universe.cpp 53.5 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_universe.cpp.incl"

// Known objects
klassOop Universe::_boolArrayKlassObj                 = NULL;
klassOop Universe::_byteArrayKlassObj                 = NULL;
klassOop Universe::_charArrayKlassObj                 = NULL;
klassOop Universe::_intArrayKlassObj                  = NULL;
klassOop Universe::_shortArrayKlassObj                = NULL;
klassOop Universe::_longArrayKlassObj                 = NULL;
klassOop Universe::_singleArrayKlassObj               = NULL;
klassOop Universe::_doubleArrayKlassObj               = NULL;
klassOop Universe::_typeArrayKlassObjs[T_VOID+1]      = { NULL /*, NULL...*/ };
klassOop Universe::_objectArrayKlassObj               = NULL;
klassOop Universe::_symbolKlassObj                    = NULL;
klassOop Universe::_methodKlassObj                    = NULL;
klassOop Universe::_constMethodKlassObj               = NULL;
klassOop Universe::_methodDataKlassObj                = NULL;
klassOop Universe::_klassKlassObj                     = NULL;
klassOop Universe::_arrayKlassKlassObj                = NULL;
klassOop Universe::_objArrayKlassKlassObj             = NULL;
klassOop Universe::_typeArrayKlassKlassObj            = NULL;
klassOop Universe::_instanceKlassKlassObj             = NULL;
klassOop Universe::_constantPoolKlassObj              = NULL;
klassOop Universe::_constantPoolCacheKlassObj         = NULL;
klassOop Universe::_compiledICHolderKlassObj          = NULL;
klassOop Universe::_systemObjArrayKlassObj            = NULL;
oop Universe::_int_mirror                             =  NULL;
oop Universe::_float_mirror                           =  NULL;
oop Universe::_double_mirror                          =  NULL;
oop Universe::_byte_mirror                            =  NULL;
oop Universe::_bool_mirror                            =  NULL;
oop Universe::_char_mirror                            =  NULL;
oop Universe::_long_mirror                            =  NULL;
oop Universe::_short_mirror                           =  NULL;
oop Universe::_void_mirror                            =  NULL;
oop Universe::_mirrors[T_VOID+1]                      =  { NULL /*, NULL...*/ };
oop Universe::_main_thread_group                      = NULL;
oop Universe::_system_thread_group                    = NULL;
typeArrayOop Universe::_the_empty_byte_array          = NULL;
typeArrayOop Universe::_the_empty_short_array         = NULL;
typeArrayOop Universe::_the_empty_int_array           = NULL;
objArrayOop Universe::_the_empty_system_obj_array     = NULL;
objArrayOop Universe::_the_empty_class_klass_array    = NULL;
objArrayOop Universe::_the_array_interfaces_array     = NULL;
LatestMethodOopCache* Universe::_finalizer_register_cache = NULL;
LatestMethodOopCache* Universe::_loader_addClass_cache    = NULL;
ActiveMethodOopsCache* Universe::_reflect_invoke_cache    = NULL;
oop Universe::_out_of_memory_error_java_heap          = NULL;
oop Universe::_out_of_memory_error_perm_gen           = NULL;
oop Universe::_out_of_memory_error_array_size         = NULL;
oop Universe::_out_of_memory_error_gc_overhead_limit  = NULL;
objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL;
volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;
bool Universe::_verify_in_progress                    = false;
oop Universe::_null_ptr_exception_instance            = NULL;
oop Universe::_arithmetic_exception_instance          = NULL;
oop Universe::_virtual_machine_error_instance         = NULL;
oop Universe::_vm_exception                           = NULL;
oop Universe::_emptySymbol                            = NULL;

// These variables are guarded by FullGCALot_lock.
debug_only(objArrayOop Universe::_fullgc_alot_dummy_array = NULL;)
debug_only(int Universe::_fullgc_alot_dummy_next      = 0;)


// Heap
int             Universe::_verify_count = 0;

int             Universe::_base_vtable_size = 0;
bool            Universe::_bootstrapping = false;
bool            Universe::_fully_initialized = false;

size_t          Universe::_heap_capacity_at_last_gc;
size_t          Universe::_heap_used_at_last_gc;

CollectedHeap*  Universe::_collectedHeap = NULL;
102
address         Universe::_heap_base = NULL;
D
duke 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467


void Universe::basic_type_classes_do(void f(klassOop)) {
  f(boolArrayKlassObj());
  f(byteArrayKlassObj());
  f(charArrayKlassObj());
  f(intArrayKlassObj());
  f(shortArrayKlassObj());
  f(longArrayKlassObj());
  f(singleArrayKlassObj());
  f(doubleArrayKlassObj());
}


void Universe::system_classes_do(void f(klassOop)) {
  f(symbolKlassObj());
  f(methodKlassObj());
  f(constMethodKlassObj());
  f(methodDataKlassObj());
  f(klassKlassObj());
  f(arrayKlassKlassObj());
  f(objArrayKlassKlassObj());
  f(typeArrayKlassKlassObj());
  f(instanceKlassKlassObj());
  f(constantPoolKlassObj());
  f(systemObjArrayKlassObj());
}

void Universe::oops_do(OopClosure* f, bool do_all) {

  f->do_oop((oop*) &_int_mirror);
  f->do_oop((oop*) &_float_mirror);
  f->do_oop((oop*) &_double_mirror);
  f->do_oop((oop*) &_byte_mirror);
  f->do_oop((oop*) &_bool_mirror);
  f->do_oop((oop*) &_char_mirror);
  f->do_oop((oop*) &_long_mirror);
  f->do_oop((oop*) &_short_mirror);
  f->do_oop((oop*) &_void_mirror);

  // It's important to iterate over these guys even if they are null,
  // since that's how shared heaps are restored.
  for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
    f->do_oop((oop*) &_mirrors[i]);
  }
  assert(_mirrors[0] == NULL && _mirrors[T_BOOLEAN - 1] == NULL, "checking");

  // %%% Consider moving those "shared oops" over here with the others.
  f->do_oop((oop*)&_boolArrayKlassObj);
  f->do_oop((oop*)&_byteArrayKlassObj);
  f->do_oop((oop*)&_charArrayKlassObj);
  f->do_oop((oop*)&_intArrayKlassObj);
  f->do_oop((oop*)&_shortArrayKlassObj);
  f->do_oop((oop*)&_longArrayKlassObj);
  f->do_oop((oop*)&_singleArrayKlassObj);
  f->do_oop((oop*)&_doubleArrayKlassObj);
  f->do_oop((oop*)&_objectArrayKlassObj);
  {
    for (int i = 0; i < T_VOID+1; i++) {
      if (_typeArrayKlassObjs[i] != NULL) {
        assert(i >= T_BOOLEAN, "checking");
        f->do_oop((oop*)&_typeArrayKlassObjs[i]);
      } else if (do_all) {
        f->do_oop((oop*)&_typeArrayKlassObjs[i]);
      }
    }
  }
  f->do_oop((oop*)&_symbolKlassObj);
  f->do_oop((oop*)&_methodKlassObj);
  f->do_oop((oop*)&_constMethodKlassObj);
  f->do_oop((oop*)&_methodDataKlassObj);
  f->do_oop((oop*)&_klassKlassObj);
  f->do_oop((oop*)&_arrayKlassKlassObj);
  f->do_oop((oop*)&_objArrayKlassKlassObj);
  f->do_oop((oop*)&_typeArrayKlassKlassObj);
  f->do_oop((oop*)&_instanceKlassKlassObj);
  f->do_oop((oop*)&_constantPoolKlassObj);
  f->do_oop((oop*)&_constantPoolCacheKlassObj);
  f->do_oop((oop*)&_compiledICHolderKlassObj);
  f->do_oop((oop*)&_systemObjArrayKlassObj);
  f->do_oop((oop*)&_the_empty_byte_array);
  f->do_oop((oop*)&_the_empty_short_array);
  f->do_oop((oop*)&_the_empty_int_array);
  f->do_oop((oop*)&_the_empty_system_obj_array);
  f->do_oop((oop*)&_the_empty_class_klass_array);
  f->do_oop((oop*)&_the_array_interfaces_array);
  _finalizer_register_cache->oops_do(f);
  _loader_addClass_cache->oops_do(f);
  _reflect_invoke_cache->oops_do(f);
  f->do_oop((oop*)&_out_of_memory_error_java_heap);
  f->do_oop((oop*)&_out_of_memory_error_perm_gen);
  f->do_oop((oop*)&_out_of_memory_error_array_size);
  f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit);
  if (_preallocated_out_of_memory_error_array != (oop)NULL) {   // NULL when DumpSharedSpaces
    f->do_oop((oop*)&_preallocated_out_of_memory_error_array);
  }
  f->do_oop((oop*)&_null_ptr_exception_instance);
  f->do_oop((oop*)&_arithmetic_exception_instance);
  f->do_oop((oop*)&_virtual_machine_error_instance);
  f->do_oop((oop*)&_main_thread_group);
  f->do_oop((oop*)&_system_thread_group);
  f->do_oop((oop*)&_vm_exception);
  f->do_oop((oop*)&_emptySymbol);
  debug_only(f->do_oop((oop*)&_fullgc_alot_dummy_array);)
}


void Universe::check_alignment(uintx size, uintx alignment, const char* name) {
  if (size < alignment || size % alignment != 0) {
    ResourceMark rm;
    stringStream st;
    st.print("Size of %s (%ld bytes) must be aligned to %ld bytes", name, size, alignment);
    char* error = st.as_string();
    vm_exit_during_initialization(error);
  }
}


void Universe::genesis(TRAPS) {
  ResourceMark rm;
  { FlagSetting fs(_bootstrapping, true);

    { MutexLocker mc(Compile_lock);

      // determine base vtable size; without that we cannot create the array klasses
      compute_base_vtable_size();

      if (!UseSharedSpaces) {
        _klassKlassObj          = klassKlass::create_klass(CHECK);
        _arrayKlassKlassObj     = arrayKlassKlass::create_klass(CHECK);

        _objArrayKlassKlassObj  = objArrayKlassKlass::create_klass(CHECK);
        _instanceKlassKlassObj  = instanceKlassKlass::create_klass(CHECK);
        _typeArrayKlassKlassObj = typeArrayKlassKlass::create_klass(CHECK);

        _symbolKlassObj         = symbolKlass::create_klass(CHECK);

        _emptySymbol            = oopFactory::new_symbol("", CHECK);

        _boolArrayKlassObj      = typeArrayKlass::create_klass(T_BOOLEAN, sizeof(jboolean), CHECK);
        _charArrayKlassObj      = typeArrayKlass::create_klass(T_CHAR,    sizeof(jchar),    CHECK);
        _singleArrayKlassObj    = typeArrayKlass::create_klass(T_FLOAT,   sizeof(jfloat),   CHECK);
        _doubleArrayKlassObj    = typeArrayKlass::create_klass(T_DOUBLE,  sizeof(jdouble),  CHECK);
        _byteArrayKlassObj      = typeArrayKlass::create_klass(T_BYTE,    sizeof(jbyte),    CHECK);
        _shortArrayKlassObj     = typeArrayKlass::create_klass(T_SHORT,   sizeof(jshort),   CHECK);
        _intArrayKlassObj       = typeArrayKlass::create_klass(T_INT,     sizeof(jint),     CHECK);
        _longArrayKlassObj      = typeArrayKlass::create_klass(T_LONG,    sizeof(jlong),    CHECK);

        _typeArrayKlassObjs[T_BOOLEAN] = _boolArrayKlassObj;
        _typeArrayKlassObjs[T_CHAR]    = _charArrayKlassObj;
        _typeArrayKlassObjs[T_FLOAT]   = _singleArrayKlassObj;
        _typeArrayKlassObjs[T_DOUBLE]  = _doubleArrayKlassObj;
        _typeArrayKlassObjs[T_BYTE]    = _byteArrayKlassObj;
        _typeArrayKlassObjs[T_SHORT]   = _shortArrayKlassObj;
        _typeArrayKlassObjs[T_INT]     = _intArrayKlassObj;
        _typeArrayKlassObjs[T_LONG]    = _longArrayKlassObj;

        _methodKlassObj         = methodKlass::create_klass(CHECK);
        _constMethodKlassObj    = constMethodKlass::create_klass(CHECK);
        _methodDataKlassObj     = methodDataKlass::create_klass(CHECK);
        _constantPoolKlassObj       = constantPoolKlass::create_klass(CHECK);
        _constantPoolCacheKlassObj  = constantPoolCacheKlass::create_klass(CHECK);

        _compiledICHolderKlassObj   = compiledICHolderKlass::create_klass(CHECK);
        _systemObjArrayKlassObj     = objArrayKlassKlass::cast(objArrayKlassKlassObj())->allocate_system_objArray_klass(CHECK);

        _the_empty_byte_array      = oopFactory::new_permanent_byteArray(0, CHECK);
        _the_empty_short_array      = oopFactory::new_permanent_shortArray(0, CHECK);
        _the_empty_int_array        = oopFactory::new_permanent_intArray(0, CHECK);
        _the_empty_system_obj_array = oopFactory::new_system_objArray(0, CHECK);

        _the_array_interfaces_array = oopFactory::new_system_objArray(2, CHECK);
        _vm_exception               = oopFactory::new_symbol("vm exception holder", CHECK);
      } else {

        FileMapInfo *mapinfo = FileMapInfo::current_info();
        char* buffer = mapinfo->region_base(CompactingPermGenGen::md);
        void** vtbl_list = (void**)buffer;
        init_self_patching_vtbl_list(vtbl_list,
                                     CompactingPermGenGen::vtbl_list_size);
      }
    }

    vmSymbols::initialize(CHECK);

    SystemDictionary::initialize(CHECK);

    klassOop ok = SystemDictionary::object_klass();

    if (UseSharedSpaces) {
      // Verify shared interfaces array.
      assert(_the_array_interfaces_array->obj_at(0) ==
             SystemDictionary::cloneable_klass(), "u3");
      assert(_the_array_interfaces_array->obj_at(1) ==
             SystemDictionary::serializable_klass(), "u3");

      // Verify element klass for system obj array klass
      assert(objArrayKlass::cast(_systemObjArrayKlassObj)->element_klass() == ok, "u1");
      assert(objArrayKlass::cast(_systemObjArrayKlassObj)->bottom_klass() == ok, "u2");

      // Verify super class for the classes created above
      assert(Klass::cast(boolArrayKlassObj()     )->super() == ok, "u3");
      assert(Klass::cast(charArrayKlassObj()     )->super() == ok, "u3");
      assert(Klass::cast(singleArrayKlassObj()   )->super() == ok, "u3");
      assert(Klass::cast(doubleArrayKlassObj()   )->super() == ok, "u3");
      assert(Klass::cast(byteArrayKlassObj()     )->super() == ok, "u3");
      assert(Klass::cast(shortArrayKlassObj()    )->super() == ok, "u3");
      assert(Klass::cast(intArrayKlassObj()      )->super() == ok, "u3");
      assert(Klass::cast(longArrayKlassObj()     )->super() == ok, "u3");
      assert(Klass::cast(constantPoolKlassObj()  )->super() == ok, "u3");
      assert(Klass::cast(systemObjArrayKlassObj())->super() == ok, "u3");
    } else {
      // Set up shared interfaces array.  (Do this before supers are set up.)
      _the_array_interfaces_array->obj_at_put(0, SystemDictionary::cloneable_klass());
      _the_array_interfaces_array->obj_at_put(1, SystemDictionary::serializable_klass());

      // Set element klass for system obj array klass
      objArrayKlass::cast(_systemObjArrayKlassObj)->set_element_klass(ok);
      objArrayKlass::cast(_systemObjArrayKlassObj)->set_bottom_klass(ok);

      // Set super class for the classes created above
      Klass::cast(boolArrayKlassObj()     )->initialize_supers(ok, CHECK);
      Klass::cast(charArrayKlassObj()     )->initialize_supers(ok, CHECK);
      Klass::cast(singleArrayKlassObj()   )->initialize_supers(ok, CHECK);
      Klass::cast(doubleArrayKlassObj()   )->initialize_supers(ok, CHECK);
      Klass::cast(byteArrayKlassObj()     )->initialize_supers(ok, CHECK);
      Klass::cast(shortArrayKlassObj()    )->initialize_supers(ok, CHECK);
      Klass::cast(intArrayKlassObj()      )->initialize_supers(ok, CHECK);
      Klass::cast(longArrayKlassObj()     )->initialize_supers(ok, CHECK);
      Klass::cast(constantPoolKlassObj()  )->initialize_supers(ok, CHECK);
      Klass::cast(systemObjArrayKlassObj())->initialize_supers(ok, CHECK);
      Klass::cast(boolArrayKlassObj()     )->set_super(ok);
      Klass::cast(charArrayKlassObj()     )->set_super(ok);
      Klass::cast(singleArrayKlassObj()   )->set_super(ok);
      Klass::cast(doubleArrayKlassObj()   )->set_super(ok);
      Klass::cast(byteArrayKlassObj()     )->set_super(ok);
      Klass::cast(shortArrayKlassObj()    )->set_super(ok);
      Klass::cast(intArrayKlassObj()      )->set_super(ok);
      Klass::cast(longArrayKlassObj()     )->set_super(ok);
      Klass::cast(constantPoolKlassObj()  )->set_super(ok);
      Klass::cast(systemObjArrayKlassObj())->set_super(ok);
    }

    Klass::cast(boolArrayKlassObj()     )->append_to_sibling_list();
    Klass::cast(charArrayKlassObj()     )->append_to_sibling_list();
    Klass::cast(singleArrayKlassObj()   )->append_to_sibling_list();
    Klass::cast(doubleArrayKlassObj()   )->append_to_sibling_list();
    Klass::cast(byteArrayKlassObj()     )->append_to_sibling_list();
    Klass::cast(shortArrayKlassObj()    )->append_to_sibling_list();
    Klass::cast(intArrayKlassObj()      )->append_to_sibling_list();
    Klass::cast(longArrayKlassObj()     )->append_to_sibling_list();
    Klass::cast(constantPoolKlassObj()  )->append_to_sibling_list();
    Klass::cast(systemObjArrayKlassObj())->append_to_sibling_list();
  } // end of core bootstrapping

  // Initialize _objectArrayKlass after core bootstraping to make
  // sure the super class is set up properly for _objectArrayKlass.
  _objectArrayKlassObj = instanceKlass::
    cast(SystemDictionary::object_klass())->array_klass(1, CHECK);
  // Add the class to the class hierarchy manually to make sure that
  // its vtable is initialized after core bootstrapping is completed.
  Klass::cast(_objectArrayKlassObj)->append_to_sibling_list();

  // Compute is_jdk version flags.
  // Only 1.3 or later has the java.lang.Shutdown class.
  // Only 1.4 or later has the java.lang.CharSequence interface.
  // Only 1.5 or later has the java.lang.management.MemoryUsage class.
  if (JDK_Version::is_pre_jdk16_version()) {
    klassOop k = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_management_MemoryUsage(), THREAD);
    CLEAR_PENDING_EXCEPTION; // ignore exceptions
    if (k == NULL) {
      k = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_CharSequence(), THREAD);
      CLEAR_PENDING_EXCEPTION; // ignore exceptions
      if (k == NULL) {
        k = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(), THREAD);
        CLEAR_PENDING_EXCEPTION; // ignore exceptions
        if (k == NULL) {
          JDK_Version::set_jdk12x_version();
        } else {
          JDK_Version::set_jdk13x_version();
        }
      } else {
          JDK_Version::set_jdk14x_version();
      }
    } else {
          JDK_Version::set_jdk15x_version();
    }
  }

  #ifdef ASSERT
  if (FullGCALot) {
    // Allocate an array of dummy objects.
    // We'd like these to be at the bottom of the old generation,
    // so that when we free one and then collect,
    // (almost) the whole heap moves
    // and we find out if we actually update all the oops correctly.
    // But we can't allocate directly in the old generation,
    // so we allocate wherever, and hope that the first collection
    // moves these objects to the bottom of the old generation.
    // We can allocate directly in the permanent generation, so we do.
    int size;
    if (UseConcMarkSweepGC) {
      warning("Using +FullGCALot with concurrent mark sweep gc "
              "will not force all objects to relocate");
      size = FullGCALotDummies;
    } else {
      size = FullGCALotDummies * 2;
    }
    objArrayOop    naked_array = oopFactory::new_system_objArray(size, CHECK);
    objArrayHandle dummy_array(THREAD, naked_array);
    int i = 0;
    while (i < size) {
      if (!UseConcMarkSweepGC) {
        // Allocate dummy in old generation
        oop dummy = instanceKlass::cast(SystemDictionary::object_klass())->allocate_instance(CHECK);
        dummy_array->obj_at_put(i++, dummy);
      }
      // Allocate dummy in permanent generation
      oop dummy = instanceKlass::cast(SystemDictionary::object_klass())->allocate_permanent_instance(CHECK);
      dummy_array->obj_at_put(i++, dummy);
    }
    {
      // Only modify the global variable inside the mutex.
      // If we had a race to here, the other dummy_array instances
      // and their elements just get dropped on the floor, which is fine.
      MutexLocker ml(FullGCALot_lock);
      if (_fullgc_alot_dummy_array == NULL) {
        _fullgc_alot_dummy_array = dummy_array();
      }
    }
    assert(i == _fullgc_alot_dummy_array->length(), "just checking");
  }
  #endif
}


static inline void add_vtable(void** list, int* n, Klass* o, int count) {
  list[(*n)++] = *(void**)&o->vtbl_value();
  guarantee((*n) <= count, "vtable list too small.");
}


void Universe::init_self_patching_vtbl_list(void** list, int count) {
  int n = 0;
  { klassKlass o;             add_vtable(list, &n, &o, count); }
  { arrayKlassKlass o;        add_vtable(list, &n, &o, count); }
  { objArrayKlassKlass o;     add_vtable(list, &n, &o, count); }
  { instanceKlassKlass o;     add_vtable(list, &n, &o, count); }
  { instanceKlass o;          add_vtable(list, &n, &o, count); }
  { instanceRefKlass o;       add_vtable(list, &n, &o, count); }
  { typeArrayKlassKlass o;    add_vtable(list, &n, &o, count); }
  { symbolKlass o;            add_vtable(list, &n, &o, count); }
  { typeArrayKlass o;         add_vtable(list, &n, &o, count); }
  { methodKlass o;            add_vtable(list, &n, &o, count); }
  { constMethodKlass o;       add_vtable(list, &n, &o, count); }
  { constantPoolKlass o;      add_vtable(list, &n, &o, count); }
  { constantPoolCacheKlass o; add_vtable(list, &n, &o, count); }
  { objArrayKlass o;          add_vtable(list, &n, &o, count); }
  { methodDataKlass o;        add_vtable(list, &n, &o, count); }
  { compiledICHolderKlass o;  add_vtable(list, &n, &o, count); }
}


class FixupMirrorClosure: public ObjectClosure {
 public:
468
  virtual void do_object(oop obj) {
D
duke 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
    if (obj->is_klass()) {
      EXCEPTION_MARK;
      KlassHandle k(THREAD, klassOop(obj));
      // We will never reach the CATCH below since Exceptions::_throw will cause
      // the VM to exit if an exception is thrown during initialization
      java_lang_Class::create_mirror(k, CATCH);
      // This call unconditionally creates a new mirror for k,
      // and links in k's component_mirror field if k is an array.
      // If k is an objArray, k's element type must already have
      // a mirror.  In other words, this closure must process
      // the component type of an objArray k before it processes k.
      // This works because the permgen iterator presents arrays
      // and their component types in order of creation.
    }
  }
};

void Universe::initialize_basic_type_mirrors(TRAPS) {
  if (UseSharedSpaces) {
    assert(_int_mirror != NULL, "already loaded");
    assert(_void_mirror == _mirrors[T_VOID], "consistently loaded");
  } else {

    assert(_int_mirror==NULL, "basic type mirrors already initialized");
    _int_mirror     =
      java_lang_Class::create_basic_type_mirror("int",    T_INT, CHECK);
    _float_mirror   =
      java_lang_Class::create_basic_type_mirror("float",  T_FLOAT,   CHECK);
    _double_mirror  =
      java_lang_Class::create_basic_type_mirror("double", T_DOUBLE,  CHECK);
    _byte_mirror    =
      java_lang_Class::create_basic_type_mirror("byte",   T_BYTE, CHECK);
    _bool_mirror    =
      java_lang_Class::create_basic_type_mirror("boolean",T_BOOLEAN, CHECK);
    _char_mirror    =
      java_lang_Class::create_basic_type_mirror("char",   T_CHAR, CHECK);
    _long_mirror    =
      java_lang_Class::create_basic_type_mirror("long",   T_LONG, CHECK);
    _short_mirror   =
      java_lang_Class::create_basic_type_mirror("short",  T_SHORT,   CHECK);
    _void_mirror    =
      java_lang_Class::create_basic_type_mirror("void",   T_VOID, CHECK);

    _mirrors[T_INT]     = _int_mirror;
    _mirrors[T_FLOAT]   = _float_mirror;
    _mirrors[T_DOUBLE]  = _double_mirror;
    _mirrors[T_BYTE]    = _byte_mirror;
    _mirrors[T_BOOLEAN] = _bool_mirror;
    _mirrors[T_CHAR]    = _char_mirror;
    _mirrors[T_LONG]    = _long_mirror;
    _mirrors[T_SHORT]   = _short_mirror;
    _mirrors[T_VOID]    = _void_mirror;
    //_mirrors[T_OBJECT]  = instanceKlass::cast(_object_klass)->java_mirror();
    //_mirrors[T_ARRAY]   = instanceKlass::cast(_object_klass)->java_mirror();
  }
}

void Universe::fixup_mirrors(TRAPS) {
  // Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly,
  // but we cannot do that for classes created before java.lang.Class is loaded. Here we simply
  // walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note
  // that the number of objects allocated at this point is very small.
  assert(SystemDictionary::class_klass_loaded(), "java.lang.Class should be loaded");
  FixupMirrorClosure blk;
  Universe::heap()->permanent_object_iterate(&blk);
}


static bool has_run_finalizers_on_exit = false;

void Universe::run_finalizers_on_exit() {
  if (has_run_finalizers_on_exit) return;
  has_run_finalizers_on_exit = true;

  // Called on VM exit. This ought to be run in a separate thread.
  if (TraceReferenceGC) tty->print_cr("Callback to run finalizers on exit");
  {
    PRESERVE_EXCEPTION_MARK;
    KlassHandle finalizer_klass(THREAD, SystemDictionary::finalizer_klass());
    JavaValue result(T_VOID);
    JavaCalls::call_static(
      &result,
      finalizer_klass,
      vmSymbolHandles::run_finalizers_on_exit_name(),
      vmSymbolHandles::void_method_signature(),
      THREAD
    );
    // Ignore any pending exceptions
    CLEAR_PENDING_EXCEPTION;
  }
}


// initialize_vtable could cause gc if
// 1) we specified true to initialize_vtable and
// 2) this ran after gc was enabled
// In case those ever change we use handles for oops
void Universe::reinitialize_vtable_of(KlassHandle k_h, TRAPS) {
  // init vtable of k and all subclasses
  Klass* ko = k_h()->klass_part();
  klassVtable* vt = ko->vtable();
  if (vt) vt->initialize_vtable(false, CHECK);
  if (ko->oop_is_instance()) {
    instanceKlass* ik = (instanceKlass*)ko;
    for (KlassHandle s_h(THREAD, ik->subklass()); s_h() != NULL; s_h = (THREAD, s_h()->klass_part()->next_sibling())) {
      reinitialize_vtable_of(s_h, CHECK);
    }
  }
}


void initialize_itable_for_klass(klassOop k, TRAPS) {
  instanceKlass::cast(k)->itable()->initialize_itable(false, CHECK);
}


void Universe::reinitialize_itables(TRAPS) {
  SystemDictionary::classes_do(initialize_itable_for_klass, CHECK);

}


bool Universe::on_page_boundary(void* addr) {
  return ((uintptr_t) addr) % os::vm_page_size() == 0;
}


bool Universe::should_fill_in_stack_trace(Handle throwable) {
  // never attempt to fill in the stack trace of preallocated errors that do not have
  // backtrace. These errors are kept alive forever and may be "re-used" when all
  // preallocated errors with backtrace have been consumed. Also need to avoid
  // a potential loop which could happen if an out of memory occurs when attempting
  // to allocate the backtrace.
  return ((throwable() != Universe::_out_of_memory_error_java_heap) &&
          (throwable() != Universe::_out_of_memory_error_perm_gen)  &&
          (throwable() != Universe::_out_of_memory_error_array_size) &&
          (throwable() != Universe::_out_of_memory_error_gc_overhead_limit));
}


oop Universe::gen_out_of_memory_error(oop default_err) {
  // generate an out of memory error:
  // - if there is a preallocated error with backtrace available then return it wth
  //   a filled in stack trace.
  // - if there are no preallocated errors with backtrace available then return
  //   an error without backtrace.
  int next;
  if (_preallocated_out_of_memory_error_avail_count > 0) {
    next = (int)Atomic::add(-1, &_preallocated_out_of_memory_error_avail_count);
    assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt");
  } else {
    next = -1;
  }
  if (next < 0) {
    // all preallocated errors have been used.
    // return default
    return default_err;
  } else {
    // get the error object at the slot and set set it to NULL so that the
    // array isn't keeping it alive anymore.
    oop exc = preallocated_out_of_memory_errors()->obj_at(next);
    assert(exc != NULL, "slot has been used already");
    preallocated_out_of_memory_errors()->obj_at_put(next, NULL);

    // use the message from the default error
    oop msg = java_lang_Throwable::message(default_err);
    assert(msg != NULL, "no message");
    java_lang_Throwable::set_message(exc, msg);

    // populate the stack trace and return it.
    java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc);
    return exc;
  }
}

static intptr_t non_oop_bits = 0;

void* Universe::non_oop_word() {
  // Neither the high bits nor the low bits of this value is allowed
  // to look like (respectively) the high or low bits of a real oop.
  //
  // High and low are CPU-specific notions, but low always includes
  // the low-order bit.  Since oops are always aligned at least mod 4,
  // setting the low-order bit will ensure that the low half of the
  // word will never look like that of a real oop.
  //
  // Using the OS-supplied non-memory-address word (usually 0 or -1)
  // will take care of the high bits, however many there are.

  if (non_oop_bits == 0) {
    non_oop_bits = (intptr_t)os::non_memory_address_word() | 1;
  }

  return (void*)non_oop_bits;
}

jint universe_init() {
  assert(!Universe::_fully_initialized, "called after initialize_vtables");
  guarantee(1 << LogHeapWordSize == sizeof(HeapWord),
         "LogHeapWordSize is incorrect.");
  guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?");
  guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
671
            "oop size is not not a multiple of HeapWord size");
D
duke 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
  TraceTime timer("Genesis", TraceStartupTime);
  GC_locker::lock();  // do not allow gc during bootstrapping
  JavaClasses::compute_hard_coded_offsets();

  // Get map info from shared archive file.
  if (DumpSharedSpaces)
    UseSharedSpaces = false;

  FileMapInfo* mapinfo = NULL;
  if (UseSharedSpaces) {
    mapinfo = NEW_C_HEAP_OBJ(FileMapInfo);
    memset(mapinfo, 0, sizeof(FileMapInfo));

    // Open the shared archive file, read and validate the header. If
    // initialization files, shared spaces [UseSharedSpaces] are
    // disabled and the file is closed.

    if (mapinfo->initialize()) {
      FileMapInfo::set_current_info(mapinfo);
    } else {
      assert(!mapinfo->is_open() && !UseSharedSpaces,
             "archive file not closed or shared spaces not disabled.");
    }
  }

  jint status = Universe::initialize_heap();
  if (status != JNI_OK) {
    return status;
  }

  // We have a heap so create the methodOop caches before
  // CompactingPermGenGen::initialize_oops() tries to populate them.
  Universe::_finalizer_register_cache = new LatestMethodOopCache();
  Universe::_loader_addClass_cache    = new LatestMethodOopCache();
  Universe::_reflect_invoke_cache     = new ActiveMethodOopsCache();

  if (UseSharedSpaces) {

    // Read the data structures supporting the shared spaces (shared
    // system dictionary, symbol table, etc.).  After that, access to
    // the file (other than the mapped regions) is no longer needed, and
    // the file is closed. Closing the file does not affect the
    // currently mapped regions.

    CompactingPermGenGen::initialize_oops();
    mapinfo->close();

  } else {
    SymbolTable::create_table();
    StringTable::create_table();
    ClassLoader::create_package_info_table();
  }

  return JNI_OK;
}

jint Universe::initialize_heap() {

  if (UseParallelGC) {
#ifndef SERIALGC
    Universe::_collectedHeap = new ParallelScavengeHeap();
#else  // SERIALGC
    fatal("UseParallelGC not supported in java kernel vm.");
#endif // SERIALGC

  } else {
    GenCollectorPolicy *gc_policy;

    if (UseSerialGC) {
      gc_policy = new MarkSweepPolicy();
    } else if (UseConcMarkSweepGC) {
#ifndef SERIALGC
      if (UseAdaptiveSizePolicy) {
        gc_policy = new ASConcurrentMarkSweepPolicy();
      } else {
        gc_policy = new ConcurrentMarkSweepPolicy();
      }
#else   // SERIALGC
    fatal("UseConcMarkSweepGC not supported in java kernel vm.");
#endif // SERIALGC
    } else { // default old generation
      gc_policy = new MarkSweepPolicy();
    }

    Universe::_collectedHeap = new GenCollectedHeap(gc_policy);
  }

  jint status = Universe::heap()->initialize();
  if (status != JNI_OK) {
    return status;
  }
763 764 765 766 767 768 769 770 771
  if (UseCompressedOops) {
    // Subtract a page because something can get allocated at heap base.
    // This also makes implicit null checking work, because the
    // memory+1 page below heap_base needs to cause a signal.
    // See needs_explicit_null_check.
    // Only set the heap base for compressed oops because it indicates
    // compressed oops for pstack code.
    Universe::_heap_base = Universe::heap()->base() - os::vm_page_size();
  }
D
duke 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385

  // We will never reach the CATCH below since Exceptions::_throw will cause
  // the VM to exit if an exception is thrown during initialization

  if (UseTLAB) {
    assert(Universe::heap()->supports_tlab_allocation(),
           "Should support thread-local allocation buffers");
    ThreadLocalAllocBuffer::startup_initialization();
  }
  return JNI_OK;
}

// It's the caller's repsonsibility to ensure glitch-freedom
// (if required).
void Universe::update_heap_info_at_gc() {
  _heap_capacity_at_last_gc = heap()->capacity();
  _heap_used_at_last_gc     = heap()->used();
}



void universe2_init() {
  EXCEPTION_MARK;
  Universe::genesis(CATCH);
  // Although we'd like to verify here that the state of the heap
  // is good, we can't because the main thread has not yet added
  // itself to the threads list (so, using current interfaces
  // we can't "fill" its TLAB), unless TLABs are disabled.
  if (VerifyBeforeGC && !UseTLAB &&
      Universe::heap()->total_collections() >= VerifyGCStartAt) {
     Universe::heap()->prepare_for_verify();
     Universe::verify();   // make sure we're starting with a clean slate
  }
}


// This function is defined in JVM.cpp
extern void initialize_converter_functions();

bool universe_post_init() {
  Universe::_fully_initialized = true;
  EXCEPTION_MARK;
  { ResourceMark rm;
    Interpreter::initialize();      // needed for interpreter entry points
    if (!UseSharedSpaces) {
      KlassHandle ok_h(THREAD, SystemDictionary::object_klass());
      Universe::reinitialize_vtable_of(ok_h, CHECK_false);
      Universe::reinitialize_itables(CHECK_false);
    }
  }

  klassOop k;
  instanceKlassHandle k_h;
  if (!UseSharedSpaces) {
    // Setup preallocated empty java.lang.Class array
    Universe::_the_empty_class_klass_array = oopFactory::new_objArray(SystemDictionary::class_klass(), 0, CHECK_false);
    // Setup preallocated OutOfMemoryError errors
    k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_OutOfMemoryError(), true, CHECK_false);
    k_h = instanceKlassHandle(THREAD, k);
    Universe::_out_of_memory_error_java_heap = k_h->allocate_permanent_instance(CHECK_false);
    Universe::_out_of_memory_error_perm_gen = k_h->allocate_permanent_instance(CHECK_false);
    Universe::_out_of_memory_error_array_size = k_h->allocate_permanent_instance(CHECK_false);
    Universe::_out_of_memory_error_gc_overhead_limit =
      k_h->allocate_permanent_instance(CHECK_false);

    // Setup preallocated NullPointerException
    // (this is currently used for a cheap & dirty solution in compiler exception handling)
    k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_NullPointerException(), true, CHECK_false);
    Universe::_null_ptr_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
    // Setup preallocated ArithmeticException
    // (this is currently used for a cheap & dirty solution in compiler exception handling)
    k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ArithmeticException(), true, CHECK_false);
    Universe::_arithmetic_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
    // Virtual Machine Error for when we get into a situation we can't resolve
    k = SystemDictionary::resolve_or_fail(
      vmSymbolHandles::java_lang_VirtualMachineError(), true, CHECK_false);
    bool linked = instanceKlass::cast(k)->link_class_or_fail(CHECK_false);
    if (!linked) {
      tty->print_cr("Unable to link/verify VirtualMachineError class");
      return false; // initialization failed
    }
    Universe::_virtual_machine_error_instance =
      instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
  }
  if (!DumpSharedSpaces) {
    // These are the only Java fields that are currently set during shared space dumping.
    // We prefer to not handle this generally, so we always reinitialize these detail messages.
    Handle msg = java_lang_String::create_from_str("Java heap space", CHECK_false);
    java_lang_Throwable::set_message(Universe::_out_of_memory_error_java_heap, msg());

    msg = java_lang_String::create_from_str("PermGen space", CHECK_false);
    java_lang_Throwable::set_message(Universe::_out_of_memory_error_perm_gen, msg());

    msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK_false);
    java_lang_Throwable::set_message(Universe::_out_of_memory_error_array_size, msg());

    msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false);
    java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg());

    msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
    java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg());

    // Setup the array of errors that have preallocated backtrace
    k = Universe::_out_of_memory_error_java_heap->klass();
    assert(k->klass_part()->name() == vmSymbols::java_lang_OutOfMemoryError(), "should be out of memory error");
    k_h = instanceKlassHandle(THREAD, k);

    int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0;
    Universe::_preallocated_out_of_memory_error_array = oopFactory::new_objArray(k_h(), len, CHECK_false);
    for (int i=0; i<len; i++) {
      oop err = k_h->allocate_permanent_instance(CHECK_false);
      Handle err_h = Handle(THREAD, err);
      java_lang_Throwable::allocate_backtrace(err_h, CHECK_false);
      Universe::preallocated_out_of_memory_errors()->obj_at_put(i, err_h());
    }
    Universe::_preallocated_out_of_memory_error_avail_count = (jint)len;
  }


  // Setup static method for registering finalizers
  // The finalizer klass must be linked before looking up the method, in
  // case it needs to get rewritten.
  instanceKlass::cast(SystemDictionary::finalizer_klass())->link_class(CHECK_false);
  methodOop m = instanceKlass::cast(SystemDictionary::finalizer_klass())->find_method(
                                  vmSymbols::register_method_name(),
                                  vmSymbols::register_method_signature());
  if (m == NULL || !m->is_static()) {
    THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
      "java.lang.ref.Finalizer.register", false);
  }
  Universe::_finalizer_register_cache->init(
    SystemDictionary::finalizer_klass(), m, CHECK_false);

  // Resolve on first use and initialize class.
  // Note: No race-condition here, since a resolve will always return the same result

  // Setup method for security checks
  k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_reflect_Method(), true, CHECK_false);
  k_h = instanceKlassHandle(THREAD, k);
  k_h->link_class(CHECK_false);
  m = k_h->find_method(vmSymbols::invoke_name(), vmSymbols::object_array_object_object_signature());
  if (m == NULL || m->is_static()) {
    THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
      "java.lang.reflect.Method.invoke", false);
  }
  Universe::_reflect_invoke_cache->init(k_h(), m, CHECK_false);

  // Setup method for registering loaded classes in class loader vector
  instanceKlass::cast(SystemDictionary::classloader_klass())->link_class(CHECK_false);
  m = instanceKlass::cast(SystemDictionary::classloader_klass())->find_method(vmSymbols::addClass_name(), vmSymbols::class_void_signature());
  if (m == NULL || m->is_static()) {
    THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
      "java.lang.ClassLoader.addClass", false);
  }
  Universe::_loader_addClass_cache->init(
    SystemDictionary::classloader_klass(), m, CHECK_false);

  // The folowing is initializing converter functions for serialization in
  // JVM.cpp. If we clean up the StrictMath code above we may want to find
  // a better solution for this as well.
  initialize_converter_functions();

  // This needs to be done before the first scavenge/gc, since
  // it's an input to soft ref clearing policy.
  Universe::update_heap_info_at_gc();

  // ("weak") refs processing infrastructure initialization
  Universe::heap()->post_initialize();

  GC_locker::unlock();  // allow gc after bootstrapping

  MemoryService::set_universe_heap(Universe::_collectedHeap);
  return true;
}


void Universe::compute_base_vtable_size() {
  _base_vtable_size = ClassLoader::compute_Object_vtable();
}


// %%% The Universe::flush_foo methods belong in CodeCache.

// Flushes compiled methods dependent on dependee.
void Universe::flush_dependents_on(instanceKlassHandle dependee) {
  assert_lock_strong(Compile_lock);

  if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;

  // CodeCache can only be updated by a thread_in_VM and they will all be
  // stopped dring the safepoint so CodeCache will be safe to update without
  // holding the CodeCache_lock.

  DepChange changes(dependee);

  // Compute the dependent nmethods
  if (CodeCache::mark_for_deoptimization(changes) > 0) {
    // At least one nmethod has been marked for deoptimization
    VM_Deoptimize op;
    VMThread::execute(&op);
  }
}

#ifdef HOTSWAP
// Flushes compiled methods dependent on dependee in the evolutionary sense
void Universe::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
  // --- Compile_lock is not held. However we are at a safepoint.
  assert_locked_or_safepoint(Compile_lock);
  if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;

  // CodeCache can only be updated by a thread_in_VM and they will all be
  // stopped dring the safepoint so CodeCache will be safe to update without
  // holding the CodeCache_lock.

  // Compute the dependent nmethods
  if (CodeCache::mark_for_evol_deoptimization(ev_k_h) > 0) {
    // At least one nmethod has been marked for deoptimization

    // All this already happens inside a VM_Operation, so we'll do all the work here.
    // Stuff copied from VM_Deoptimize and modified slightly.

    // We do not want any GCs to happen while we are in the middle of this VM operation
    ResourceMark rm;
    DeoptimizationMarker dm;

    // Deoptimize all activations depending on marked nmethods
    Deoptimization::deoptimize_dependents();

    // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
    CodeCache::make_marked_nmethods_not_entrant();
  }
}
#endif // HOTSWAP


// Flushes compiled methods dependent on dependee
void Universe::flush_dependents_on_method(methodHandle m_h) {
  // --- Compile_lock is not held. However we are at a safepoint.
  assert_locked_or_safepoint(Compile_lock);

  // CodeCache can only be updated by a thread_in_VM and they will all be
  // stopped dring the safepoint so CodeCache will be safe to update without
  // holding the CodeCache_lock.

  // Compute the dependent nmethods
  if (CodeCache::mark_for_deoptimization(m_h()) > 0) {
    // At least one nmethod has been marked for deoptimization

    // All this already happens inside a VM_Operation, so we'll do all the work here.
    // Stuff copied from VM_Deoptimize and modified slightly.

    // We do not want any GCs to happen while we are in the middle of this VM operation
    ResourceMark rm;
    DeoptimizationMarker dm;

    // Deoptimize all activations depending on marked nmethods
    Deoptimization::deoptimize_dependents();

    // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
    CodeCache::make_marked_nmethods_not_entrant();
  }
}

void Universe::print() { print_on(gclog_or_tty); }

void Universe::print_on(outputStream* st) {
  st->print_cr("Heap");
  heap()->print_on(st);
}

void Universe::print_heap_at_SIGBREAK() {
  if (PrintHeapAtSIGBREAK) {
    MutexLocker hl(Heap_lock);
    print_on(tty);
    tty->cr();
    tty->flush();
  }
}

void Universe::print_heap_before_gc(outputStream* st) {
  st->print_cr("{Heap before GC invocations=%u (full %u):",
               heap()->total_collections(),
               heap()->total_full_collections());
  heap()->print_on(st);
}

void Universe::print_heap_after_gc(outputStream* st) {
  st->print_cr("Heap after GC invocations=%u (full %u):",
               heap()->total_collections(),
               heap()->total_full_collections());
  heap()->print_on(st);
  st->print_cr("}");
}

void Universe::verify(bool allow_dirty, bool silent) {
  if (SharedSkipVerify) {
    return;
  }

  // The use of _verify_in_progress is a temporary work around for
  // 6320749.  Don't bother with a creating a class to set and clear
  // it since it is only used in this method and the control flow is
  // straight forward.
  _verify_in_progress = true;

  COMPILER2_PRESENT(
    assert(!DerivedPointerTable::is_active(),
         "DPT should not be active during verification "
         "(of thread stacks below)");
  )

  ResourceMark rm;
  HandleMark hm;  // Handles created during verification can be zapped
  _verify_count++;

  if (!silent) gclog_or_tty->print("[Verifying ");
  if (!silent) gclog_or_tty->print("threads ");
  Threads::verify();
  heap()->verify(allow_dirty, silent);

  if (!silent) gclog_or_tty->print("syms ");
  SymbolTable::verify();
  if (!silent) gclog_or_tty->print("strs ");
  StringTable::verify();
  {
    MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
    if (!silent) gclog_or_tty->print("zone ");
    CodeCache::verify();
  }
  if (!silent) gclog_or_tty->print("dict ");
  SystemDictionary::verify();
  if (!silent) gclog_or_tty->print("hand ");
  JNIHandles::verify();
  if (!silent) gclog_or_tty->print("C-heap ");
  os::check_heap();
  if (!silent) gclog_or_tty->print_cr("]");

  _verify_in_progress = false;
}

// Oop verification (see MacroAssembler::verify_oop)

static uintptr_t _verify_oop_data[2]   = {0, (uintptr_t)-1};
static uintptr_t _verify_klass_data[2] = {0, (uintptr_t)-1};


static void calculate_verify_data(uintptr_t verify_data[2],
                                  HeapWord* low_boundary,
                                  HeapWord* high_boundary) {
  assert(low_boundary < high_boundary, "bad interval");

  // decide which low-order bits we require to be clear:
  size_t alignSize = MinObjAlignmentInBytes;
  size_t min_object_size = oopDesc::header_size();

  // make an inclusive limit:
  uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize;
  uintptr_t min = (uintptr_t)low_boundary;
  assert(min < max, "bad interval");
  uintptr_t diff = max ^ min;

  // throw away enough low-order bits to make the diff vanish
  uintptr_t mask = (uintptr_t)(-1);
  while ((mask & diff) != 0)
    mask <<= 1;
  uintptr_t bits = (min & mask);
  assert(bits == (max & mask), "correct mask");
  // check an intermediate value between min and max, just to make sure:
  assert(bits == ((min + (max-min)/2) & mask), "correct mask");

  // require address alignment, too:
  mask |= (alignSize - 1);

  if (!(verify_data[0] == 0 && verify_data[1] == (uintptr_t)-1)) {
    assert(verify_data[0] == mask && verify_data[1] == bits, "mask stability");
  }
  verify_data[0] = mask;
  verify_data[1] = bits;
}


// Oop verification (see MacroAssembler::verify_oop)
#ifndef PRODUCT

uintptr_t Universe::verify_oop_mask() {
  MemRegion m = heap()->reserved_region();
  calculate_verify_data(_verify_oop_data,
                        m.start(),
                        m.end());
  return _verify_oop_data[0];
}



uintptr_t Universe::verify_oop_bits() {
  verify_oop_mask();
  return _verify_oop_data[1];
}


uintptr_t Universe::verify_klass_mask() {
  /* $$$
  // A klass can never live in the new space.  Since the new and old
  // spaces can change size, we must settle for bounds-checking against
  // the bottom of the world, plus the smallest possible new and old
  // space sizes that may arise during execution.
  size_t min_new_size = Universe::new_size();   // in bytes
  size_t min_old_size = Universe::old_size();   // in bytes
  calculate_verify_data(_verify_klass_data,
          (HeapWord*)((uintptr_t)_new_gen->low_boundary + min_new_size + min_old_size),
          _perm_gen->high_boundary);
                        */
  // Why doesn't the above just say that klass's always live in the perm
  // gen?  I'll see if that seems to work...
  MemRegion permanent_reserved;
  switch (Universe::heap()->kind()) {
  default:
    // ???: What if a CollectedHeap doesn't have a permanent generation?
    ShouldNotReachHere();
    break;
  case CollectedHeap::GenCollectedHeap: {
    GenCollectedHeap* gch = (GenCollectedHeap*) Universe::heap();
    permanent_reserved = gch->perm_gen()->reserved();
    break;
  }
#ifndef SERIALGC
  case CollectedHeap::ParallelScavengeHeap: {
    ParallelScavengeHeap* psh = (ParallelScavengeHeap*) Universe::heap();
    permanent_reserved = psh->perm_gen()->reserved();
    break;
  }
#endif // SERIALGC
  }
  calculate_verify_data(_verify_klass_data,
                        permanent_reserved.start(),
                        permanent_reserved.end());

  return _verify_klass_data[0];
}



uintptr_t Universe::verify_klass_bits() {
  verify_klass_mask();
  return _verify_klass_data[1];
}


uintptr_t Universe::verify_mark_mask() {
  return markOopDesc::lock_mask_in_place;
}



uintptr_t Universe::verify_mark_bits() {
  intptr_t mask = verify_mark_mask();
  intptr_t bits = (intptr_t)markOopDesc::prototype();
  assert((bits & ~mask) == 0, "no stray header bits");
  return bits;
}
#endif // PRODUCT


void Universe::compute_verify_oop_data() {
  verify_oop_mask();
  verify_oop_bits();
  verify_mark_mask();
  verify_mark_bits();
  verify_klass_mask();
  verify_klass_bits();
}


void CommonMethodOopCache::init(klassOop k, methodOop m, TRAPS) {
  if (!UseSharedSpaces) {
    _klass = k;
  }
#ifndef PRODUCT
  else {
    // sharing initilization should have already set up _klass
    assert(_klass != NULL, "just checking");
  }
#endif

  _method_idnum = m->method_idnum();
  assert(_method_idnum >= 0, "sanity check");
}


ActiveMethodOopsCache::~ActiveMethodOopsCache() {
  if (_prev_methods != NULL) {
    for (int i = _prev_methods->length() - 1; i >= 0; i--) {
      jweak method_ref = _prev_methods->at(i);
      if (method_ref != NULL) {
        JNIHandles::destroy_weak_global(method_ref);
      }
    }
    delete _prev_methods;
    _prev_methods = NULL;
  }
}


void ActiveMethodOopsCache::add_previous_version(const methodOop method) {
  assert(Thread::current()->is_VM_thread(),
    "only VMThread can add previous versions");

  if (_prev_methods == NULL) {
    // This is the first previous version so make some space.
    // Start with 2 elements under the assumption that the class
    // won't be redefined much.
    _prev_methods = new (ResourceObj::C_HEAP) GrowableArray<jweak>(2, true);
  }

  // RC_TRACE macro has an embedded ResourceMark
  RC_TRACE(0x00000100,
    ("add: %s(%s): adding prev version ref for cached method @%d",
    method->name()->as_C_string(), method->signature()->as_C_string(),
    _prev_methods->length()));

  methodHandle method_h(method);
  jweak method_ref = JNIHandles::make_weak_global(method_h);
  _prev_methods->append(method_ref);

  // Using weak references allows previous versions of the cached
  // method to be GC'ed when they are no longer needed. Since the
  // caller is the VMThread and we are at a safepoint, this is a good
  // time to clear out unused weak references.

  for (int i = _prev_methods->length() - 1; i >= 0; i--) {
    jweak method_ref = _prev_methods->at(i);
    assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
    if (method_ref == NULL) {
      _prev_methods->remove_at(i);
      // Since we are traversing the array backwards, we don't have to
      // do anything special with the index.
      continue;  // robustness
    }

    methodOop m = (methodOop)JNIHandles::resolve(method_ref);
    if (m == NULL) {
      // this method entry has been GC'ed so remove it
      JNIHandles::destroy_weak_global(method_ref);
      _prev_methods->remove_at(i);
    } else {
      // RC_TRACE macro has an embedded ResourceMark
      RC_TRACE(0x00000400, ("add: %s(%s): previous cached method @%d is alive",
        m->name()->as_C_string(), m->signature()->as_C_string(), i));
    }
  }
} // end add_previous_version()


bool ActiveMethodOopsCache::is_same_method(const methodOop method) const {
  instanceKlass* ik = instanceKlass::cast(klass());
  methodOop check_method = ik->method_with_idnum(method_idnum());
  assert(check_method != NULL, "sanity check");
  if (check_method == method) {
    // done with the easy case
    return true;
  }

  if (_prev_methods != NULL) {
    // The cached method has been redefined at least once so search
    // the previous versions for a match.
    for (int i = 0; i < _prev_methods->length(); i++) {
      jweak method_ref = _prev_methods->at(i);
      assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
      if (method_ref == NULL) {
        continue;  // robustness
      }

      check_method = (methodOop)JNIHandles::resolve(method_ref);
      if (check_method == method) {
        // a previous version matches
        return true;
      }
    }
  }

  // either no previous versions or no previous version matched
  return false;
}


methodOop LatestMethodOopCache::get_methodOop() {
  instanceKlass* ik = instanceKlass::cast(klass());
  methodOop m = ik->method_with_idnum(method_idnum());
  assert(m != NULL, "sanity check");
  return m;
}


#ifdef ASSERT
// Release dummy object(s) at bottom of heap
bool Universe::release_fullgc_alot_dummy() {
  MutexLocker ml(FullGCALot_lock);
  if (_fullgc_alot_dummy_array != NULL) {
    if (_fullgc_alot_dummy_next >= _fullgc_alot_dummy_array->length()) {
      // No more dummies to release, release entire array instead
      _fullgc_alot_dummy_array = NULL;
      return false;
    }
    if (!UseConcMarkSweepGC) {
      // Release dummy at bottom of old generation
      _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
    }
    // Release dummy at bottom of permanent generation
    _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
  }
  return true;
}

#endif // ASSERT