g1CollectedHeap.inline.hpp 14.1 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP

#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/g1CollectedHeap.hpp"
30
#include "gc_implementation/g1/g1AllocRegion.inline.hpp"
31
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
32
#include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
33
#include "gc_implementation/g1/heapRegionManager.inline.hpp"
34
#include "gc_implementation/g1/heapRegionSet.inline.hpp"
35
#include "runtime/orderAccess.inline.hpp"
36 37
#include "utilities/taskqueue.hpp"

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
PLABStats* G1CollectedHeap::alloc_buffer_stats(InCSetState dest) {
  switch (dest.value()) {
    case InCSetState::Young:
      return &_survivor_plab_stats;
    case InCSetState::Old:
      return &_old_plab_stats;
    default:
      ShouldNotReachHere();
      return NULL; // Keep some compilers happy
  }
}

size_t G1CollectedHeap::desired_plab_sz(InCSetState dest) {
  size_t gclab_word_size = alloc_buffer_stats(dest)->desired_plab_sz();
  // Prevent humongous PLAB sizes for two reasons:
  // * PLABs are allocated using a similar paths as oops, but should
  //   never be in a humongous region
  // * Allowing humongous PLABs needlessly churns the region free lists
  return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
}

HeapWord* G1CollectedHeap::par_allocate_during_gc(InCSetState dest,
                                                  size_t word_size,
                                                  AllocationContext_t context) {
  switch (dest.value()) {
    case InCSetState::Young:
      return survivor_attempt_allocation(word_size, context);
    case InCSetState::Old:
      return old_attempt_allocation(word_size, context);
    default:
      ShouldNotReachHere();
      return NULL; // Keep some compilers happy
  }
}

73 74
// Inline functions for G1CollectedHeap

75 76 77 78
inline AllocationContextStats& G1CollectedHeap::allocation_context_stats() {
  return _allocation_context_stats;
}

79
// Return the region with the given index. It assumes the index is valid.
80
inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrm.at(index); }
81

82 83 84 85 86 87 88
inline uint G1CollectedHeap::addr_to_region(HeapWord* addr) const {
  assert(is_in_reserved(addr),
         err_msg("Cannot calculate region index for address "PTR_FORMAT" that is outside of the heap ["PTR_FORMAT", "PTR_FORMAT")",
                 p2i(addr), p2i(_reserved.start()), p2i(_reserved.end())));
  return (uint)(pointer_delta(addr, _reserved.start(), sizeof(uint8_t)) >> HeapRegion::LogOfHRGrainBytes);
}

89
inline HeapWord* G1CollectedHeap::bottom_addr_for_region(uint index) const {
90
  return _hrm.reserved().start() + index * HeapRegion::GrainWords;
91 92
}

93
template <class T>
94
inline HeapRegion* G1CollectedHeap::heap_region_containing_raw(const T addr) const {
95
  assert(addr != NULL, "invariant");
96
  assert(is_in_g1_reserved((const void*) addr),
97
      err_msg("Address "PTR_FORMAT" is outside of the heap ranging from ["PTR_FORMAT" to "PTR_FORMAT")",
98
          p2i((void*)addr), p2i(g1_reserved().start()), p2i(g1_reserved().end())));
99
  return _hrm.addr_to_region((HeapWord*) addr);
100 101
}

102
template <class T>
103
inline HeapRegion* G1CollectedHeap::heap_region_containing(const T addr) const {
104 105 106 107 108
  HeapRegion* hr = heap_region_containing_raw(addr);
  if (hr->continuesHumongous()) {
    return hr->humongous_start_region();
  }
  return hr;
109 110
}

111 112 113 114 115 116 117 118 119 120 121 122 123
inline void G1CollectedHeap::reset_gc_time_stamp() {
  _gc_time_stamp = 0;
  OrderAccess::fence();
  // Clear the cached CSet starting regions and time stamps.
  // Their validity is dependent on the GC timestamp.
  clear_cset_start_regions();
}

inline void G1CollectedHeap::increment_gc_time_stamp() {
  ++_gc_time_stamp;
  OrderAccess::fence();
}

124 125 126 127
inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) {
  _old_set.remove(hr);
}

128
inline bool G1CollectedHeap::obj_in_cs(oop obj) {
129
  HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
130 131 132
  return r != NULL && r->in_collection_set();
}

133 134 135
inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
                                                     unsigned int* gc_count_before_ret,
                                                     int* gclocker_retry_count_ret) {
136
  assert_heap_not_locked_and_not_at_safepoint();
137 138
  assert(!isHumongous(word_size), "attempt_allocation() should not "
         "be called for humongous allocation requests");
139

140 141 142
  AllocationContext_t context = AllocationContext::current();
  HeapWord* result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
                                                                                   false /* bot_updates */);
143
  if (result == NULL) {
144
    result = attempt_allocation_slow(word_size,
145
                                     context,
146 147
                                     gc_count_before_ret,
                                     gclocker_retry_count_ret);
148
  }
149
  assert_heap_not_locked();
150
  if (result != NULL) {
151
    dirty_young_block(result, word_size);
152
  }
153
  return result;
154 155
}

156 157
inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t word_size,
                                                              AllocationContext_t context) {
158 159 160
  assert(!isHumongous(word_size),
         "we should not be seeing humongous-size allocations in this path");

161 162
  HeapWord* result = _allocator->survivor_gc_alloc_region(context)->attempt_allocation(word_size,
                                                                                       false /* bot_updates */);
163 164
  if (result == NULL) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
165 166
    result = _allocator->survivor_gc_alloc_region(context)->attempt_allocation_locked(word_size,
                                                                                      false /* bot_updates */);
167 168 169 170 171 172 173
  }
  if (result != NULL) {
    dirty_young_block(result, word_size);
  }
  return result;
}

174 175
inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size,
                                                         AllocationContext_t context) {
176 177 178
  assert(!isHumongous(word_size),
         "we should not be seeing humongous-size allocations in this path");

179 180
  HeapWord* result = _allocator->old_gc_alloc_region(context)->attempt_allocation(word_size,
                                                                                  true /* bot_updates */);
181 182
  if (result == NULL) {
    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
183 184
    result = _allocator->old_gc_alloc_region(context)->attempt_allocation_locked(word_size,
                                                                                 true /* bot_updates */);
185 186 187 188
  }
  return result;
}

189 190 191 192 193 194 195 196 197 198 199 200
// It dirties the cards that cover the block so that so that the post
// write barrier never queues anything when updating objects on this
// block. It is assumed (and in fact we assert) that the block
// belongs to a young region.
inline void
G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) {
  assert_heap_not_locked();

  // Assign the containing region to containing_hr so that we don't
  // have to keep calling heap_region_containing_raw() in the
  // asserts below.
  DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);)
201
  assert(word_size > 0, "pre-condition");
202 203 204 205 206 207 208 209
  assert(containing_hr->is_in(start), "it should contain start");
  assert(containing_hr->is_young(), "it should be young");
  assert(!containing_hr->isHumongous(), "it should not be humongous");

  HeapWord* end = start + word_size;
  assert(containing_hr->is_in(end - 1), "it should also contain end - 1");

  MemRegion mr(start, end);
210
  g1_barrier_set()->g1_mark_as_young(mr);
211 212
}

213
inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const {
214 215 216
  return _task_queues->queue(i);
}

217
inline bool G1CollectedHeap::isMarkedPrev(oop obj) const {
218 219 220 221 222 223
  return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj);
}

inline bool G1CollectedHeap::isMarkedNext(oop obj) const {
  return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj);
}
224

225 226 227
// This is a fast test on whether a reference points into the
// collection set or not. Assume that the reference
// points into the heap.
228 229
inline bool G1CollectedHeap::is_in_cset(oop obj) {
  bool ret = _in_cset_fast_test.is_in_cset((HeapWord*)obj);
230 231 232 233 234 235 236
  // let's make sure the result is consistent with what the slower
  // test returns
  assert( ret || !obj_in_cs(obj), "sanity");
  assert(!ret ||  obj_in_cs(obj), "sanity");
  return ret;
}

237 238 239 240
bool G1CollectedHeap::is_in_cset_or_humongous(const oop obj) {
  return _in_cset_fast_test.is_in_cset_or_humongous((HeapWord*)obj);
}

241
InCSetState G1CollectedHeap::in_cset_state(const oop obj) {
242 243 244 245 246 247 248
  return _in_cset_fast_test.at((HeapWord*)obj);
}

void G1CollectedHeap::register_humongous_region_with_in_cset_fast_test(uint index) {
  _in_cset_fast_test.set_humongous(index);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
#ifndef PRODUCT
// Support for G1EvacuationFailureALot

inline bool
G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool gcs_are_young,
                                                     bool during_initial_mark,
                                                     bool during_marking) {
  bool res = false;
  if (during_marking) {
    res |= G1EvacuationFailureALotDuringConcMark;
  }
  if (during_initial_mark) {
    res |= G1EvacuationFailureALotDuringInitialMark;
  }
  if (gcs_are_young) {
    res |= G1EvacuationFailureALotDuringYoungGC;
  } else {
    // GCs are mixed
    res |= G1EvacuationFailureALotDuringMixedGC;
  }
  return res;
}

inline void
G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() {
  if (G1EvacuationFailureALot) {
    // Note we can't assert that _evacuation_failure_alot_for_current_gc
    // is clear here. It may have been set during a previous GC but that GC
    // did not copy enough objects (i.e. G1EvacuationFailureALotCount) to
    // trigger an evacuation failure and clear the flags and and counts.

    // Check if we have gone over the interval.
    const size_t gc_num = total_collections();
    const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number;

    _evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval);

    // Now check if G1EvacuationFailureALot is enabled for the current GC type.
    const bool gcs_are_young = g1_policy()->gcs_are_young();
    const bool during_im = g1_policy()->during_initial_mark_pause();
    const bool during_marking = mark_in_progress();

    _evacuation_failure_alot_for_current_gc &=
      evacuation_failure_alot_for_gc_type(gcs_are_young,
                                          during_im,
                                          during_marking);
  }
}

298
inline bool G1CollectedHeap::evacuation_should_fail() {
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
  if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) {
    return false;
  }
  // G1EvacuationFailureALot is in effect for current GC
  // Access to _evacuation_failure_alot_count is not atomic;
  // the value does not have to be exact.
  if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) {
    return false;
  }
  _evacuation_failure_alot_count = 0;
  return true;
}

inline void G1CollectedHeap::reset_evacuation_should_fail() {
  if (G1EvacuationFailureALot) {
    _evacuation_failure_alot_gc_number = total_collections();
    _evacuation_failure_alot_count = 0;
    _evacuation_failure_alot_for_current_gc = false;
  }
}
#endif  // #ifndef PRODUCT

321
inline bool G1CollectedHeap::is_in_young(const oop obj) {
322 323 324 325
  if (obj == NULL) {
    return false;
  }
  return heap_region_containing(obj)->is_young();
326 327 328 329 330 331 332 333 334 335 336 337
}

// We don't need barriers for initializing stores to objects
// in the young gen: for the SATB pre-barrier, there is no
// pre-value that needs to be remembered; for the remembered-set
// update logging post-barrier, we don't maintain remembered set
// information for young gen objects.
inline bool G1CollectedHeap::can_elide_initializing_store_barrier(oop new_obj) {
  return is_in_young(new_obj);
}

inline bool G1CollectedHeap::is_obj_dead(const oop obj) const {
338 339
  if (obj == NULL) {
    return false;
340
  }
341
  return is_obj_dead(obj, heap_region_containing(obj));
342 343 344
}

inline bool G1CollectedHeap::is_obj_ill(const oop obj) const {
345 346
  if (obj == NULL) {
    return false;
347
  }
348
  return is_obj_ill(obj, heap_region_containing(obj));
349 350
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
inline void G1CollectedHeap::set_humongous_is_live(oop obj) {
  uint region = addr_to_region((HeapWord*)obj);
  // We not only set the "live" flag in the humongous_is_live table, but also
  // reset the entry in the _in_cset_fast_test table so that subsequent references
  // to the same humongous object do not go into the slow path again.
  // This is racy, as multiple threads may at the same time enter here, but this
  // is benign.
  // During collection we only ever set the "live" flag, and only ever clear the
  // entry in the in_cset_fast_table.
  // We only ever evaluate the contents of these tables (in the VM thread) after
  // having synchronized the worker threads with the VM thread, or in the same
  // thread (i.e. within the VM thread).
  if (!_humongous_is_live.is_live(region)) {
    _humongous_is_live.set_live(region);
    _in_cset_fast_test.clear_humongous(region);
  }
}

369
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP