mallocSiteTable.cpp 9.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
#include "precompiled.hpp"


#include "memory/allocation.inline.hpp"
#include "runtime/atomic.hpp"
#include "services/mallocSiteTable.hpp"

/*
 * Early os::malloc() calls come from initializations of static variables, long before entering any
 * VM code. Upon the arrival of the first os::malloc() call, malloc site hashtable has to be
 * initialized, along with the allocation site for the hashtable entries.
 * To ensure that malloc site hashtable can be initialized without triggering any additional os::malloc()
 * call, the hashtable bucket array and hashtable entry allocation site have to be static.
 * It is not a problem for hashtable bucket, since it is an array of pointer type, C runtime just
 * allocates a block memory and zero the memory for it.
 * But for hashtable entry allocation site object, things get tricky. C runtime not only allocates
 * memory for it, but also calls its constructor at some later time. If we initialize the allocation site
 * at the first os::malloc() call, the object will be reinitialized when its constructor is called
 * by C runtime.
 * To workaround above issue, we declare a static size_t array with the size of the CallsiteHashtableEntry,
 * the memory is used to instantiate CallsiteHashtableEntry for the hashtable entry allocation site.
 * Given it is a primitive type array, C runtime will do nothing other than assign the memory block for the variable,
 * which is exactly what we want.
 * The same trick is also applied to create NativeCallStack object for CallsiteHashtableEntry memory allocation.
 *
 * Note: C++ object usually aligns to particular alignment, depends on compiler implementation, we declare
 * the memory as size_t arrays, to ensure the memory is aligned to native machine word alignment.
 */

// Reserve enough memory for NativeCallStack and MallocSiteHashtableEntry objects
size_t MallocSiteTable::_hash_entry_allocation_stack[CALC_OBJ_SIZE_IN_TYPE(NativeCallStack, size_t)];
size_t MallocSiteTable::_hash_entry_allocation_site[CALC_OBJ_SIZE_IN_TYPE(MallocSiteHashtableEntry, size_t)];

// Malloc site hashtable buckets
MallocSiteHashtableEntry*  MallocSiteTable::_table[MallocSiteTable::table_size];

// concurrent access counter
volatile int MallocSiteTable::_access_count = 0;

// Tracking hashtable contention
NOT_PRODUCT(int MallocSiteTable::_peak_count = 0;)


/*
 * Initialize malloc site table.
 * Hashtable entry is malloc'd, so it can cause infinite recursion.
 * To avoid above problem, we pre-initialize a hash entry for
 * this allocation site.
 * The method is called during C runtime static variable initialization
 * time, it is in single-threaded mode from JVM perspective.
 */
bool MallocSiteTable::initialize() {
  assert(sizeof(_hash_entry_allocation_stack) >= sizeof(NativeCallStack), "Sanity Check");
  assert(sizeof(_hash_entry_allocation_site) >= sizeof(MallocSiteHashtableEntry),
    "Sanity Check");
  assert((size_t)table_size <= MAX_MALLOCSITE_TABLE_SIZE, "Hashtable overflow");

  // Fake the call stack for hashtable entry allocation
  assert(NMT_TrackingStackDepth > 1, "At least one tracking stack");

  // Create pseudo call stack for hashtable entry allocation
  address pc[3];
  if (NMT_TrackingStackDepth >= 3) {
    pc[2] = (address)MallocSiteTable::allocation_at;
  }
  if (NMT_TrackingStackDepth >= 2) {
    pc[1] = (address)MallocSiteTable::lookup_or_add;
  }
  pc[0] = (address)MallocSiteTable::new_entry;

  // Instantiate NativeCallStack object, have to use placement new operator. (see comments above)
  NativeCallStack* stack = ::new ((void*)_hash_entry_allocation_stack)
    NativeCallStack(pc, MIN2(((int)(sizeof(pc) / sizeof(address))), ((int)NMT_TrackingStackDepth)));

  // Instantiate hash entry for hashtable entry allocation callsite
  MallocSiteHashtableEntry* entry = ::new ((void*)_hash_entry_allocation_site)
100
    MallocSiteHashtableEntry(*stack, mtNMT);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

  // Add the allocation site to hashtable.
  int index = hash_to_index(stack->hash());
  _table[index] = entry;

  return true;
}

// Walks entries in the hashtable.
// It stops walk if the walker returns false.
bool MallocSiteTable::walk(MallocSiteWalker* walker) {
  MallocSiteHashtableEntry* head;
  for (int index = 0; index < table_size; index ++) {
    head = _table[index];
    while (head != NULL) {
      if (!walker->do_malloc_site(head->peek())) {
        return false;
      }
      head = (MallocSiteHashtableEntry*)head->next();
    }
  }
  return true;
}

/*
 *  The hashtable does not have deletion policy on individual entry,
 *  and each linked list node is inserted via compare-and-swap,
 *  so each linked list is stable, the contention only happens
 *  at the end of linked list.
 *  This method should not return NULL under normal circumstance.
 *  If NULL is returned, it indicates:
 *    1. Out of memory, it cannot allocate new hash entry.
 *    2. Overflow hash bucket.
 *  Under any of above circumstances, caller should handle the situation.
 */
MallocSite* MallocSiteTable::lookup_or_add(const NativeCallStack& key, size_t* bucket_idx,
137 138
  size_t* pos_idx, MEMFLAGS flags) {
  assert(flags != mtNone, "Should have a real memory type");
139 140 141 142 143 144 145
  int index = hash_to_index(key.hash());
  assert(index >= 0, "Negative index");
  *bucket_idx = (size_t)index;
  *pos_idx = 0;

  // First entry for this hash bucket
  if (_table[index] == NULL) {
146
    MallocSiteHashtableEntry* entry = new_entry(key, flags);
147 148 149 150 151 152 153 154 155 156 157 158 159 160
    // OOM check
    if (entry == NULL) return NULL;

    // swap in the head
    if (Atomic::cmpxchg_ptr((void*)entry, (volatile void *)&_table[index], NULL) == NULL) {
      return entry->data();
    }

    delete entry;
  }

  MallocSiteHashtableEntry* head = _table[index];
  while (head != NULL && (*pos_idx) <= MAX_BUCKET_LENGTH) {
    MallocSite* site = head->data();
161
    if (site->flags() == flags && site->equals(key)) {
162 163 164 165
      return head->data();
    }

    if (head->next() == NULL && (*pos_idx) < MAX_BUCKET_LENGTH) {
166
      MallocSiteHashtableEntry* entry = new_entry(key, flags);
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
      // OOM check
      if (entry == NULL) return NULL;
      if (head->atomic_insert(entry)) {
        (*pos_idx) ++;
        return entry->data();
      }
      // contended, other thread won
      delete entry;
    }
    head = (MallocSiteHashtableEntry*)head->next();
    (*pos_idx) ++;
  }
  return NULL;
}

// Access malloc site
MallocSite* MallocSiteTable::malloc_site(size_t bucket_idx, size_t pos_idx) {
  assert(bucket_idx < table_size, "Invalid bucket index");
  MallocSiteHashtableEntry* head = _table[bucket_idx];
  for (size_t index = 0; index < pos_idx && head != NULL;
    index ++, head = (MallocSiteHashtableEntry*)head->next());
  assert(head != NULL, "Invalid position index");
  return head->data();
}

// Allocates MallocSiteHashtableEntry object. Special call stack
// (pre-installed allocation site) has to be used to avoid infinite
// recursion.
195
MallocSiteHashtableEntry* MallocSiteTable::new_entry(const NativeCallStack& key, MEMFLAGS flags) {
196 197
  void* p = AllocateHeap(sizeof(MallocSiteHashtableEntry), mtNMT,
    *hash_entry_allocation_stack(), AllocFailStrategy::RETURN_NULL);
198
  return ::new (p) MallocSiteHashtableEntry(key, flags);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
}

void MallocSiteTable::reset() {
  for (int index = 0; index < table_size; index ++) {
    MallocSiteHashtableEntry* head = _table[index];
    _table[index] = NULL;
    delete_linked_list(head);
  }
}

void MallocSiteTable::delete_linked_list(MallocSiteHashtableEntry* head) {
  MallocSiteHashtableEntry* p;
  while (head != NULL) {
    p = head;
    head = (MallocSiteHashtableEntry*)head->next();
    if (p != (MallocSiteHashtableEntry*)_hash_entry_allocation_site) {
      delete p;
    }
  }
}

void MallocSiteTable::shutdown() {
  AccessLock locker(&_access_count);
  locker.exclusiveLock();
  reset();
}

bool MallocSiteTable::walk_malloc_site(MallocSiteWalker* walker) {
  assert(walker != NULL, "NuLL walker");
  AccessLock locker(&_access_count);
  if (locker.sharedLock()) {
    NOT_PRODUCT(_peak_count = MAX2(_peak_count, _access_count);)
    return walk(walker);
  }
  return false;
}


void MallocSiteTable::AccessLock::exclusiveLock() {
  jint target;
  jint val;

  assert(_lock_state != ExclusiveLock, "Can only call once");
  assert(*_lock >= 0, "Can not content exclusive lock");

  // make counter negative to block out shared locks
  do {
    val = *_lock;
    target = _MAGIC_ + *_lock;
  } while (Atomic::cmpxchg(target, _lock, val) != val);

  // wait for all readers to exit
  while (*_lock != _MAGIC_) {
#ifdef _WINDOWS
    os::naked_short_sleep(1);
#else
    os::NakedYield();
#endif
  }
  _lock_state = ExclusiveLock;
}