header, 0, sizeof(struct FileMapHeader));
         if ((n = read(fd, &header, sizeof(struct FileMapHeader)))
              != sizeof(struct FileMapHeader)) {
            print_debug("can't read shared archive file map header from %s\n", classes_jsa);
            close(fd);
            return false;
         }

         // check file magic
         if (header._magic != 0xf00baba2) {
            print_debug("%s has bad shared archive file magic number 0x%x, expecing 0xf00baba2\n",
                        classes_jsa, header._magic);
            close(fd);
            return false;
         }

         // check version
         if (header._version != CURRENT_ARCHIVE_VERSION) {
            print_debug("%s has wrong shared archive file version %d, expecting %d\n",
                        classes_jsa, header._version, CURRENT_ARCHIVE_VERSION);
            close(fd);
            return false;
         }

         ph->core->classes_jsa_fd = fd;
         // add read-only maps from classes[_g].jsa to the list of maps
         for (m = 0; m < NUM_SHARED_MAPS; m++) {
            if (header._space[m]._read_only) {
               base = (uintptr_t) header._space[m]._base;
               // no need to worry about the fractional pages at-the-end.
               // possible fractional pages are handled by core_read_data.
               add_class_share_map_info(ph, (off_t) header._space[m]._file_offset,
                         base, (size_t) header._space[m]._used);
               print_debug("added a share archive map at 0x%lx\n", base);
            }
         }
         return true;
      }
      lib = lib->next;
   }
   return true;
}


//---------------------------------------------------------------------------
// functions to handle map_info

// Order mappings based on virtual address.  We use this function as the
// callback for sorting the array of map_info pointers.
static int core_cmp_mapping(const void *lhsp, const void *rhsp)
{
   const map_info *lhs = *((const map_info **)lhsp);
   const map_info *rhs = *((const map_info **)rhsp);

   if (lhs->vaddr == rhs->vaddr)
      return (0);

   return (lhs->vaddr < rhs->vaddr ? -1 : 1);
}

// we sort map_info by starting virtual address so that we can do
// binary search to read from an address.
static bool sort_map_array(struct ps_prochandle* ph) {
   size_t num_maps = ph->core->num_maps;
   map_info* map = ph->core->maps;
   int i = 0;

   // allocate map_array
   map_info** array;
   if ( (array = (map_info**) malloc(sizeof(map_info*) * num_maps)) == NULL) {
      print_debug("can't allocate memory for map array\n");
      return false;
   }

   // add maps to array
   while (map) {
      array[i] = map;
      i++;
      map = map->next;
   }

   // sort is called twice. If this is second time, clear map array
   if (ph->core->map_array) free(ph->core->map_array);
   ph->core->map_array = array;
   // sort the map_info array by base virtual address.
   qsort(ph->core->map_array, ph->core->num_maps, sizeof (map_info*),
            core_cmp_mapping);

   // print map
   if (is_debug()) {
      int j = 0;
      print_debug("---- sorted virtual address map ----\n");
      for (j = 0; j < ph->core->num_maps; j++) {
        print_debug("base = 0x%lx\tsize = %d\n", ph->core->map_array[j]->vaddr,
                                         ph->core->map_array[j]->memsz);
      }
   }

   return true;
}

#ifndef MIN
#define MIN(x, y) (((x) < (y))? (x): (y))
#endif

static bool core_read_data(struct ps_prochandle* ph, uintptr_t addr, char *buf, size_t size) {
   ssize_t resid = size;
   int page_size=sysconf(_SC_PAGE_SIZE);
   while (resid != 0) {
      map_info *mp = core_lookup(ph, addr);
      uintptr_t mapoff;
      ssize_t len, rem;
      off_t off;
      int fd;

      if (mp == NULL)
         break;  /* No mapping for this address */

      fd = mp->fd;
      mapoff = addr - mp->vaddr;
      len = MIN(resid, mp->memsz - mapoff);
      off = mp->offset + mapoff;

      if ((len = pread(fd, buf, len, off)) <= 0)
         break;

      resid -= len;
      addr += len;
      buf = (char *)buf + len;

      // mappings always start at page boundary. But, may end in fractional
      // page. fill zeros for possible fractional page at the end of a mapping.
      rem = mp->memsz % page_size;
      if (rem > 0) {
         rem = page_size - rem;
         len = MIN(resid, rem);
         resid -= len;
         addr += len;
         // we are not assuming 'buf' to be zero initialized.
         memset(buf, 0, len);
         buf += len;
      }
   }

   if (resid) {
      print_debug("core read failed for %d byte(s) @ 0x%lx (%d more bytes)\n",
              size, addr, resid);
      return false;
   } else {
      return true;
   }
}

// null implementation for write
static bool core_write_data(struct ps_prochandle* ph,
                             uintptr_t addr, const char *buf , size_t size) {
   return false;
}

static bool core_get_lwp_regs(struct ps_prochandle* ph, lwpid_t lwp_id,
                          struct reg* regs) {
   // for core we have cached the lwp regs from NOTE section
   thread_info* thr = ph->threads;
   while (thr) {
     if (thr->lwp_id == lwp_id) {
       memcpy(regs, &thr->regs, sizeof(struct reg));
       return true;
     }
     thr = thr->next;
   }
   return false;
}

static bool core_get_lwp_info(struct ps_prochandle *ph, lwpid_t lwp_id, void *linfo) {
   print_debug("core_get_lwp_info not implemented\n");
   return false;
}

static ps_prochandle_ops core_ops = {
   .release=  core_release,
   .p_pread=  core_read_data,
   .p_pwrite= core_write_data,
   .get_lwp_regs= core_get_lwp_regs,
   .get_lwp_info= core_get_lwp_info
};

// read regs and create thread from NT_PRSTATUS entries from core file
static bool core_handle_prstatus(struct ps_prochandle* ph, const char* buf, size_t nbytes) {
   // we have to read prstatus_t from buf
   // assert(nbytes == sizeof(prstaus_t), "size mismatch on prstatus_t");
   prstatus_t* prstat = (prstatus_t*) buf;
   thread_info* newthr;
   print_debug("got integer regset for lwp %d\n", prstat->pr_pid);
   // we set pthread_t to -1 for core dump
   if((newthr = add_thread_info(ph, (pthread_t) -1,  prstat->pr_pid)) == NULL)
      return false;

   // copy regs
   memcpy(&newthr->regs, &prstat->pr_reg, sizeof(struct reg));

   if (is_debug()) {
      print_debug("integer regset\n");
#ifdef i386
      // print the regset
      print_debug("\teax = 0x%x\n", newthr->regs.r_eax);
      print_debug("\tebx = 0x%x\n", newthr->regs.r_ebx);
      print_debug("\tecx = 0x%x\n", newthr->regs.r_ecx);
      print_debug("\tedx = 0x%x\n", newthr->regs.r_edx);
      print_debug("\tesp = 0x%x\n", newthr->regs.r_esp);
      print_debug("\tebp = 0x%x\n", newthr->regs.r_ebp);
      print_debug("\tesi = 0x%x\n", newthr->regs.r_esi);
      print_debug("\tedi = 0x%x\n", newthr->regs.r_edi);
      print_debug("\teip = 0x%x\n", newthr->regs.r_eip);
#endif

#if defined(amd64) || defined(x86_64)
      // print the regset
      print_debug("\tr15 = 0x%lx\n", newthr->regs.r_r15);
      print_debug("\tr14 = 0x%lx\n", newthr->regs.r_r14);
      print_debug("\tr13 = 0x%lx\n", newthr->regs.r_r13);
      print_debug("\tr12 = 0x%lx\n", newthr->regs.r_r12);
      print_debug("\trbp = 0x%lx\n", newthr->regs.r_rbp);
      print_debug("\trbx = 0x%lx\n", newthr->regs.r_rbx);
      print_debug("\tr11 = 0x%lx\n", newthr->regs.r_r11);
      print_debug("\tr10 = 0x%lx\n", newthr->regs.r_r10);
      print_debug("\tr9 = 0x%lx\n", newthr->regs.r_r9);
      print_debug("\tr8 = 0x%lx\n", newthr->regs.r_r8);
      print_debug("\trax = 0x%lx\n", newthr->regs.r_rax);
      print_debug("\trcx = 0x%lx\n", newthr->regs.r_rcx);
      print_debug("\trdx = 0x%lx\n", newthr->regs.r_rdx);
      print_debug("\trsi = 0x%lx\n", newthr->regs.r_rsi);
      print_debug("\trdi = 0x%lx\n", newthr->regs.r_rdi);
      //print_debug("\torig_rax = 0x%lx\n", newthr->regs.orig_rax);
      print_debug("\trip = 0x%lx\n", newthr->regs.r_rip);
      print_debug("\tcs = 0x%lx\n", newthr->regs.r_cs);
      //print_debug("\teflags = 0x%lx\n", newthr->regs.eflags);
      print_debug("\trsp = 0x%lx\n", newthr->regs.r_rsp);
      print_debug("\tss = 0x%lx\n", newthr->regs.r_ss);
      //print_debug("\tfs_base = 0x%lx\n", newthr->regs.fs_base);
      //print_debug("\tgs_base = 0x%lx\n", newthr->regs.gs_base);
      //print_debug("\tds = 0x%lx\n", newthr->regs.ds);
      //print_debug("\tes = 0x%lx\n", newthr->regs.es);
      //print_debug("\tfs = 0x%lx\n", newthr->regs.fs);
      //print_debug("\tgs = 0x%lx\n", newthr->regs.gs);
#endif
   }

   return true;
}

#define ROUNDUP(x, y)  ((((x)+((y)-1))/(y))*(y))

// read NT_PRSTATUS entries from core NOTE segment
static bool core_handle_note(struct ps_prochandle* ph, ELF_PHDR* note_phdr) {
   char* buf = NULL;
   char* p = NULL;
   size_t size = note_phdr->p_filesz;

   // we are interested in just prstatus entries. we will ignore the rest.
   // Advance the seek pointer to the start of the PT_NOTE data
   if (lseek(ph->core->core_fd, note_phdr->p_offset, SEEK_SET) == (off_t)-1) {
      print_debug("failed to lseek to PT_NOTE data\n");
      return false;
   }

   // Now process the PT_NOTE structures.  Each one is preceded by
   // an Elf{32/64}_Nhdr structure describing its type and size.
   if ( (buf = (char*) malloc(size)) == NULL) {
      print_debug("can't allocate memory for reading core notes\n");
      goto err;
   }

   // read notes into buffer
   if (read(ph->core->core_fd, buf, size) != size) {
      print_debug("failed to read notes, core file must have been truncated\n");
      goto err;
   }

   p = buf;
   while (p < buf + size) {
      ELF_NHDR* notep = (ELF_NHDR*) p;
      char* descdata  = p + sizeof(ELF_NHDR) + ROUNDUP(notep->n_namesz, 4);
      print_debug("Note header with n_type = %d and n_descsz = %u\n",
                                   notep->n_type, notep->n_descsz);

      if (notep->n_type == NT_PRSTATUS) {
         if (core_handle_prstatus(ph, descdata, notep->n_descsz) != true)
            return false;
      }
      p = descdata + ROUNDUP(notep->n_descsz, 4);
   }

   free(buf);
   return true;

err:
   if (buf) free(buf);
   return false;
}

// read all segments from core file
static bool read_core_segments(struct ps_prochandle* ph, ELF_EHDR* core_ehdr) {
   int i = 0;
   ELF_PHDR* phbuf = NULL;
   ELF_PHDR* core_php = NULL;

   if ((phbuf =  read_program_header_table(ph->core->core_fd, core_ehdr)) == NULL)
      return false;

   /*
    * Now iterate through the program headers in the core file.
    * We're interested in two types of Phdrs: PT_NOTE (which
    * contains a set of saved /proc structures), and PT_LOAD (which
    * represents a memory mapping from the process's address space).
    *
    * Difference b/w Solaris PT_NOTE and BSD PT_NOTE:
    *
    *     In Solaris there are two PT_NOTE segments the first PT_NOTE (if present)
    *     contains /proc structs in the pre-2.6 unstructured /proc format. the last
    *     PT_NOTE has data in new /proc format.
    *
    *     In Solaris, there is only one pstatus (process status). pstatus contains
    *     integer register set among other stuff. For each LWP, we have one lwpstatus
    *     entry that has integer regset for that LWP.
    *
    *     Linux threads are actually 'clone'd processes. To support core analysis
    *     of "multithreaded" process, Linux creates more than one pstatus (called
    *     "prstatus") entry in PT_NOTE. Each prstatus entry has integer regset for one
    *     "thread". Please refer to Linux kernel src file 'fs/binfmt_elf.c', in particular
    *     function "elf_core_dump".
    */

    for (core_php = phbuf, i = 0; i < core_ehdr->e_phnum; i++) {
      switch (core_php->p_type) {
         case PT_NOTE:
            if (core_handle_note(ph, core_php) != true) goto err;
            break;

         case PT_LOAD: {
            if (core_php->p_filesz != 0) {
               if (add_map_info(ph, ph->core->core_fd, core_php->p_offset,
                  core_php->p_vaddr, core_php->p_filesz) == NULL) goto err;
            }
            break;
         }
      }

      core_php++;
   }

   free(phbuf);
   return true;
err:
   free(phbuf);
   return false;
}

// read segments of a shared object
static bool read_lib_segments(struct ps_prochandle* ph, int lib_fd, ELF_EHDR* lib_ehdr, uintptr_t lib_base) {
   int i = 0;
   ELF_PHDR* phbuf;
   ELF_PHDR* lib_php = NULL;

   if ((phbuf = read_program_header_table(lib_fd, lib_ehdr)) == NULL)
      return false;

   // we want to process only PT_LOAD segments that are not writable.
   // i.e., text segments. The read/write/exec (data) segments would
   // have been already added from core file segments.
   for (lib_php = phbuf, i = 0; i < lib_ehdr->e_phnum; i++) {
      if ((lib_php->p_type == PT_LOAD) && !(lib_php->p_flags & PF_W) && (lib_php->p_filesz != 0)) {
         if (add_map_info(ph, lib_fd, lib_php->p_offset, lib_php->p_vaddr + lib_base, lib_php->p_filesz) == NULL)
            goto err;
      }
      lib_php++;
   }

   free(phbuf);
   return true;
err:
   free(phbuf);
   return false;
}

// process segments from interpreter (ld-elf.so.1)
static bool read_interp_segments(struct ps_prochandle* ph) {
   ELF_EHDR interp_ehdr;

   if (read_elf_header(ph->core->interp_fd, &interp_ehdr) != true) {
       print_debug("interpreter is not a valid ELF file\n");
       return false;
   }

   if (read_lib_segments(ph, ph->core->interp_fd, &interp_ehdr, ph->core->ld_base_addr) != true) {
       print_debug("can't read segments of interpreter\n");
       return false;
   }

   return true;
}

// process segments of a a.out
static bool read_exec_segments(struct ps_prochandle* ph, ELF_EHDR* exec_ehdr) {
   int i = 0;
   ELF_PHDR* phbuf = NULL;
   ELF_PHDR* exec_php = NULL;

   if ((phbuf = read_program_header_table(ph->core->exec_fd, exec_ehdr)) == NULL)
      return false;

   for (exec_php = phbuf, i = 0; i < exec_ehdr->e_phnum; i++) {
      switch (exec_php->p_type) {

         // add mappings for PT_LOAD segments
         case PT_LOAD: {
            // add only non-writable segments of non-zero filesz
            if (!(exec_php->p_flags & PF_W) && exec_php->p_filesz != 0) {
               if (add_map_info(ph, ph->core->exec_fd, exec_php->p_offset, exec_php->p_vaddr, exec_php->p_filesz) == NULL) goto err;
            }
            break;
         }

         // read the interpreter and it's segments
         case PT_INTERP: {
            char interp_name[BUF_SIZE];

            pread(ph->core->exec_fd, interp_name, MIN(exec_php->p_filesz, BUF_SIZE), exec_php->p_offset);
            print_debug("ELF interpreter %s\n", interp_name);
            // read interpreter segments as well
            if ((ph->core->interp_fd = pathmap_open(interp_name)) < 0) {
               print_debug("can't open runtime loader\n");
               goto err;
            }
            break;
         }

         // from PT_DYNAMIC we want to read address of first link_map addr
         case PT_DYNAMIC: {
            ph->core->dynamic_addr = exec_php->p_vaddr;
            print_debug("address of _DYNAMIC is 0x%lx\n", ph->core->dynamic_addr);
            break;
         }

      } // switch
      exec_php++;
   } // for

   free(phbuf);
   return true;
err:
   free(phbuf);
   return false;
}


#define FIRST_LINK_MAP_OFFSET offsetof(struct r_debug,  r_map)
#define LD_BASE_OFFSET        offsetof(struct r_debug,  r_ldbase)
#define LINK_MAP_ADDR_OFFSET  offsetof(struct link_map, l_addr)
#define LINK_MAP_NAME_OFFSET  offsetof(struct link_map, l_name)
#define LINK_MAP_NEXT_OFFSET  offsetof(struct link_map, l_next)

// read shared library info from runtime linker's data structures.
// This work is done by librtlb_db in Solaris
static bool read_shared_lib_info(struct ps_prochandle* ph) {
   uintptr_t addr = ph->core->dynamic_addr;
   uintptr_t debug_base;
   uintptr_t first_link_map_addr;
   uintptr_t ld_base_addr;
   uintptr_t link_map_addr;
   uintptr_t lib_base_diff;
   uintptr_t lib_base;
   uintptr_t lib_name_addr;
   char lib_name[BUF_SIZE];
   ELF_DYN dyn;
   ELF_EHDR elf_ehdr;
   int lib_fd;

   // _DYNAMIC has information of the form
   //         [tag] [data] [tag] [data] .....
   // Both tag and data are pointer sized.
   // We look for dynamic info with DT_DEBUG. This has shared object info.
   // refer to struct r_debug in link.h

   dyn.d_tag = DT_NULL;
   while (dyn.d_tag != DT_DEBUG) {
      if (ps_pread(ph, (psaddr_t) addr, &dyn, sizeof(ELF_DYN)) != PS_OK) {
         print_debug("can't read debug info from _DYNAMIC\n");
         return false;
      }
      addr += sizeof(ELF_DYN);
   }

   // we have got Dyn entry with DT_DEBUG
   debug_base = dyn.d_un.d_ptr;
   // at debug_base we have struct r_debug. This has first link map in r_map field
   if (ps_pread(ph, (psaddr_t) debug_base + FIRST_LINK_MAP_OFFSET,
                 &first_link_map_addr, sizeof(uintptr_t)) != PS_OK) {
      print_debug("can't read first link map address\n");
      return false;
   }

   // read ld_base address from struct r_debug
   // XXX: There is no r_ldbase member on BSD
/*
   if (ps_pread(ph, (psaddr_t) debug_base + LD_BASE_OFFSET, &ld_base_addr,
                 sizeof(uintptr_t)) != PS_OK) {
      print_debug("can't read ld base address\n");
      return false;
   }
   ph->core->ld_base_addr = ld_base_addr;
*/
   ph->core->ld_base_addr = 0;

   print_debug("interpreter base address is 0x%lx\n", ld_base_addr);

   // now read segments from interp (i.e ld-elf.so.1)
   if (read_interp_segments(ph) != true)
      return false;

   // after adding interpreter (ld.so) mappings sort again
   if (sort_map_array(ph) != true)
      return false;

   print_debug("first link map is at 0x%lx\n", first_link_map_addr);

   link_map_addr = first_link_map_addr;
   while (link_map_addr != 0) {
      // read library base address of the .so. Note that even though <sys/link.h> calls
      // link_map->l_addr as "base address",  this is * not * really base virtual
      // address of the shared object. This is actually the difference b/w the virtual
      // address mentioned in shared object and the actual virtual base where runtime
      // linker loaded it. We use "base diff" in read_lib_segments call below.

      if (ps_pread(ph, (psaddr_t) link_map_addr + LINK_MAP_ADDR_OFFSET,
                   &lib_base_diff, sizeof(uintptr_t)) != PS_OK) {
         print_debug("can't read shared object base address diff\n");
         return false;
      }

      // read address of the name
      if (ps_pread(ph, (psaddr_t) link_map_addr + LINK_MAP_NAME_OFFSET,
                    &lib_name_addr, sizeof(uintptr_t)) != PS_OK) {
         print_debug("can't read address of shared object name\n");
         return false;
      }

      // read name of the shared object
      if (read_string(ph, (uintptr_t) lib_name_addr, lib_name, sizeof(lib_name)) != true) {
         print_debug("can't read shared object name\n");
         return false;
      }

      if (lib_name[0] != '\0') {
         // ignore empty lib names
         lib_fd = pathmap_open(lib_name);

         if (lib_fd < 0) {
            print_debug("can't open shared object %s\n", lib_name);
            // continue with other libraries...
         } else {
            if (read_elf_header(lib_fd, &elf_ehdr)) {
               lib_base = lib_base_diff + find_base_address(lib_fd, &elf_ehdr);
               print_debug("reading library %s @ 0x%lx [ 0x%lx ]\n",
                           lib_name, lib_base, lib_base_diff);
               // while adding library mappings we need to use "base difference".
               if (! read_lib_segments(ph, lib_fd, &elf_ehdr, lib_base_diff)) {
                  print_debug("can't read shared object's segments\n");
                  close(lib_fd);
                  return false;
               }
               add_lib_info_fd(ph, lib_name, lib_fd, lib_base);
               // Map info is added for the library (lib_name) so
               // we need to re-sort it before calling the p_pdread.
               if (sort_map_array(ph) != true)
                  return false;
            } else {
               print_debug("can't read ELF header for shared object %s\n", lib_name);
               close(lib_fd);
               // continue with other libraries...
            }
         }
      }

      // read next link_map address
      if (ps_pread(ph, (psaddr_t) link_map_addr + LINK_MAP_NEXT_OFFSET,
                        &link_map_addr, sizeof(uintptr_t)) != PS_OK) {
         print_debug("can't read next link in link_map\n");
         return false;
      }
   }

   return true;
}

// the one and only one exposed stuff from this file
struct ps_prochandle* Pgrab_core(const char* exec_file, const char* core_file) {
   ELF_EHDR core_ehdr;
   ELF_EHDR exec_ehdr;

   struct ps_prochandle* ph = (struct ps_prochandle*) calloc(1, sizeof(struct ps_prochandle));
   if (ph == NULL) {
      print_debug("can't allocate ps_prochandle\n");
      return NULL;
   }

   if ((ph->core = (struct core_data*) calloc(1, sizeof(struct core_data))) == NULL) {
      free(ph);
      print_debug("can't allocate ps_prochandle\n");
      return NULL;
   }

   // initialize ph
   ph->ops = &core_ops;
   ph->core->core_fd   = -1;
   ph->core->exec_fd   = -1;
   ph->core->interp_fd = -1;

   // open the core file
   if ((ph->core->core_fd = open(core_file, O_RDONLY)) < 0) {
      print_debug("can't open core file\n");
      goto err;
   }

   // read core file ELF header
   if (read_elf_header(ph->core->core_fd, &core_ehdr) != true || core_ehdr.e_type != ET_CORE) {
      print_debug("core file is not a valid ELF ET_CORE file\n");
      goto err;
   }

   if ((ph->core->exec_fd = open(exec_file, O_RDONLY)) < 0) {
      print_debug("can't open executable file\n");
      goto err;
   }

   if (read_elf_header(ph->core->exec_fd, &exec_ehdr) != true || exec_ehdr.e_type != ET_EXEC) {
      print_debug("executable file is not a valid ELF ET_EXEC file\n");
      goto err;
   }

   // process core file segments
   if (read_core_segments(ph, &core_ehdr) != true)
      goto err;

   // process exec file segments
   if (read_exec_segments(ph, &exec_ehdr) != true)
      goto err;

   // exec file is also treated like a shared object for symbol search
   if (add_lib_info_fd(ph, exec_file, ph->core->exec_fd,
                       (uintptr_t)0 + find_base_address(ph->core->exec_fd, &exec_ehdr)) == NULL)
      goto err;

   // allocate and sort maps into map_array, we need to do this
   // here because read_shared_lib_info needs to read from debuggee
   // address space
   if (sort_map_array(ph) != true)
      goto err;

   if (read_shared_lib_info(ph) != true)
      goto err;

   // sort again because we have added more mappings from shared objects
   if (sort_map_array(ph) != true)
      goto err;

   if (init_classsharing_workaround(ph) != true)
      goto err;

   return ph;

err:
   Prelease(ph);
   return NULL;
}