gcm.cpp 69.0 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// Portions of code courtesy of Clifford Click

// Optimization - Graph Style

#include "incls/_precompiled.incl"
#include "incls/_gcm.cpp.incl"

32 33 34
// To avoid float value underflow
#define MIN_BLOCK_FREQUENCY 1.e-35f

D
duke 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
//----------------------------schedule_node_into_block-------------------------
// Insert node n into block b. Look for projections of n and make sure they
// are in b also.
void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  // Set basic block of n, Add n to b,
  _bbs.map(n->_idx, b);
  b->add_inst(n);

  // After Matching, nearly any old Node may have projections trailing it.
  // These are usually machine-dependent flags.  In any case, they might
  // float to another block below this one.  Move them up.
  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
    Node*  use  = n->fast_out(i);
    if (use->is_Proj()) {
      Block* buse = _bbs[use->_idx];
      if (buse != b) {              // In wrong block?
        if (buse != NULL)
          buse->find_remove(use);   // Remove from wrong block
        _bbs.map(use->_idx, b);     // Re-insert in this block
        b->add_inst(use);
      }
    }
  }
}


//------------------------------schedule_pinned_nodes--------------------------
// Set the basic block for Nodes pinned into blocks
void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
  // Allocate node stack of size C->unique()+8 to avoid frequent realloc
  GrowableArray <Node *> spstack(C->unique()+8);
  spstack.push(_root);
  while ( spstack.is_nonempty() ) {
    Node *n = spstack.pop();
    if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
      if( n->pinned() && !_bbs.lookup(n->_idx) ) {  // Pinned?  Nail it down!
        Node *input = n->in(0);
        assert( input, "pinned Node must have Control" );
        while( !input->is_block_start() )
          input = input->in(0);
        Block *b = _bbs[input->_idx];  // Basic block of controlling input
        schedule_node_into_block(n, b);
      }
      for( int i = n->req() - 1; i >= 0; --i ) {  // For all inputs
        if( n->in(i) != NULL )
          spstack.push(n->in(i));
      }
    }
  }
}

#ifdef ASSERT
// Assert that new input b2 is dominated by all previous inputs.
// Check this by by seeing that it is dominated by b1, the deepest
// input observed until b2.
static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
  if (b1 == NULL)  return;
  assert(b1->_dom_depth < b2->_dom_depth, "sanity");
  Block* tmp = b2;
  while (tmp != b1 && tmp != NULL) {
    tmp = tmp->_idom;
  }
  if (tmp != b1) {
    // Detected an unschedulable graph.  Print some nice stuff and die.
    tty->print_cr("!!! Unschedulable graph !!!");
    for (uint j=0; j<n->len(); j++) { // For all inputs
      Node* inn = n->in(j); // Get input
      if (inn == NULL)  continue;  // Ignore NULL, missing inputs
      Block* inb = bbs[inn->_idx];
      tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
                 inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
      inn->dump();
    }
    tty->print("Failing node: ");
    n->dump();
    assert(false, "unscheduable graph");
  }
}
#endif

static Block* find_deepest_input(Node* n, Block_Array &bbs) {
  // Find the last input dominated by all other inputs.
  Block* deepb           = NULL;        // Deepest block so far
  int    deepb_dom_depth = 0;
  for (uint k = 0; k < n->len(); k++) { // For all inputs
    Node* inn = n->in(k);               // Get input
    if (inn == NULL)  continue;         // Ignore NULL, missing inputs
    Block* inb = bbs[inn->_idx];
    assert(inb != NULL, "must already have scheduled this input");
    if (deepb_dom_depth < (int) inb->_dom_depth) {
      // The new inb must be dominated by the previous deepb.
      // The various inputs must be linearly ordered in the dom
      // tree, or else there will not be a unique deepest block.
      DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
      deepb = inb;                      // Save deepest block
      deepb_dom_depth = deepb->_dom_depth;
    }
  }
  assert(deepb != NULL, "must be at least one input to n");
  return deepb;
}


//------------------------------schedule_early---------------------------------
// Find the earliest Block any instruction can be placed in.  Some instructions
// are pinned into Blocks.  Unpinned instructions can appear in last block in
// which all their inputs occur.
bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
  // Allocate stack with enough space to avoid frequent realloc
  Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
  // roots.push(_root); _root will be processed among C->top() inputs
  roots.push(C->top());
  visited.set(C->top()->_idx);

  while (roots.size() != 0) {
    // Use local variables nstack_top_n & nstack_top_i to cache values
    // on stack's top.
    Node *nstack_top_n = roots.pop();
    uint  nstack_top_i = 0;
//while_nstack_nonempty:
    while (true) {
      // Get parent node and next input's index from stack's top.
      Node *n = nstack_top_n;
      uint  i = nstack_top_i;

      if (i == 0) {
        // Special control input processing.
        // While I am here, go ahead and look for Nodes which are taking control
        // from a is_block_proj Node.  After I inserted RegionNodes to make proper
        // blocks, the control at a is_block_proj more properly comes from the
        // Region being controlled by the block_proj Node.
        const Node *in0 = n->in(0);
        if (in0 != NULL) {              // Control-dependent?
          const Node *p = in0->is_block_proj();
          if (p != NULL && p != n) {    // Control from a block projection?
            // Find trailing Region
            Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
            uint j = 0;
            if (pb->_num_succs != 1) {  // More then 1 successor?
              // Search for successor
              uint max = pb->_nodes.size();
              assert( max > 1, "" );
              uint start = max - pb->_num_succs;
              // Find which output path belongs to projection
              for (j = start; j < max; j++) {
                if( pb->_nodes[j] == in0 )
                  break;
              }
              assert( j < max, "must find" );
              // Change control to match head of successor basic block
              j -= start;
            }
            n->set_req(0, pb->_succs[j]->head());
          }
        } else {               // n->in(0) == NULL
          if (n->req() == 1) { // This guy is a constant with NO inputs?
            n->set_req(0, _root);
          }
        }
      }

      // First, visit all inputs and force them to get a block.  If an
      // input is already in a block we quit following inputs (to avoid
      // cycles). Instead we put that Node on a worklist to be handled
      // later (since IT'S inputs may not have a block yet).
      bool done = true;              // Assume all n's inputs will be processed
      while (i < n->len()) {         // For all inputs
        Node *in = n->in(i);         // Get input
        ++i;
        if (in == NULL) continue;    // Ignore NULL, missing inputs
        int is_visited = visited.test_set(in->_idx);
        if (!_bbs.lookup(in->_idx)) { // Missing block selection?
          if (is_visited) {
            // assert( !visited.test(in->_idx), "did not schedule early" );
            return false;
          }
          nstack.push(n, i);         // Save parent node and next input's index.
          nstack_top_n = in;         // Process current input now.
          nstack_top_i = 0;
          done = false;              // Not all n's inputs processed.
          break; // continue while_nstack_nonempty;
        } else if (!is_visited) {    // Input not yet visited?
          roots.push(in);            // Visit this guy later, using worklist
        }
      }
      if (done) {
        // All of n's inputs have been processed, complete post-processing.

        // Some instructions are pinned into a block.  These include Region,
        // Phi, Start, Return, and other control-dependent instructions and
        // any projections which depend on them.
        if (!n->pinned()) {
          // Set earliest legal block.
          _bbs.map(n->_idx, find_deepest_input(n, _bbs));
        }

        if (nstack.is_empty()) {
          // Finished all nodes on stack.
          // Process next node on the worklist 'roots'.
          break;
        }
        // Get saved parent node and next input's index.
        nstack_top_n = nstack.node();
        nstack_top_i = nstack.index();
        nstack.pop();
      } //    if (done)
    }   // while (true)
  }     // while (roots.size() != 0)
  return true;
}

//------------------------------dom_lca----------------------------------------
// Find least common ancestor in dominator tree
// LCA is a current notion of LCA, to be raised above 'this'.
// As a convenient boundary condition, return 'this' if LCA is NULL.
// Find the LCA of those two nodes.
Block* Block::dom_lca(Block* LCA) {
  if (LCA == NULL || LCA == this)  return this;

  Block* anc = this;
  while (anc->_dom_depth > LCA->_dom_depth)
    anc = anc->_idom;           // Walk up till anc is as high as LCA

  while (LCA->_dom_depth > anc->_dom_depth)
    LCA = LCA->_idom;           // Walk up till LCA is as high as anc

  while (LCA != anc) {          // Walk both up till they are the same
    LCA = LCA->_idom;
    anc = anc->_idom;
  }

  return LCA;
}

//--------------------------raise_LCA_above_use--------------------------------
// We are placing a definition, and have been given a def->use edge.
// The definition must dominate the use, so move the LCA upward in the
// dominator tree to dominate the use.  If the use is a phi, adjust
// the LCA only with the phi input paths which actually use this def.
static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
  Block* buse = bbs[use->_idx];
  if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
  if (!use->is_Phi())  return buse->dom_lca(LCA);
  uint pmax = use->req();       // Number of Phi inputs
  // Why does not this loop just break after finding the matching input to
  // the Phi?  Well...it's like this.  I do not have true def-use/use-def
  // chains.  Means I cannot distinguish, from the def-use direction, which
  // of many use-defs lead from the same use to the same def.  That is, this
  // Phi might have several uses of the same def.  Each use appears in a
  // different predecessor block.  But when I enter here, I cannot distinguish
  // which use-def edge I should find the predecessor block for.  So I find
  // them all.  Means I do a little extra work if a Phi uses the same value
  // more than once.
  for (uint j=1; j<pmax; j++) { // For all inputs
    if (use->in(j) == def) {    // Found matching input?
      Block* pred = bbs[buse->pred(j)->_idx];
      LCA = pred->dom_lca(LCA);
    }
  }
  return LCA;
}

//----------------------------raise_LCA_above_marks----------------------------
// Return a new LCA that dominates LCA and any of its marked predecessors.
// Search all my parents up to 'early' (exclusive), looking for predecessors
// which are marked with the given index.  Return the LCA (in the dom tree)
// of all marked blocks.  If there are none marked, return the original
// LCA.
static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
                                    Block* early, Block_Array &bbs) {
  Block_List worklist;
  worklist.push(LCA);
  while (worklist.size() > 0) {
    Block* mid = worklist.pop();
    if (mid == early)  continue;  // stop searching here

    // Test and set the visited bit.
    if (mid->raise_LCA_visited() == mark)  continue;  // already visited

    // Don't process the current LCA, otherwise the search may terminate early
    if (mid != LCA && mid->raise_LCA_mark() == mark) {
      // Raise the LCA.
      LCA = mid->dom_lca(LCA);
      if (LCA == early)  break;   // stop searching everywhere
      assert(early->dominates(LCA), "early is high enough");
      // Resume searching at that point, skipping intermediate levels.
      worklist.push(LCA);
322 323
      if (LCA == mid)
        continue; // Don't mark as visited to avoid early termination.
D
duke 已提交
324 325 326 327 328 329 330
    } else {
      // Keep searching through this block's predecessors.
      for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
        Block* mid_parent = bbs[ mid->pred(j)->_idx ];
        worklist.push(mid_parent);
      }
    }
331
    mid->set_raise_LCA_visited(mark);
D
duke 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
  }
  return LCA;
}

//--------------------------memory_early_block--------------------------------
// This is a variation of find_deepest_input, the heart of schedule_early.
// Find the "early" block for a load, if we considered only memory and
// address inputs, that is, if other data inputs were ignored.
//
// Because a subset of edges are considered, the resulting block will
// be earlier (at a shallower dom_depth) than the true schedule_early
// point of the node. We compute this earlier block as a more permissive
// site for anti-dependency insertion, but only if subsume_loads is enabled.
static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
  Node* base;
  Node* index;
  Node* store = load->in(MemNode::Memory);
  load->as_Mach()->memory_inputs(base, index);

  assert(base != NodeSentinel && index != NodeSentinel,
         "unexpected base/index inputs");

  Node* mem_inputs[4];
  int mem_inputs_length = 0;
  if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
  if (index != NULL) mem_inputs[mem_inputs_length++] = index;
  if (store != NULL) mem_inputs[mem_inputs_length++] = store;

  // In the comparision below, add one to account for the control input,
  // which may be null, but always takes up a spot in the in array.
  if (mem_inputs_length + 1 < (int) load->req()) {
    // This "load" has more inputs than just the memory, base and index inputs.
    // For purposes of checking anti-dependences, we need to start
    // from the early block of only the address portion of the instruction,
    // and ignore other blocks that may have factored into the wider
    // schedule_early calculation.
    if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);

    Block* deepb           = NULL;        // Deepest block so far
    int    deepb_dom_depth = 0;
    for (int i = 0; i < mem_inputs_length; i++) {
      Block* inb = bbs[mem_inputs[i]->_idx];
      if (deepb_dom_depth < (int) inb->_dom_depth) {
        // The new inb must be dominated by the previous deepb.
        // The various inputs must be linearly ordered in the dom
        // tree, or else there will not be a unique deepest block.
        DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
        deepb = inb;                      // Save deepest block
        deepb_dom_depth = deepb->_dom_depth;
      }
    }
    early = deepb;
  }

  return early;
}

//--------------------------insert_anti_dependences---------------------------
// A load may need to witness memory that nearby stores can overwrite.
// For each nearby store, either insert an "anti-dependence" edge
// from the load to the store, or else move LCA upward to force the
// load to (eventually) be scheduled in a block above the store.
//
// Do not add edges to stores on distinct control-flow paths;
// only add edges to stores which might interfere.
//
// Return the (updated) LCA.  There will not be any possibly interfering
// store between the load's "early block" and the updated LCA.
// Any stores in the updated LCA will have new precedence edges
// back to the load.  The caller is expected to schedule the load
// in the LCA, in which case the precedence edges will make LCM
// preserve anti-dependences.  The caller may also hoist the load
// above the LCA, if it is not the early block.
Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
  assert(load->needs_anti_dependence_check(), "must be a load of some sort");
  assert(LCA != NULL, "");
  DEBUG_ONLY(Block* LCA_orig = LCA);

  // Compute the alias index.  Loads and stores with different alias indices
  // do not need anti-dependence edges.
  uint load_alias_idx = C->get_alias_index(load->adr_type());
#ifdef ASSERT
  if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
      (PrintOpto || VerifyAliases ||
       PrintMiscellaneous && (WizardMode || Verbose))) {
    // Load nodes should not consume all of memory.
    // Reporting a bottom type indicates a bug in adlc.
    // If some particular type of node validly consumes all of memory,
    // sharpen the preceding "if" to exclude it, so we can catch bugs here.
    tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
    load->dump(2);
    if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
  }
#endif
  assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
         "String compare is only known 'load' that does not conflict with any stores");

  if (!C->alias_type(load_alias_idx)->is_rewritable()) {
    // It is impossible to spoil this load by putting stores before it,
    // because we know that the stores will never update the value
    // which 'load' must witness.
    return LCA;
  }

  node_idx_t load_index = load->_idx;

  // Note the earliest legal placement of 'load', as determined by
  // by the unique point in the dom tree where all memory effects
  // and other inputs are first available.  (Computed by schedule_early.)
  // For normal loads, 'early' is the shallowest place (dom graph wise)
  // to look for anti-deps between this load and any store.
  Block* early = _bbs[load_index];

  // If we are subsuming loads, compute an "early" block that only considers
  // memory or address inputs. This block may be different than the
  // schedule_early block in that it could be at an even shallower depth in the
  // dominator tree, and allow for a broader discovery of anti-dependences.
  if (C->subsume_loads()) {
    early = memory_early_block(load, early, _bbs);
  }

  ResourceArea *area = Thread::current()->resource_area();
  Node_List worklist_mem(area);     // prior memory state to store
  Node_List worklist_store(area);   // possible-def to explore
456
  Node_List worklist_visited(area); // visited mergemem nodes
D
duke 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
  Node_List non_early_stores(area); // all relevant stores outside of early
  bool must_raise_LCA = false;

#ifdef TRACK_PHI_INPUTS
  // %%% This extra checking fails because MergeMem nodes are not GVNed.
  // Provide "phi_inputs" to check if every input to a PhiNode is from the
  // original memory state.  This indicates a PhiNode for which should not
  // prevent the load from sinking.  For such a block, set_raise_LCA_mark
  // may be overly conservative.
  // Mechanism: count inputs seen for each Phi encountered in worklist_store.
  DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
#endif

  // 'load' uses some memory state; look for users of the same state.
  // Recurse through MergeMem nodes to the stores that use them.

  // Each of these stores is a possible definition of memory
  // that 'load' needs to use.  We need to force 'load'
  // to occur before each such store.  When the store is in
  // the same block as 'load', we insert an anti-dependence
  // edge load->store.

  // The relevant stores "nearby" the load consist of a tree rooted
  // at initial_mem, with internal nodes of type MergeMem.
  // Therefore, the branches visited by the worklist are of this form:
  //    initial_mem -> (MergeMem ->)* store
  // The anti-dependence constraints apply only to the fringe of this tree.

  Node* initial_mem = load->in(MemNode::Memory);
  worklist_store.push(initial_mem);
487
  worklist_visited.push(initial_mem);
D
duke 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501
  worklist_mem.push(NULL);
  while (worklist_store.size() > 0) {
    // Examine a nearby store to see if it might interfere with our load.
    Node* mem   = worklist_mem.pop();
    Node* store = worklist_store.pop();
    uint op = store->Opcode();

    // MergeMems do not directly have anti-deps.
    // Treat them as internal nodes in a forward tree of memory states,
    // the leaves of which are each a 'possible-def'.
    if (store == initial_mem    // root (exclusive) of tree we are searching
        || op == Op_MergeMem    // internal node of tree we are searching
        ) {
      mem = store;   // It's not a possibly interfering store.
502 503 504
      if (store == initial_mem)
        initial_mem = NULL;  // only process initial memory once

D
duke 已提交
505 506 507 508 509
      for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
        store = mem->fast_out(i);
        if (store->is_MergeMem()) {
          // Be sure we don't get into combinatorial problems.
          // (Allow phis to be repeated; they can merge two relevant states.)
510 511 512
          uint j = worklist_visited.size();
          for (; j > 0; j--) {
            if (worklist_visited.at(j-1) == store)  break;
D
duke 已提交
513
          }
514 515
          if (j > 0)  continue; // already on work list; do not repeat
          worklist_visited.push(store);
D
duke 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
        }
        worklist_mem.push(mem);
        worklist_store.push(store);
      }
      continue;
    }

    if (op == Op_MachProj || op == Op_Catch)   continue;
    if (store->needs_anti_dependence_check())  continue;  // not really a store

    // Compute the alias index.  Loads and stores with different alias
    // indices do not need anti-dependence edges.  Wide MemBar's are
    // anti-dependent on everything (except immutable memories).
    const TypePtr* adr_type = store->adr_type();
    if (!C->can_alias(adr_type, load_alias_idx))  continue;

    // Most slow-path runtime calls do NOT modify Java memory, but
    // they can block and so write Raw memory.
    if (store->is_Mach()) {
      MachNode* mstore = store->as_Mach();
      if (load_alias_idx != Compile::AliasIdxRaw) {
        // Check for call into the runtime using the Java calling
        // convention (and from there into a wrapper); it has no
        // _method.  Can't do this optimization for Native calls because
        // they CAN write to Java memory.
        if (mstore->ideal_Opcode() == Op_CallStaticJava) {
          assert(mstore->is_MachSafePoint(), "");
          MachSafePointNode* ms = (MachSafePointNode*) mstore;
          assert(ms->is_MachCallJava(), "");
          MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
          if (mcj->_method == NULL) {
            // These runtime calls do not write to Java visible memory
            // (other than Raw) and so do not require anti-dependence edges.
            continue;
          }
        }
        // Same for SafePoints: they read/write Raw but only read otherwise.
        // This is basically a workaround for SafePoints only defining control
        // instead of control + memory.
        if (mstore->ideal_Opcode() == Op_SafePoint)
          continue;
      } else {
        // Some raw memory, such as the load of "top" at an allocation,
        // can be control dependent on the previous safepoint. See
        // comments in GraphKit::allocate_heap() about control input.
        // Inserting an anti-dep between such a safepoint and a use
        // creates a cycle, and will cause a subsequent failure in
        // local scheduling.  (BugId 4919904)
        // (%%% How can a control input be a safepoint and not a projection??)
        if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
          continue;
      }
    }

    // Identify a block that the current load must be above,
    // or else observe that 'store' is all the way up in the
    // earliest legal block for 'load'.  In the latter case,
    // immediately insert an anti-dependence edge.
    Block* store_block = _bbs[store->_idx];
    assert(store_block != NULL, "unused killing projections skipped above");

    if (store->is_Phi()) {
      // 'load' uses memory which is one (or more) of the Phi's inputs.
      // It must be scheduled not before the Phi, but rather before
      // each of the relevant Phi inputs.
      //
      // Instead of finding the LCA of all inputs to a Phi that match 'mem',
      // we mark each corresponding predecessor block and do a combined
      // hoisting operation later (raise_LCA_above_marks).
      //
      // Do not assert(store_block != early, "Phi merging memory after access")
      // PhiNode may be at start of block 'early' with backedge to 'early'
      DEBUG_ONLY(bool found_match = false);
      for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
        if (store->in(j) == mem) {   // Found matching input?
          DEBUG_ONLY(found_match = true);
          Block* pred_block = _bbs[store_block->pred(j)->_idx];
          if (pred_block != early) {
            // If any predecessor of the Phi matches the load's "early block",
            // we do not need a precedence edge between the Phi and 'load'
            // since the load will be forced into a block preceeding the Phi.
            pred_block->set_raise_LCA_mark(load_index);
            assert(!LCA_orig->dominates(pred_block) ||
                   early->dominates(pred_block), "early is high enough");
            must_raise_LCA = true;
          }
        }
      }
      assert(found_match, "no worklist bug");
#ifdef TRACK_PHI_INPUTS
#ifdef ASSERT
      // This assert asks about correct handling of PhiNodes, which may not
      // have all input edges directly from 'mem'. See BugId 4621264
      int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
      // Increment by exactly one even if there are multiple copies of 'mem'
      // coming into the phi, because we will run this block several times
      // if there are several copies of 'mem'.  (That's how DU iterators work.)
      phi_inputs.at_put(store->_idx, num_mem_inputs);
      assert(PhiNode::Input + num_mem_inputs < store->req(),
             "Expect at least one phi input will not be from original memory state");
#endif //ASSERT
#endif //TRACK_PHI_INPUTS
    } else if (store_block != early) {
      // 'store' is between the current LCA and earliest possible block.
      // Label its block, and decide later on how to raise the LCA
      // to include the effect on LCA of this store.
      // If this store's block gets chosen as the raised LCA, we
      // will find him on the non_early_stores list and stick him
      // with a precedence edge.
      // (But, don't bother if LCA is already raised all the way.)
      if (LCA != early) {
        store_block->set_raise_LCA_mark(load_index);
        must_raise_LCA = true;
        non_early_stores.push(store);
      }
    } else {
      // Found a possibly-interfering store in the load's 'early' block.
      // This means 'load' cannot sink at all in the dominator tree.
      // Add an anti-dep edge, and squeeze 'load' into the highest block.
      assert(store != load->in(0), "dependence cycle found");
      if (verify) {
        assert(store->find_edge(load) != -1, "missing precedence edge");
      } else {
        store->add_prec(load);
      }
      LCA = early;
      // This turns off the process of gathering non_early_stores.
    }
  }
  // (Worklist is now empty; all nearby stores have been visited.)

  // Finished if 'load' must be scheduled in its 'early' block.
  // If we found any stores there, they have already been given
  // precedence edges.
  if (LCA == early)  return LCA;

  // We get here only if there are no possibly-interfering stores
  // in the load's 'early' block.  Move LCA up above all predecessors
  // which contain stores we have noted.
  //
  // The raised LCA block can be a home to such interfering stores,
  // but its predecessors must not contain any such stores.
  //
  // The raised LCA will be a lower bound for placing the load,
  // preventing the load from sinking past any block containing
  // a store that may invalidate the memory state required by 'load'.
  if (must_raise_LCA)
    LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
  if (LCA == early)  return LCA;

  // Insert anti-dependence edges from 'load' to each store
  // in the non-early LCA block.
  // Mine the non_early_stores list for such stores.
  if (LCA->raise_LCA_mark() == load_index) {
    while (non_early_stores.size() > 0) {
      Node* store = non_early_stores.pop();
      Block* store_block = _bbs[store->_idx];
      if (store_block == LCA) {
        // add anti_dependence from store to load in its own block
        assert(store != load->in(0), "dependence cycle found");
        if (verify) {
          assert(store->find_edge(load) != -1, "missing precedence edge");
        } else {
          store->add_prec(load);
        }
      } else {
        assert(store_block->raise_LCA_mark() == load_index, "block was marked");
        // Any other stores we found must be either inside the new LCA
        // or else outside the original LCA.  In the latter case, they
        // did not interfere with any use of 'load'.
        assert(LCA->dominates(store_block)
               || !LCA_orig->dominates(store_block), "no stray stores");
      }
    }
  }

  // Return the highest block containing stores; any stores
  // within that block have been given anti-dependence edges.
  return LCA;
}

// This class is used to iterate backwards over the nodes in the graph.

class Node_Backward_Iterator {

private:
  Node_Backward_Iterator();

public:
  // Constructor for the iterator
  Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);

  // Postincrement operator to iterate over the nodes
  Node *next();

private:
  VectorSet   &_visited;
  Node_List   &_stack;
  Block_Array &_bbs;
};

// Constructor for the Node_Backward_Iterator
Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
  : _visited(visited), _stack(stack), _bbs(bbs) {
  // The stack should contain exactly the root
  stack.clear();
  stack.push(root);

  // Clear the visited bits
  visited.Clear();
}

// Iterator for the Node_Backward_Iterator
Node *Node_Backward_Iterator::next() {

  // If the _stack is empty, then just return NULL: finished.
  if ( !_stack.size() )
    return NULL;

  // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
  // made stateless, so I do not need to record the index 'i' on my _stack.
  // Instead I visit all users each time, scanning for unvisited users.
  // I visit unvisited not-anti-dependence users first, then anti-dependent
  // children next.
  Node *self = _stack.pop();

  // I cycle here when I am entering a deeper level of recursion.
  // The key variable 'self' was set prior to jumping here.
  while( 1 ) {

    _visited.set(self->_idx);

    // Now schedule all uses as late as possible.
    uint src     = self->is_Proj() ? self->in(0)->_idx : self->_idx;
    uint src_rpo = _bbs[src]->_rpo;

    // Schedule all nodes in a post-order visit
    Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any

    // Scan for unvisited nodes
    for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
      // For all uses, schedule late
      Node* n = self->fast_out(i); // Use

      // Skip already visited children
      if ( _visited.test(n->_idx) )
        continue;

      // do not traverse backward control edges
      Node *use = n->is_Proj() ? n->in(0) : n;
      uint use_rpo = _bbs[use->_idx]->_rpo;

      if ( use_rpo < src_rpo )
        continue;

      // Phi nodes always precede uses in a basic block
      if ( use_rpo == src_rpo && use->is_Phi() )
        continue;

      unvisited = n;      // Found unvisited

      // Check for possible-anti-dependent
      if( !n->needs_anti_dependence_check() )
        break;            // Not visited, not anti-dep; schedule it NOW
    }

    // Did I find an unvisited not-anti-dependent Node?
    if ( !unvisited )
      break;                  // All done with children; post-visit 'self'

    // Visit the unvisited Node.  Contains the obvious push to
    // indicate I'm entering a deeper level of recursion.  I push the
    // old state onto the _stack and set a new state and loop (recurse).
    _stack.push(self);
    self = unvisited;
  } // End recursion loop

  return self;
}

//------------------------------ComputeLatenciesBackwards----------------------
// Compute the latency of all the instructions.
void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
#ifndef PRODUCT
  if (trace_opto_pipelining())
    tty->print("\n#---- ComputeLatenciesBackwards ----\n");
#endif

  Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
  Node *n;

  // Walk over all the nodes from last to first
  while (n = iter.next()) {
    // Set the latency for the definitions of this instruction
    partial_latency_of_defs(n);
  }
} // end ComputeLatenciesBackwards

//------------------------------partial_latency_of_defs------------------------
// Compute the latency impact of this node on all defs.  This computes
// a number that increases as we approach the beginning of the routine.
void PhaseCFG::partial_latency_of_defs(Node *n) {
  // Set the latency for this instruction
#ifndef PRODUCT
  if (trace_opto_pipelining()) {
    tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
               n->_idx, _node_latency.at_grow(n->_idx));
    dump();
  }
#endif

  if (n->is_Proj())
    n = n->in(0);

  if (n->is_Root())
    return;

  uint nlen = n->len();
  uint use_latency = _node_latency.at_grow(n->_idx);
  uint use_pre_order = _bbs[n->_idx]->_pre_order;

  for ( uint j=0; j<nlen; j++ ) {
    Node *def = n->in(j);

    if (!def || def == n)
      continue;

    // Walk backwards thru projections
    if (def->is_Proj())
      def = def->in(0);

#ifndef PRODUCT
    if (trace_opto_pipelining()) {
      tty->print("#    in(%2d): ", j);
      def->dump();
    }
#endif

    // If the defining block is not known, assume it is ok
    Block *def_block = _bbs[def->_idx];
    uint def_pre_order = def_block ? def_block->_pre_order : 0;

    if ( (use_pre_order <  def_pre_order) ||
         (use_pre_order == def_pre_order && n->is_Phi()) )
      continue;

    uint delta_latency = n->latency(j);
    uint current_latency = delta_latency + use_latency;

    if (_node_latency.at_grow(def->_idx) < current_latency) {
      _node_latency.at_put_grow(def->_idx, current_latency);
    }

#ifndef PRODUCT
    if (trace_opto_pipelining()) {
      tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
                    use_latency, j, delta_latency, current_latency, def->_idx,
                    _node_latency.at_grow(def->_idx));
    }
#endif
  }
}

//------------------------------latency_from_use-------------------------------
// Compute the latency of a specific use
int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
  // If self-reference, return no latency
  if (use == n || use->is_Root())
    return 0;

  uint def_pre_order = _bbs[def->_idx]->_pre_order;
  uint latency = 0;

  // If the use is not a projection, then it is simple...
  if (!use->is_Proj()) {
#ifndef PRODUCT
    if (trace_opto_pipelining()) {
      tty->print("#    out(): ");
      use->dump();
    }
#endif

    uint use_pre_order = _bbs[use->_idx]->_pre_order;

    if (use_pre_order < def_pre_order)
      return 0;

    if (use_pre_order == def_pre_order && use->is_Phi())
      return 0;

    uint nlen = use->len();
    uint nl = _node_latency.at_grow(use->_idx);

    for ( uint j=0; j<nlen; j++ ) {
      if (use->in(j) == n) {
        // Change this if we want local latencies
        uint ul = use->latency(j);
        uint  l = ul + nl;
        if (latency < l) latency = l;
#ifndef PRODUCT
        if (trace_opto_pipelining()) {
          tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
                        nl, j, ul, l, latency);
        }
#endif
      }
    }
  } else {
    // This is a projection, just grab the latency of the use(s)
    for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
      uint l = latency_from_use(use, def, use->fast_out(j));
      if (latency < l) latency = l;
    }
  }

  return latency;
}

//------------------------------latency_from_uses------------------------------
// Compute the latency of this instruction relative to all of it's uses.
// This computes a number that increases as we approach the beginning of the
// routine.
void PhaseCFG::latency_from_uses(Node *n) {
  // Set the latency for this instruction
#ifndef PRODUCT
  if (trace_opto_pipelining()) {
    tty->print("# latency_from_outputs: node_latency[%d] = %d for node",
               n->_idx, _node_latency.at_grow(n->_idx));
    dump();
  }
#endif
  uint latency=0;
  const Node *def = n->is_Proj() ? n->in(0): n;

  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
    uint l = latency_from_use(n, def, n->fast_out(i));

    if (latency < l) latency = l;
  }

  _node_latency.at_put_grow(n->_idx, latency);
}

//------------------------------hoist_to_cheaper_block-------------------------
// Pick a block for node self, between early and LCA, that is a cheaper
// alternative to LCA.
Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
  const double delta = 1+PROB_UNLIKELY_MAG(4);
  Block* least       = LCA;
  double least_freq  = least->_freq;
  uint target        = _node_latency.at_grow(self->_idx);
  uint start_latency = _node_latency.at_grow(LCA->_nodes[0]->_idx);
  uint end_latency   = _node_latency.at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
  bool in_latency    = (target <= start_latency);
  const Block* root_block = _bbs[_root->_idx];

  // Turn off latency scheduling if scheduling is just plain off
  if (!C->do_scheduling())
    in_latency = true;

  // Do not hoist (to cover latency) instructions which target a
  // single register.  Hoisting stretches the live range of the
  // single register and may force spilling.
  MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
  if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
    in_latency = true;

#ifndef PRODUCT
  if (trace_opto_pipelining()) {
    tty->print("# Find cheaper block for latency %d: ",
      _node_latency.at_grow(self->_idx));
    self->dump();
    tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
      LCA->_pre_order,
      LCA->_nodes[0]->_idx,
      start_latency,
      LCA->_nodes[LCA->end_idx()]->_idx,
      end_latency,
      least_freq);
  }
#endif

  // Walk up the dominator tree from LCA (Lowest common ancestor) to
  // the earliest legal location.  Capture the least execution frequency.
  while (LCA != early) {
    LCA = LCA->_idom;         // Follow up the dominator tree

    if (LCA == NULL) {
      // Bailout without retry
      C->record_method_not_compilable("late schedule failed: LCA == NULL");
      return least;
    }

    // Don't hoist machine instructions to the root basic block
    if (mach && LCA == root_block)
      break;

    uint start_lat = _node_latency.at_grow(LCA->_nodes[0]->_idx);
    uint end_idx   = LCA->end_idx();
    uint end_lat   = _node_latency.at_grow(LCA->_nodes[end_idx]->_idx);
    double LCA_freq = LCA->_freq;
#ifndef PRODUCT
    if (trace_opto_pipelining()) {
      tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
        LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
    }
#endif
    if (LCA_freq < least_freq              || // Better Frequency
        ( !in_latency                   &&    // No block containing latency
          LCA_freq < least_freq * delta &&    // No worse frequency
          target >= end_lat             &&    // within latency range
          !self->is_iteratively_computed() )  // But don't hoist IV increments
             // because they may end up above other uses of their phi forcing
             // their result register to be different from their input.
       ) {
      least = LCA;            // Found cheaper block
      least_freq = LCA_freq;
      start_latency = start_lat;
      end_latency = end_lat;
      if (target <= start_lat)
        in_latency = true;
    }
  }

#ifndef PRODUCT
  if (trace_opto_pipelining()) {
    tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
      least->_pre_order, start_latency, least_freq);
  }
#endif

  // See if the latency needs to be updated
  if (target < end_latency) {
#ifndef PRODUCT
    if (trace_opto_pipelining()) {
      tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
    }
#endif
    _node_latency.at_put_grow(self->_idx, end_latency);
    partial_latency_of_defs(self);
  }

  return least;
}


//------------------------------schedule_late-----------------------------------
// Now schedule all codes as LATE as possible.  This is the LCA in the
// dominator tree of all USES of a value.  Pick the block with the least
// loop nesting depth that is lowest in the dominator tree.
extern const char must_clone[];
void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
#ifndef PRODUCT
  if (trace_opto_pipelining())
    tty->print("\n#---- schedule_late ----\n");
#endif

  Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
  Node *self;

  // Walk over all the nodes from last to first
  while (self = iter.next()) {
    Block* early = _bbs[self->_idx];   // Earliest legal placement

    if (self->is_top()) {
      // Top node goes in bb #2 with other constants.
      // It must be special-cased, because it has no out edges.
      early->add_inst(self);
      continue;
    }

    // No uses, just terminate
    if (self->outcnt() == 0) {
      assert(self->Opcode() == Op_MachProj, "sanity");
      continue;                   // Must be a dead machine projection
    }

    // If node is pinned in the block, then no scheduling can be done.
    if( self->pinned() )          // Pinned in block?
      continue;

    MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
    if (mach) {
      switch (mach->ideal_Opcode()) {
      case Op_CreateEx:
        // Don't move exception creation
        early->add_inst(self);
        continue;
        break;
      case Op_CheckCastPP:
        // Don't move CheckCastPP nodes away from their input, if the input
        // is a rawptr (5071820).
        Node *def = self->in(1);
        if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
          early->add_inst(self);
          continue;
        }
        break;
      }
    }

    // Gather LCA of all uses
    Block *LCA = NULL;
    {
      for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
        // For all uses, find LCA
        Node* use = self->fast_out(i);
        LCA = raise_LCA_above_use(LCA, use, self, _bbs);
      }
    }  // (Hide defs of imax, i from rest of block.)

    // Place temps in the block of their use.  This isn't a
    // requirement for correctness but it reduces useless
    // interference between temps and other nodes.
    if (mach != NULL && mach->is_MachTemp()) {
      _bbs.map(self->_idx, LCA);
      LCA->add_inst(self);
      continue;
    }

    // Check if 'self' could be anti-dependent on memory
    if (self->needs_anti_dependence_check()) {
      // Hoist LCA above possible-defs and insert anti-dependences to
      // defs in new LCA block.
      LCA = insert_anti_dependences(LCA, self);
    }

    if (early->_dom_depth > LCA->_dom_depth) {
      // Somehow the LCA has moved above the earliest legal point.
      // (One way this can happen is via memory_early_block.)
      if (C->subsume_loads() == true && !C->failing()) {
        // Retry with subsume_loads == false
        // If this is the first failure, the sentinel string will "stick"
        // to the Compile object, and the C2Compiler will see it and retry.
        C->record_failure(C2Compiler::retry_no_subsuming_loads());
      } else {
        // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
        C->record_method_not_compilable("late schedule failed: incorrect graph");
      }
      return;
    }

    // If there is no opportunity to hoist, then we're done.
    bool try_to_hoist = (LCA != early);

    // Must clone guys stay next to use; no hoisting allowed.
    // Also cannot hoist guys that alter memory or are otherwise not
    // allocatable (hoisting can make a value live longer, leading to
    // anti and output dependency problems which are normally resolved
    // by the register allocator giving everyone a different register).
    if (mach != NULL && must_clone[mach->ideal_Opcode()])
      try_to_hoist = false;

    Block* late = NULL;
    if (try_to_hoist) {
      // Now find the block with the least execution frequency.
      // Start at the latest schedule and work up to the earliest schedule
      // in the dominator tree.  Thus the Node will dominate all its uses.
      late = hoist_to_cheaper_block(LCA, early, self);
    } else {
      // Just use the LCA of the uses.
      late = LCA;
    }

    // Put the node into target block
    schedule_node_into_block(self, late);

#ifdef ASSERT
    if (self->needs_anti_dependence_check()) {
      // since precedence edges are only inserted when we're sure they
      // are needed make sure that after placement in a block we don't
      // need any new precedence edges.
      verify_anti_dependences(late, self);
    }
#endif
  } // Loop until all nodes have been visited

} // end ScheduleLate

//------------------------------GlobalCodeMotion-------------------------------
void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
  ResourceMark rm;

#ifndef PRODUCT
  if (trace_opto_pipelining()) {
    tty->print("\n---- Start GlobalCodeMotion ----\n");
  }
#endif

  // Initialize the bbs.map for things on the proj_list
  uint i;
  for( i=0; i < proj_list.size(); i++ )
    _bbs.map(proj_list[i]->_idx, NULL);

  // Set the basic block for Nodes pinned into blocks
  Arena *a = Thread::current()->resource_area();
  VectorSet visited(a);
  schedule_pinned_nodes( visited );

  // Find the earliest Block any instruction can be placed in.  Some
  // instructions are pinned into Blocks.  Unpinned instructions can
  // appear in last block in which all their inputs occur.
  visited.Clear();
  Node_List stack(a);
  stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
  if (!schedule_early(visited, stack)) {
    // Bailout without retry
    C->record_method_not_compilable("early schedule failed");
    return;
  }

  // Build Def-Use edges.
  proj_list.push(_root);        // Add real root as another root
  proj_list.pop();

  // Compute the latency information (via backwards walk) for all the
  // instructions in the graph
  GrowableArray<uint> node_latency;
  _node_latency = node_latency;

  if( C->do_scheduling() )
    ComputeLatenciesBackwards(visited, stack);

  // Now schedule all codes as LATE as possible.  This is the LCA in the
  // dominator tree of all USES of a value.  Pick the block with the least
  // loop nesting depth that is lowest in the dominator tree.
  // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
  schedule_late(visited, stack);
  if( C->failing() ) {
    // schedule_late fails only when graph is incorrect.
    assert(!VerifyGraphEdges, "verification should have failed");
    return;
  }

  unique = C->unique();

#ifndef PRODUCT
  if (trace_opto_pipelining()) {
    tty->print("\n---- Detect implicit null checks ----\n");
  }
#endif

  // Detect implicit-null-check opportunities.  Basically, find NULL checks
  // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  // I can generate a memory op if there is not one nearby.
  if (C->is_method_compilation()) {
    // Don't do it for natives, adapters, or runtime stubs
    int allowed_reasons = 0;
    // ...and don't do it when there have been too many traps, globally.
    for (int reason = (int)Deoptimization::Reason_none+1;
         reason < Compile::trapHistLength; reason++) {
      assert(reason < BitsPerInt, "recode bit map");
      if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
        allowed_reasons |= nth_bit(reason);
    }
    // By reversing the loop direction we get a very minor gain on mpegaudio.
    // Feel free to revert to a forward loop for clarity.
    // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
    for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
      Node *proj = matcher._null_check_tests[i  ];
      Node *val  = matcher._null_check_tests[i+1];
      _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
      // The implicit_null_check will only perform the transformation
      // if the null branch is truly uncommon, *and* it leads to an
      // uncommon trap.  Combined with the too_many_traps guards
      // above, this prevents SEGV storms reported in 6366351,
      // by recompiling offending methods without this optimization.
    }
  }

#ifndef PRODUCT
  if (trace_opto_pipelining()) {
    tty->print("\n---- Start Local Scheduling ----\n");
  }
#endif

  // Schedule locally.  Right now a simple topological sort.
  // Later, do a real latency aware scheduler.
  int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
  memset( ready_cnt, -1, C->unique() * sizeof(int) );
  visited.Clear();
  for (i = 0; i < _num_blocks; i++) {
    if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
      if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
        C->record_method_not_compilable("local schedule failed");
      }
      return;
    }
  }

  // If we inserted any instructions between a Call and his CatchNode,
  // clone the instructions on all paths below the Catch.
  for( i=0; i < _num_blocks; i++ )
    _blocks[i]->call_catch_cleanup(_bbs);

#ifndef PRODUCT
  if (trace_opto_pipelining()) {
    tty->print("\n---- After GlobalCodeMotion ----\n");
    for (uint i = 0; i < _num_blocks; i++) {
      _blocks[i]->dump();
    }
  }
#endif
}


//------------------------------Estimate_Block_Frequency-----------------------
// Estimate block frequencies based on IfNode probabilities.
void PhaseCFG::Estimate_Block_Frequency() {
R
rasbold 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

  // Force conditional branches leading to uncommon traps to be unlikely,
  // not because we get to the uncommon_trap with less relative frequency,
  // but because an uncommon_trap typically causes a deopt, so we only get
  // there once.
  if (C->do_freq_based_layout()) {
    Block_List worklist;
    Block* root_blk = _blocks[0];
    for (uint i = 1; i < root_blk->num_preds(); i++) {
      Block *pb = _bbs[root_blk->pred(i)->_idx];
      if (pb->has_uncommon_code()) {
        worklist.push(pb);
      }
    }
    while (worklist.size() > 0) {
      Block* uct = worklist.pop();
      if (uct == _broot) continue;
      for (uint i = 1; i < uct->num_preds(); i++) {
        Block *pb = _bbs[uct->pred(i)->_idx];
        if (pb->_num_succs == 1) {
          worklist.push(pb);
        } else if (pb->num_fall_throughs() == 2) {
          pb->update_uncommon_branch(uct);
        }
      }
    }
  }
D
duke 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360

  // Create the loop tree and calculate loop depth.
  _root_loop = create_loop_tree();
  _root_loop->compute_loop_depth(0);

  // Compute block frequency of each block, relative to a single loop entry.
  _root_loop->compute_freq();

  // Adjust all frequencies to be relative to a single method entry
R
rasbold 已提交
1361
  _root_loop->_freq = 1.0;
D
duke 已提交
1362 1363 1364
  _root_loop->scale_freq();

  // force paths ending at uncommon traps to be infrequent
R
rasbold 已提交
1365 1366 1367 1368 1369 1370
  if (!C->do_freq_based_layout()) {
    Block_List worklist;
    Block* root_blk = _blocks[0];
    for (uint i = 1; i < root_blk->num_preds(); i++) {
      Block *pb = _bbs[root_blk->pred(i)->_idx];
      if (pb->has_uncommon_code()) {
D
duke 已提交
1371 1372 1373
        worklist.push(pb);
      }
    }
R
rasbold 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
    while (worklist.size() > 0) {
      Block* uct = worklist.pop();
      uct->_freq = PROB_MIN;
      for (uint i = 1; i < uct->num_preds(); i++) {
        Block *pb = _bbs[uct->pred(i)->_idx];
        if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
          worklist.push(pb);
        }
      }
    }
D
duke 已提交
1384 1385
  }

1386 1387 1388 1389 1390 1391 1392
#ifdef ASSERT
  for (uint i = 0; i < _num_blocks; i++ ) {
    Block *b = _blocks[i];
    assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requiers meaningful block frequency");
  }
#endif

D
duke 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
#ifndef PRODUCT
  if (PrintCFGBlockFreq) {
    tty->print_cr("CFG Block Frequencies");
    _root_loop->dump_tree();
    if (Verbose) {
      tty->print_cr("PhaseCFG dump");
      dump();
      tty->print_cr("Node dump");
      _root->dump(99999);
    }
  }
#endif
}

//----------------------------create_loop_tree--------------------------------
// Create a loop tree from the CFG
CFGLoop* PhaseCFG::create_loop_tree() {

#ifdef ASSERT
  assert( _blocks[0] == _broot, "" );
  for (uint i = 0; i < _num_blocks; i++ ) {
    Block *b = _blocks[i];
    // Check that _loop field are clear...we could clear them if not.
    assert(b->_loop == NULL, "clear _loop expected");
    // Sanity check that the RPO numbering is reflected in the _blocks array.
    // It doesn't have to be for the loop tree to be built, but if it is not,
    // then the blocks have been reordered since dom graph building...which
    // may question the RPO numbering
    assert(b->_rpo == i, "unexpected reverse post order number");
  }
#endif

  int idct = 0;
  CFGLoop* root_loop = new CFGLoop(idct++);

  Block_List worklist;

  // Assign blocks to loops
  for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
    Block *b = _blocks[i];

    if (b->head()->is_Loop()) {
      Block* loop_head = b;
      assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
      Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
      Block* tail = _bbs[tail_n->_idx];

      // Defensively filter out Loop nodes for non-single-entry loops.
      // For all reasonable loops, the head occurs before the tail in RPO.
      if (i <= tail->_rpo) {

        // The tail and (recursive) predecessors of the tail
        // are made members of a new loop.

        assert(worklist.size() == 0, "nonempty worklist");
        CFGLoop* nloop = new CFGLoop(idct++);
        assert(loop_head->_loop == NULL, "just checking");
        loop_head->_loop = nloop;
        // Add to nloop so push_pred() will skip over inner loops
        nloop->add_member(loop_head);
        nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);

        while (worklist.size() > 0) {
          Block* member = worklist.pop();
          if (member != loop_head) {
            for (uint j = 1; j < member->num_preds(); j++) {
              nloop->push_pred(member, j, worklist, _bbs);
            }
          }
        }
      }
    }
  }

  // Create a member list for each loop consisting
  // of both blocks and (immediate child) loops.
  for (uint i = 0; i < _num_blocks; i++) {
    Block *b = _blocks[i];
    CFGLoop* lp = b->_loop;
    if (lp == NULL) {
      // Not assigned to a loop. Add it to the method's pseudo loop.
      b->_loop = root_loop;
      lp = root_loop;
    }
    if (lp == root_loop || b != lp->head()) { // loop heads are already members
      lp->add_member(b);
    }
    if (lp != root_loop) {
      if (lp->parent() == NULL) {
        // Not a nested loop. Make it a child of the method's pseudo loop.
        root_loop->add_nested_loop(lp);
      }
      if (b == lp->head()) {
        // Add nested loop to member list of parent loop.
        lp->parent()->add_member(lp);
      }
    }
  }

  return root_loop;
}

//------------------------------push_pred--------------------------------------
void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
  Node* pred_n = blk->pred(i);
  Block* pred = node_to_blk[pred_n->_idx];
  CFGLoop *pred_loop = pred->_loop;
  if (pred_loop == NULL) {
    // Filter out blocks for non-single-entry loops.
    // For all reasonable loops, the head occurs before the tail in RPO.
    if (pred->_rpo > head()->_rpo) {
      pred->_loop = this;
      worklist.push(pred);
    }
  } else if (pred_loop != this) {
    // Nested loop.
    while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
      pred_loop = pred_loop->_parent;
    }
    // Make pred's loop be a child
    if (pred_loop->_parent == NULL) {
      add_nested_loop(pred_loop);
      // Continue with loop entry predecessor.
      Block* pred_head = pred_loop->head();
      assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
      assert(pred_head != head(), "loop head in only one loop");
      push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
    } else {
      assert(pred_loop->_parent == this && _parent == NULL, "just checking");
    }
  }
}

//------------------------------add_nested_loop--------------------------------
// Make cl a child of the current loop in the loop tree.
void CFGLoop::add_nested_loop(CFGLoop* cl) {
  assert(_parent == NULL, "no parent yet");
  assert(cl != this, "not my own parent");
  cl->_parent = this;
  CFGLoop* ch = _child;
  if (ch == NULL) {
    _child = cl;
  } else {
    while (ch->_sibling != NULL) { ch = ch->_sibling; }
    ch->_sibling = cl;
  }
}

//------------------------------compute_loop_depth-----------------------------
// Store the loop depth in each CFGLoop object.
// Recursively walk the children to do the same for them.
void CFGLoop::compute_loop_depth(int depth) {
  _depth = depth;
  CFGLoop* ch = _child;
  while (ch != NULL) {
    ch->compute_loop_depth(depth + 1);
    ch = ch->_sibling;
  }
}

//------------------------------compute_freq-----------------------------------
// Compute the frequency of each block and loop, relative to a single entry
// into the dominating loop head.
void CFGLoop::compute_freq() {
  // Bottom up traversal of loop tree (visit inner loops first.)
  // Set loop head frequency to 1.0, then transitively
  // compute frequency for all successors in the loop,
  // as well as for each exit edge.  Inner loops are
  // treated as single blocks with loop exit targets
  // as the successor blocks.

  // Nested loops first
  CFGLoop* ch = _child;
  while (ch != NULL) {
    ch->compute_freq();
    ch = ch->_sibling;
  }
  assert (_members.length() > 0, "no empty loops");
  Block* hd = head();
  hd->_freq = 1.0f;
  for (int i = 0; i < _members.length(); i++) {
    CFGElement* s = _members.at(i);
    float freq = s->_freq;
    if (s->is_block()) {
      Block* b = s->as_Block();
      for (uint j = 0; j < b->_num_succs; j++) {
        Block* sb = b->_succs[j];
        update_succ_freq(sb, freq * b->succ_prob(j));
      }
    } else {
      CFGLoop* lp = s->as_CFGLoop();
      assert(lp->_parent == this, "immediate child");
      for (int k = 0; k < lp->_exits.length(); k++) {
        Block* eb = lp->_exits.at(k).get_target();
        float prob = lp->_exits.at(k).get_prob();
        update_succ_freq(eb, freq * prob);
      }
    }
  }

  // For all loops other than the outer, "method" loop,
  // sum and normalize the exit probability. The "method" loop
  // should keep the initial exit probability of 1, so that
  // inner blocks do not get erroneously scaled.
  if (_depth != 0) {
    // Total the exit probabilities for this loop.
    float exits_sum = 0.0f;
    for (int i = 0; i < _exits.length(); i++) {
      exits_sum += _exits.at(i).get_prob();
    }

    // Normalize the exit probabilities. Until now, the
    // probabilities estimate the possibility of exit per
    // a single loop iteration; afterward, they estimate
    // the probability of exit per loop entry.
    for (int i = 0; i < _exits.length(); i++) {
      Block* et = _exits.at(i).get_target();
R
rasbold 已提交
1610 1611 1612 1613
      float new_prob = 0.0f;
      if (_exits.at(i).get_prob() > 0.0f) {
        new_prob = _exits.at(i).get_prob() / exits_sum;
      }
D
duke 已提交
1614 1615 1616 1617
      BlockProbPair bpp(et, new_prob);
      _exits.at_put(i, bpp);
    }

R
rasbold 已提交
1618
    // Save the total, but guard against unreasonable probability,
D
duke 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
    // as the value is used to estimate the loop trip count.
    // An infinite trip count would blur relative block
    // frequencies.
    if (exits_sum > 1.0f) exits_sum = 1.0;
    if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
    _exit_prob = exits_sum;
  }
}

//------------------------------succ_prob-------------------------------------
// Determine the probability of reaching successor 'i' from the receiver block.
float Block::succ_prob(uint i) {
  int eidx = end_idx();
  Node *n = _nodes[eidx];  // Get ending Node
R
rasbold 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656

  int op = n->Opcode();
  if (n->is_Mach()) {
    if (n->is_MachNullCheck()) {
      // Can only reach here if called after lcm. The original Op_If is gone,
      // so we attempt to infer the probability from one or both of the
      // successor blocks.
      assert(_num_succs == 2, "expecting 2 successors of a null check");
      // If either successor has only one predecessor, then the
      // probabiltity estimate can be derived using the
      // relative frequency of the successor and this block.
      if (_succs[i]->num_preds() == 2) {
        return _succs[i]->_freq / _freq;
      } else if (_succs[1-i]->num_preds() == 2) {
        return 1 - (_succs[1-i]->_freq / _freq);
      } else {
        // Estimate using both successor frequencies
        float freq = _succs[i]->_freq;
        return freq / (freq + _succs[1-i]->_freq);
      }
    }
    op = n->as_Mach()->ideal_Opcode();
  }

D
duke 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

  // Switch on branch type
  switch( op ) {
  case Op_CountedLoopEnd:
  case Op_If: {
    assert (i < 2, "just checking");
    // Conditionals pass on only part of their frequency
    float prob  = n->as_MachIf()->_prob;
    assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
    // If succ[i] is the FALSE branch, invert path info
    if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
      return 1.0f - prob; // not taken
    } else {
      return prob; // taken
    }
  }

  case Op_Jump:
    // Divide the frequency between all successors evenly
    return 1.0f/_num_succs;

  case Op_Catch: {
    const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
    if (ci->_con == CatchProjNode::fall_through_index) {
      // Fall-thru path gets the lion's share.
      return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
    } else {
      // Presume exceptional paths are equally unlikely
      return PROB_UNLIKELY_MAG(5);
    }
  }

  case Op_Root:
  case Op_Goto:
    // Pass frequency straight thru to target
    return 1.0f;

  case Op_NeverBranch:
    return 0.0f;

  case Op_TailCall:
  case Op_TailJump:
  case Op_Return:
  case Op_Halt:
  case Op_Rethrow:
    // Do not push out freq to root block
    return 0.0f;

  default:
    ShouldNotReachHere();
  }

  return 0.0f;
}

R
rasbold 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
//------------------------------num_fall_throughs-----------------------------
// Return the number of fall-through candidates for a block
int Block::num_fall_throughs() {
  int eidx = end_idx();
  Node *n = _nodes[eidx];  // Get ending Node

  int op = n->Opcode();
  if (n->is_Mach()) {
    if (n->is_MachNullCheck()) {
      // In theory, either side can fall-thru, for simplicity sake,
      // let's say only the false branch can now.
      return 1;
    }
    op = n->as_Mach()->ideal_Opcode();
  }

  // Switch on branch type
  switch( op ) {
  case Op_CountedLoopEnd:
  case Op_If:
    return 2;

  case Op_Root:
  case Op_Goto:
    return 1;

  case Op_Catch: {
    for (uint i = 0; i < _num_succs; i++) {
      const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
      if (ci->_con == CatchProjNode::fall_through_index) {
        return 1;
      }
    }
    return 0;
  }

  case Op_Jump:
  case Op_NeverBranch:
  case Op_TailCall:
  case Op_TailJump:
  case Op_Return:
  case Op_Halt:
  case Op_Rethrow:
    return 0;

  default:
    ShouldNotReachHere();
  }

  return 0;
}

//------------------------------succ_fall_through-----------------------------
// Return true if a specific successor could be fall-through target.
bool Block::succ_fall_through(uint i) {
  int eidx = end_idx();
  Node *n = _nodes[eidx];  // Get ending Node

  int op = n->Opcode();
  if (n->is_Mach()) {
    if (n->is_MachNullCheck()) {
      // In theory, either side can fall-thru, for simplicity sake,
      // let's say only the false branch can now.
      return _nodes[i + eidx + 1]->Opcode() == Op_IfFalse;
    }
    op = n->as_Mach()->ideal_Opcode();
  }

  // Switch on branch type
  switch( op ) {
  case Op_CountedLoopEnd:
  case Op_If:
  case Op_Root:
  case Op_Goto:
    return true;

  case Op_Catch: {
    const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
    return ci->_con == CatchProjNode::fall_through_index;
  }

  case Op_Jump:
  case Op_NeverBranch:
  case Op_TailCall:
  case Op_TailJump:
  case Op_Return:
  case Op_Halt:
  case Op_Rethrow:
    return false;

  default:
    ShouldNotReachHere();
  }

  return false;
}

//------------------------------update_uncommon_branch------------------------
// Update the probability of a two-branch to be uncommon
void Block::update_uncommon_branch(Block* ub) {
  int eidx = end_idx();
  Node *n = _nodes[eidx];  // Get ending Node

  int op = n->as_Mach()->ideal_Opcode();

  assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
  assert(num_fall_throughs() == 2, "must be a two way branch block");

  // Which successor is ub?
  uint s;
  for (s = 0; s <_num_succs; s++) {
    if (_succs[s] == ub) break;
  }
  assert(s < 2, "uncommon successor must be found");

  // If ub is the true path, make the proability small, else
  // ub is the false path, and make the probability large
  bool invert = (_nodes[s + eidx + 1]->Opcode() == Op_IfFalse);

  // Get existing probability
  float p = n->as_MachIf()->_prob;

  if (invert) p = 1.0 - p;
  if (p > PROB_MIN) {
    p = PROB_MIN;
  }
  if (invert) p = 1.0 - p;

  n->as_MachIf()->_prob = p;
}

D
duke 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
//------------------------------update_succ_freq-------------------------------
// Update the appropriate frequency associated with block 'b', a succesor of
// a block in this loop.
void CFGLoop::update_succ_freq(Block* b, float freq) {
  if (b->_loop == this) {
    if (b == head()) {
      // back branch within the loop
      // Do nothing now, the loop carried frequency will be
      // adjust later in scale_freq().
    } else {
      // simple branch within the loop
      b->_freq += freq;
    }
  } else if (!in_loop_nest(b)) {
    // branch is exit from this loop
    BlockProbPair bpp(b, freq);
    _exits.append(bpp);
  } else {
    // branch into nested loop
    CFGLoop* ch = b->_loop;
    ch->_freq += freq;
  }
}

//------------------------------in_loop_nest-----------------------------------
// Determine if block b is in the receiver's loop nest.
bool CFGLoop::in_loop_nest(Block* b) {
  int depth = _depth;
  CFGLoop* b_loop = b->_loop;
  int b_depth = b_loop->_depth;
  if (depth == b_depth) {
    return true;
  }
  while (b_depth > depth) {
    b_loop = b_loop->_parent;
    b_depth = b_loop->_depth;
  }
  return b_loop == this;
}

//------------------------------scale_freq-------------------------------------
// Scale frequency of loops and blocks by trip counts from outer loops
// Do a top down traversal of loop tree (visit outer loops first.)
void CFGLoop::scale_freq() {
  float loop_freq = _freq * trip_count();
  for (int i = 0; i < _members.length(); i++) {
    CFGElement* s = _members.at(i);
1890 1891 1892
    float block_freq = s->_freq * loop_freq;
    if (block_freq < MIN_BLOCK_FREQUENCY) block_freq = MIN_BLOCK_FREQUENCY;
    s->_freq = block_freq;
D
duke 已提交
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
  }
  CFGLoop* ch = _child;
  while (ch != NULL) {
    ch->scale_freq();
    ch = ch->_sibling;
  }
}

#ifndef PRODUCT
//------------------------------dump_tree--------------------------------------
void CFGLoop::dump_tree() const {
  dump();
  if (_child != NULL)   _child->dump_tree();
  if (_sibling != NULL) _sibling->dump_tree();
}

//------------------------------dump-------------------------------------------
void CFGLoop::dump() const {
  for (int i = 0; i < _depth; i++) tty->print("   ");
  tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
             _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
  for (int i = 0; i < _depth; i++) tty->print("   ");
  tty->print("         members:", _id);
  int k = 0;
  for (int i = 0; i < _members.length(); i++) {
    if (k++ >= 6) {
      tty->print("\n              ");
      for (int j = 0; j < _depth+1; j++) tty->print("   ");
      k = 0;
    }
    CFGElement *s = _members.at(i);
    if (s->is_block()) {
      Block *b = s->as_Block();
      tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
    } else {
      CFGLoop* lp = s->as_CFGLoop();
      tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
    }
  }
  tty->print("\n");
  for (int i = 0; i < _depth; i++) tty->print("   ");
  tty->print("         exits:  ");
  k = 0;
  for (int i = 0; i < _exits.length(); i++) {
    if (k++ >= 7) {
      tty->print("\n              ");
      for (int j = 0; j < _depth+1; j++) tty->print("   ");
      k = 0;
    }
    Block *blk = _exits.at(i).get_target();
    float prob = _exits.at(i).get_prob();
    tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
  }
  tty->print("\n");
}
#endif