concurrentMarkThread.cpp 12.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30 31 32
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1MMUTracker.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/vmThread.hpp"
33 34 35 36 37 38 39 40 41 42 43 44 45 46

// ======= Concurrent Mark Thread ========

// The CM thread is created when the G1 garbage collector is used

SurrogateLockerThread*
     ConcurrentMarkThread::_slt = NULL;

ConcurrentMarkThread::ConcurrentMarkThread(ConcurrentMark* cm) :
  ConcurrentGCThread(),
  _cm(cm),
  _started(false),
  _in_progress(false),
  _vtime_accum(0.0),
47
  _vtime_mark_accum(0.0) {
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  create_and_start();
}

class CMCheckpointRootsFinalClosure: public VoidClosure {

  ConcurrentMark* _cm;
public:

  CMCheckpointRootsFinalClosure(ConcurrentMark* cm) :
    _cm(cm) {}

  void do_void(){
    _cm->checkpointRootsFinal(false); // !clear_all_soft_refs
  }
};

class CMCleanUp: public VoidClosure {
  ConcurrentMark* _cm;
public:

  CMCleanUp(ConcurrentMark* cm) :
    _cm(cm) {}

  void do_void(){
    _cm->cleanup();
  }
};



void ConcurrentMarkThread::run() {
  initialize_in_thread();
  _vtime_start = os::elapsedVTime();
  wait_for_universe_init();

83 84
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1_policy = g1h->g1_policy();
85 86 87 88 89 90 91 92 93 94 95 96
  G1MMUTracker *mmu_tracker = g1_policy->mmu_tracker();
  Thread *current_thread = Thread::current();

  while (!_should_terminate) {
    // wait until started is set.
    sleepBeforeNextCycle();
    {
      ResourceMark rm;
      HandleMark   hm;
      double cycle_start = os::elapsedVTime();
      char verbose_str[128];

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
      // We have to ensure that we finish scanning the root regions
      // before the next GC takes place. To ensure this we have to
      // make sure that we do not join the STS until the root regions
      // have been scanned. If we did then it's possible that a
      // subsequent GC could block us from joining the STS and proceed
      // without the root regions have been scanned which would be a
      // correctness issue.

      double scan_start = os::elapsedTime();
      if (!cm()->has_aborted()) {
        if (PrintGC) {
          gclog_or_tty->date_stamp(PrintGCDateStamps);
          gclog_or_tty->stamp(PrintGCTimeStamps);
          gclog_or_tty->print_cr("[GC concurrent-root-region-scan-start]");
        }

        _cm->scanRootRegions();

        double scan_end = os::elapsedTime();
        if (PrintGC) {
          gclog_or_tty->date_stamp(PrintGCDateStamps);
          gclog_or_tty->stamp(PrintGCTimeStamps);
          gclog_or_tty->print_cr("[GC concurrent-root-region-scan-end, %1.7lf]",
                                 scan_end - scan_start);
        }
      }

      double mark_start_sec = os::elapsedTime();
125 126 127
      if (PrintGC) {
        gclog_or_tty->date_stamp(PrintGCDateStamps);
        gclog_or_tty->stamp(PrintGCTimeStamps);
128
        gclog_or_tty->print_cr("[GC concurrent-mark-start]");
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
      }

      int iter = 0;
      do {
        iter++;
        if (!cm()->has_aborted()) {
          _cm->markFromRoots();
        }

        double mark_end_time = os::elapsedVTime();
        double mark_end_sec = os::elapsedTime();
        _vtime_mark_accum += (mark_end_time - cycle_start);
        if (!cm()->has_aborted()) {
          if (g1_policy->adaptive_young_list_length()) {
            double now = os::elapsedTime();
            double remark_prediction_ms = g1_policy->predict_remark_time_ms();
            jlong sleep_time_ms = mmu_tracker->when_ms(now, remark_prediction_ms);
            os::sleep(current_thread, sleep_time_ms, false);
          }

          if (PrintGC) {
            gclog_or_tty->date_stamp(PrintGCDateStamps);
            gclog_or_tty->stamp(PrintGCTimeStamps);
            gclog_or_tty->print_cr("[GC concurrent-mark-end, %1.7lf sec]",
                                      mark_end_sec - mark_start_sec);
          }

          CMCheckpointRootsFinalClosure final_cl(_cm);
          sprintf(verbose_str, "GC remark");
          VM_CGC_Operation op(&final_cl, verbose_str);
          VMThread::execute(&op);
        }
        if (cm()->restart_for_overflow() &&
            G1TraceMarkStackOverflow) {
          gclog_or_tty->print_cr("Restarting conc marking because of MS overflow "
                                 "in remark (restart #%d).", iter);
        }

        if (cm()->restart_for_overflow()) {
          if (PrintGC) {
            gclog_or_tty->date_stamp(PrintGCDateStamps);
            gclog_or_tty->stamp(PrintGCTimeStamps);
            gclog_or_tty->print_cr("[GC concurrent-mark-restart-for-overflow]");
          }
        }
      } while (cm()->restart_for_overflow());

      double end_time = os::elapsedVTime();
      // Update the total virtual time before doing this, since it will try
      // to measure it to get the vtime for this marking.  We purposely
      // neglect the presumably-short "completeCleanup" phase here.
      _vtime_accum = (end_time - _vtime_start);
181

182 183 184 185 186 187 188 189 190 191 192 193 194
      if (!cm()->has_aborted()) {
        if (g1_policy->adaptive_young_list_length()) {
          double now = os::elapsedTime();
          double cleanup_prediction_ms = g1_policy->predict_cleanup_time_ms();
          jlong sleep_time_ms = mmu_tracker->when_ms(now, cleanup_prediction_ms);
          os::sleep(current_thread, sleep_time_ms, false);
        }

        CMCleanUp cl_cl(_cm);
        sprintf(verbose_str, "GC cleanup");
        VM_CGC_Operation op(&cl_cl, verbose_str);
        VMThread::execute(&op);
      } else {
195 196 197
        // We don't want to update the marking status if a GC pause
        // is already underway.
        _sts.join();
198
        g1h->set_marking_complete();
199
        _sts.leave();
200 201
      }

202 203 204 205 206 207
      // Check if cleanup set the free_regions_coming flag. If it
      // hasn't, we can just skip the next step.
      if (g1h->free_regions_coming()) {
        // The following will finish freeing up any regions that we
        // found to be empty during cleanup. We'll do this part
        // without joining the suspendible set. If an evacuation pause
T
tonyp 已提交
208
        // takes place, then we would carry on freeing regions in
209
        // case they are needed by the pause. If a Full GC takes
T
tonyp 已提交
210
        // place, it would wait for us to process the regions
211 212
        // reclaimed by cleanup.

213 214 215 216 217 218 219
        double cleanup_start_sec = os::elapsedTime();
        if (PrintGC) {
          gclog_or_tty->date_stamp(PrintGCDateStamps);
          gclog_or_tty->stamp(PrintGCTimeStamps);
          gclog_or_tty->print_cr("[GC concurrent-cleanup-start]");
        }

220
        // Now do the concurrent cleanup operation.
221
        _cm->completeCleanup();
222

223
        // Notify anyone who's waiting that there are no more free
224 225 226 227 228 229 230 231
        // regions coming. We have to do this before we join the STS
        // (in fact, we should not attempt to join the STS in the
        // interval between finishing the cleanup pause and clearing
        // the free_regions_coming flag) otherwise we might deadlock:
        // a GC worker could be blocked waiting for the notification
        // whereas this thread will be blocked for the pause to finish
        // while it's trying to join the STS, which is conditional on
        // the GC workers finishing.
232 233
        g1h->reset_free_regions_coming();

234 235 236 237 238 239
        double cleanup_end_sec = os::elapsedTime();
        if (PrintGC) {
          gclog_or_tty->date_stamp(PrintGCDateStamps);
          gclog_or_tty->stamp(PrintGCTimeStamps);
          gclog_or_tty->print_cr("[GC concurrent-cleanup-end, %1.7lf]",
                                 cleanup_end_sec - cleanup_start_sec);
240 241
        }
      }
242 243
      guarantee(cm()->cleanup_list_is_empty(),
                "at this point there should be no regions on the cleanup list");
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
      // There is a tricky race before recording that the concurrent
      // cleanup has completed and a potential Full GC starting around
      // the same time. We want to make sure that the Full GC calls
      // abort() on concurrent mark after
      // record_concurrent_mark_cleanup_completed(), since abort() is
      // the method that will reset the concurrent mark state. If we
      // end up calling record_concurrent_mark_cleanup_completed()
      // after abort() then we might incorrectly undo some of the work
      // abort() did. Checking the has_aborted() flag after joining
      // the STS allows the correct ordering of the two methods. There
      // are two scenarios:
      //
      // a) If we reach here before the Full GC, the fact that we have
      // joined the STS means that the Full GC cannot start until we
      // leave the STS, so record_concurrent_mark_cleanup_completed()
      // will complete before abort() is called.
      //
      // b) If we reach here during the Full GC, we'll be held up from
      // joining the STS until the Full GC is done, which means that
      // abort() will have completed and has_aborted() will return
      // true to prevent us from calling
      // record_concurrent_mark_cleanup_completed() (and, in fact, it's
      // not needed any more as the concurrent mark state has been
      // already reset).
      _sts.join();
      if (!cm()->has_aborted()) {
        g1_policy->record_concurrent_mark_cleanup_completed();
      }
      _sts.leave();

275 276 277 278 279 280 281 282
      if (cm()->has_aborted()) {
        if (PrintGC) {
          gclog_or_tty->date_stamp(PrintGCDateStamps);
          gclog_or_tty->stamp(PrintGCTimeStamps);
          gclog_or_tty->print_cr("[GC concurrent-mark-abort]");
        }
      }

283
      // We now want to allow clearing of the marking bitmap to be
284 285 286 287 288
      // suspended by a collection pause.
      _sts.join();
      _cm->clearNextBitmap();
      _sts.leave();
    }
289 290 291 292 293

    // Update the number of full collections that have been
    // completed. This will also notify the FullGCCount_lock in case a
    // Java thread is waiting for a full GC to happen (e.g., it
    // called System.gc() with +ExplicitGCInvokesConcurrent).
294
    _sts.join();
295
    g1h->increment_full_collections_completed(true /* concurrent */);
296
    _sts.leave();
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
  }
  assert(_should_terminate, "just checking");

  terminate();
}


void ConcurrentMarkThread::yield() {
  _sts.yield("Concurrent Mark");
}

void ConcurrentMarkThread::stop() {
  // it is ok to take late safepoints here, if needed
  MutexLockerEx mu(Terminator_lock);
  _should_terminate = true;
  while (!_has_terminated) {
    Terminator_lock->wait();
  }
}

T
tonyp 已提交
317 318 319 320 321 322 323 324
void ConcurrentMarkThread::print() const {
  print_on(tty);
}

void ConcurrentMarkThread::print_on(outputStream* st) const {
  st->print("\"G1 Main Concurrent Mark GC Thread\" ");
  Thread::print_on(st);
  st->cr();
325 326 327 328 329
}

void ConcurrentMarkThread::sleepBeforeNextCycle() {
  // We join here because we don't want to do the "shouldConcurrentMark()"
  // below while the world is otherwise stopped.
330 331
  assert(!in_progress(), "should have been cleared");

332 333 334 335 336 337 338 339
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  while (!started()) {
    CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  }
  set_in_progress();
  clear_started();
}

340 341 342 343 344
// Note: As is the case with CMS - this method, although exported
// by the ConcurrentMarkThread, which is a non-JavaThread, can only
// be called by a JavaThread. Currently this is done at vm creation
// time (post-vm-init) by the main/Primordial (Java)Thread.
// XXX Consider changing this in the future to allow the CM thread
345 346
// itself to create this thread?
void ConcurrentMarkThread::makeSurrogateLockerThread(TRAPS) {
347 348
  assert(UseG1GC, "SLT thread needed only for concurrent GC");
  assert(THREAD->is_Java_thread(), "must be a Java thread");
349 350 351
  assert(_slt == NULL, "SLT already created");
  _slt = SurrogateLockerThread::make(THREAD);
}