divnode.cpp 36.6 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/*
 * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// Portions of code courtesy of Clifford Click

// Optimization - Graph Style

#include "incls/_precompiled.incl"
#include "incls/_divnode.cpp.incl"
#include <math.h>

// Implement the integer constant divide -> long multiply transform found in
//   "Division by Invariant Integers using Multiplication"
//     by Granlund and Montgomery
static Node *transform_int_divide_to_long_multiply( PhaseGVN *phase, Node *dividend, int divisor ) {

  // Check for invalid divisors
  assert( divisor != 0 && divisor != min_jint && divisor != 1,
    "bad divisor for transforming to long multiply" );

  // Compute l = ceiling(log2(d))
  //   presumes d is more likely small
  bool d_pos = divisor >= 0;
  int d = d_pos ? divisor : -divisor;
  unsigned ud = (unsigned)d;
  const int N = 32;
  int l = log2_intptr(d-1)+1;
  int sh_post = l;

  const uint64_t U1 = (uint64_t)1;

  // Cliff pointed out how to prevent overflow (from the paper)
  uint64_t m_low  =  (((U1 << l) - ud) << N)                  / ud + (U1 << N);
  uint64_t m_high = ((((U1 << l) - ud) << N) + (U1 << (l+1))) / ud + (U1 << N);

  // Reduce to lowest terms
  for ( ; sh_post > 0; sh_post-- ) {
    uint64_t m_low_1  = m_low  >> 1;
    uint64_t m_high_1 = m_high >> 1;
    if ( m_low_1 >= m_high_1 )
      break;
    m_low  = m_low_1;
    m_high = m_high_1;
  }

  // Result
  Node *q;

  // division by +/- 1
  if (d == 1) {
    // Filtered out as identity above
    if (d_pos)
      return NULL;

    // Just negate the value
    else {
      q = new (phase->C, 3) SubINode(phase->intcon(0), dividend);
    }
  }

  // division by +/- a power of 2
  else if ( is_power_of_2(d) ) {

    // See if we can simply do a shift without rounding
    bool needs_rounding = true;
    const Type *dt = phase->type(dividend);
    const TypeInt *dti = dt->isa_int();

    // we don't need to round a positive dividend
    if (dti && dti->_lo >= 0)
      needs_rounding = false;

    // An AND mask of sufficient size clears the low bits and
    // I can avoid rounding.
    else if( dividend->Opcode() == Op_AndI ) {
      const TypeInt *andconi = phase->type( dividend->in(2) )->isa_int();
      if( andconi && andconi->is_con(-d) ) {
        dividend = dividend->in(1);
        needs_rounding = false;
      }
    }

    // Add rounding to the shift to handle the sign bit
    if( needs_rounding ) {
      Node *t1 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(l - 1)));
      Node *t2 = phase->transform(new (phase->C, 3) URShiftINode(t1, phase->intcon(N - l)));
      dividend = phase->transform(new (phase->C, 3) AddINode(dividend, t2));
    }

    q = new (phase->C, 3) RShiftINode(dividend, phase->intcon(l));

    if (!d_pos)
      q = new (phase->C, 3) SubINode(phase->intcon(0), phase->transform(q));
  }

  // division by something else
  else if (m_high < (U1 << (N-1))) {
    Node *t1 = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));
    Node *t2 = phase->transform(new (phase->C, 3) MulLNode(t1, phase->longcon(m_high)));
    Node *t3 = phase->transform(new (phase->C, 3) RShiftLNode(t2, phase->intcon(sh_post+N)));
    Node *t4 = phase->transform(new (phase->C, 2) ConvL2INode(t3));
    Node *t5 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));

    q = new (phase->C, 3) SubINode(d_pos ? t4 : t5, d_pos ? t5 : t4);
  }

  // This handles that case where m_high is >= 2**(N-1). In that case,
  // we subtract out 2**N from the multiply and add it in later as
  // "dividend" in the equation (t5). This case computes the same result
  // as the immediately preceeding case, save that rounding and overflow
  // are accounted for.
  else {
    Node *t1 = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));
    Node *t2 = phase->transform(new (phase->C, 3) MulLNode(t1, phase->longcon(m_high - (U1 << N))));
    Node *t3 = phase->transform(new (phase->C, 3) RShiftLNode(t2, phase->intcon(N)));
    Node *t4 = phase->transform(new (phase->C, 2) ConvL2INode(t3));
    Node *t5 = phase->transform(new (phase->C, 3) AddINode(dividend, t4));
    Node *t6 = phase->transform(new (phase->C, 3) RShiftINode(t5, phase->intcon(sh_post)));
    Node *t7 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));

    q = new (phase->C, 3) SubINode(d_pos ? t6 : t7, d_pos ? t7 : t6);
  }

  return (q);
}

//=============================================================================
//------------------------------Identity---------------------------------------
// If the divisor is 1, we are an identity on the dividend.
Node *DivINode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
// Divides can be changed to multiplies and/or shifts
Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;

  const Type *t = phase->type( in(2) );
  if( t == TypeInt::ONE )       // Identity?
    return NULL;                // Skip it

  const TypeInt *ti = t->isa_int();
  if( !ti ) return NULL;
  if( !ti->is_con() ) return NULL;
  int i = ti->get_con();        // Get divisor

  if (i == 0) return NULL;      // Dividing by zero constant does not idealize

  set_req(0,NULL);              // Dividing by a not-zero constant; no faulting

  // Dividing by MININT does not optimize as a power-of-2 shift.
  if( i == min_jint ) return NULL;

  return transform_int_divide_to_long_multiply( phase, in(1), i );
}

//------------------------------Value------------------------------------------
// A DivINode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivINode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // x/x == 1 since we always generate the dynamic divisor check for 0.
  if( phase->eqv( in(1), in(2) ) )
    return TypeInt::ONE;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // Divide the two numbers.  We approximate.
  // If divisor is a constant and not zero
  const TypeInt *i1 = t1->is_int();
  const TypeInt *i2 = t2->is_int();
  int widen = MAX2(i1->_widen, i2->_widen);

  if( i2->is_con() && i2->get_con() != 0 ) {
    int32 d = i2->get_con(); // Divisor
    jint lo, hi;
    if( d >= 0 ) {
      lo = i1->_lo/d;
      hi = i1->_hi/d;
    } else {
      if( d == -1 && i1->_lo == min_jint ) {
        // 'min_jint/-1' throws arithmetic exception during compilation
        lo = min_jint;
        // do not support holes, 'hi' must go to either min_jint or max_jint:
        // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
        hi = i1->_hi == min_jint ? min_jint : max_jint;
      } else {
        lo = i1->_hi/d;
        hi = i1->_lo/d;
      }
    }
    return TypeInt::make(lo, hi, widen);
  }

  // If the dividend is a constant
  if( i1->is_con() ) {
    int32 d = i1->get_con();
    if( d < 0 ) {
      if( d == min_jint ) {
        //  (-min_jint) == min_jint == (min_jint / -1)
        return TypeInt::make(min_jint, max_jint/2 + 1, widen);
      } else {
        return TypeInt::make(d, -d, widen);
      }
    }
    return TypeInt::make(-d, d, widen);
  }

  // Otherwise we give up all hope
  return TypeInt::INT;
}


//=============================================================================
//------------------------------Identity---------------------------------------
// If the divisor is 1, we are an identity on the dividend.
Node *DivLNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
// Dividing by a power of 2 is a shift.
Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;

  const Type *t = phase->type( in(2) );
  if( t == TypeLong::ONE )       // Identity?
    return NULL;                // Skip it

  const TypeLong *ti = t->isa_long();
  if( !ti ) return NULL;
  if( !ti->is_con() ) return NULL;
  jlong i = ti->get_con();      // Get divisor
  if( i ) set_req(0, NULL);     // Dividing by a not-zero constant; no faulting

  // Dividing by MININT does not optimize as a power-of-2 shift.
  if( i == min_jlong ) return NULL;

  // Check for negative power of 2 divisor, if so, negate it and set a flag
  // to indicate result needs to be negated.  Note that negating the dividend
  // here does not work when it has the value MININT
  Node *dividend = in(1);
  bool negate_res = false;
  if (is_power_of_2_long(-i)) {
    i = -i;                     // Flip divisor
    negate_res = true;
  }

  // Check for power of 2
  if (!is_power_of_2_long(i))   // Is divisor a power of 2?
    return NULL;                // Not a power of 2

  // Compute number of bits to shift
  int log_i = log2_long(i);

  // See if we can simply do a shift without rounding
  bool needs_rounding = true;
  const Type *dt = phase->type(dividend);
  const TypeLong *dtl = dt->isa_long();

  if (dtl && dtl->_lo > 0) {
    // we don't need to round a positive dividend
    needs_rounding = false;
  } else if( dividend->Opcode() == Op_AndL ) {
    // An AND mask of sufficient size clears the low bits and
    // I can avoid rounding.
    const TypeLong *andconi = phase->type( dividend->in(2) )->isa_long();
    if( andconi &&
        andconi->is_con() &&
        andconi->get_con() == -i ) {
      dividend = dividend->in(1);
      needs_rounding = false;
    }
  }

  if (!needs_rounding) {
    Node *result = new (phase->C, 3) RShiftLNode(dividend, phase->intcon(log_i));
    if (negate_res) {
      result = phase->transform(result);
      result = new (phase->C, 3) SubLNode(phase->longcon(0), result);
    }
    return result;
  }

  // Divide-by-power-of-2 can be made into a shift, but you have to do
  // more math for the rounding.  You need to add 0 for positive
  // numbers, and "i-1" for negative numbers.  Example: i=4, so the
  // shift is by 2.  You need to add 3 to negative dividends and 0 to
  // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
  // (-2+3)>>2 becomes 0, etc.

  // Compute 0 or -1, based on sign bit
  Node *sign = phase->transform(new (phase->C, 3) RShiftLNode(dividend,phase->intcon(63)));
  // Mask sign bit to the low sign bits
  Node *round = phase->transform(new (phase->C, 3) AndLNode(sign,phase->longcon(i-1)));
  // Round up before shifting
  Node *sum = phase->transform(new (phase->C, 3) AddLNode(dividend,round));
  // Shift for division
  Node *result = new (phase->C, 3) RShiftLNode(sum, phase->intcon(log_i));
  if (negate_res) {
    result = phase->transform(result);
    result = new (phase->C, 3) SubLNode(phase->longcon(0), result);
  }

  return result;
}

//------------------------------Value------------------------------------------
// A DivLNode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivLNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // x/x == 1 since we always generate the dynamic divisor check for 0.
  if( phase->eqv( in(1), in(2) ) )
    return TypeLong::ONE;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // Divide the two numbers.  We approximate.
  // If divisor is a constant and not zero
  const TypeLong *i1 = t1->is_long();
  const TypeLong *i2 = t2->is_long();
  int widen = MAX2(i1->_widen, i2->_widen);

  if( i2->is_con() && i2->get_con() != 0 ) {
    jlong d = i2->get_con();    // Divisor
    jlong lo, hi;
    if( d >= 0 ) {
      lo = i1->_lo/d;
      hi = i1->_hi/d;
    } else {
      if( d == CONST64(-1) && i1->_lo == min_jlong ) {
        // 'min_jlong/-1' throws arithmetic exception during compilation
        lo = min_jlong;
        // do not support holes, 'hi' must go to either min_jlong or max_jlong:
        // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
        hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
      } else {
        lo = i1->_hi/d;
        hi = i1->_lo/d;
      }
    }
    return TypeLong::make(lo, hi, widen);
  }

  // If the dividend is a constant
  if( i1->is_con() ) {
    jlong d = i1->get_con();
    if( d < 0 ) {
      if( d == min_jlong ) {
        //  (-min_jlong) == min_jlong == (min_jlong / -1)
        return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
      } else {
        return TypeLong::make(d, -d, widen);
      }
    }
    return TypeLong::make(-d, d, widen);
  }

  // Otherwise we give up all hope
  return TypeLong::LONG;
}


//=============================================================================
//------------------------------Value------------------------------------------
// An DivFNode divides its inputs.  The third input is a Control input, used to
// prevent hoisting the divide above an unsafe test.
const Type *DivFNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // x/x == 1, we ignore 0/0.
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
424
  // Does not work for variables because of NaN's
D
duke 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
  if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
    if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
      return TypeF::ONE;

  if( t2 == TypeF::ONE )
    return t1;

  // If divisor is a constant and not zero, divide them numbers
  if( t1->base() == Type::FloatCon &&
      t2->base() == Type::FloatCon &&
      t2->getf() != 0.0 ) // could be negative zero
    return TypeF::make( t1->getf()/t2->getf() );

  // If the dividend is a constant zero
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Test TypeF::ZERO is not sufficient as it could be negative zero

  if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
    return TypeF::ZERO;

  // Otherwise we give up all hope
  return Type::FLOAT;
}

//------------------------------isA_Copy---------------------------------------
// Dividing by self is 1.
// If the divisor is 1, we are an identity on the dividend.
Node *DivFNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
}


//------------------------------Idealize---------------------------------------
Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;

  const Type *t2 = phase->type( in(2) );
  if( t2 == TypeF::ONE )         // Identity?
    return NULL;                // Skip it

  const TypeF *tf = t2->isa_float_constant();
  if( !tf ) return NULL;
  if( tf->base() != Type::FloatCon ) return NULL;

  // Check for out of range values
  if( tf->is_nan() || !tf->is_finite() ) return NULL;

  // Get the value
  float f = tf->getf();
  int exp;

  // Only for special case of dividing by a power of 2
  if( frexp((double)f, &exp) != 0.5 ) return NULL;

  // Limit the range of acceptable exponents
  if( exp < -126 || exp > 126 ) return NULL;

  // Compute the reciprocal
  float reciprocal = ((float)1.0) / f;

  assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );

  // return multiplication by the reciprocal
  return (new (phase->C, 3) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
}

//=============================================================================
//------------------------------Value------------------------------------------
// An DivDNode divides its inputs.  The third input is a Control input, used to
494
// prevent hoisting the divide above an unsafe test.
D
duke 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
const Type *DivDNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // x/x == 1, we ignore 0/0.
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Does not work for variables because of NaN's
  if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
    if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
      return TypeD::ONE;

  if( t2 == TypeD::ONE )
    return t1;

  // If divisor is a constant and not zero, divide them numbers
  if( t1->base() == Type::DoubleCon &&
      t2->base() == Type::DoubleCon &&
      t2->getd() != 0.0 ) // could be negative zero
    return TypeD::make( t1->getd()/t2->getd() );

  // If the dividend is a constant zero
  // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
  // Test TypeF::ZERO is not sufficient as it could be negative zero
  if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
    return TypeD::ZERO;

  // Otherwise we give up all hope
  return Type::DOUBLE;
}


//------------------------------isA_Copy---------------------------------------
// Dividing by self is 1.
// If the divisor is 1, we are an identity on the dividend.
Node *DivDNode::Identity( PhaseTransform *phase ) {
  return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
}

//------------------------------Idealize---------------------------------------
Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if (in(0) && remove_dead_region(phase, can_reshape))  return this;

  const Type *t2 = phase->type( in(2) );
  if( t2 == TypeD::ONE )         // Identity?
    return NULL;                // Skip it

  const TypeD *td = t2->isa_double_constant();
  if( !td ) return NULL;
  if( td->base() != Type::DoubleCon ) return NULL;

  // Check for out of range values
  if( td->is_nan() || !td->is_finite() ) return NULL;

  // Get the value
  double d = td->getd();
  int exp;

  // Only for special case of dividing by a power of 2
  if( frexp(d, &exp) != 0.5 ) return NULL;

  // Limit the range of acceptable exponents
  if( exp < -1021 || exp > 1022 ) return NULL;

  // Compute the reciprocal
  double reciprocal = 1.0 / d;

  assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );

  // return multiplication by the reciprocal
  return (new (phase->C, 3) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
}

//=============================================================================
//------------------------------Idealize---------------------------------------
Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Check for dead control input
  if( remove_dead_region(phase, can_reshape) )  return this;

  // Get the modulus
  const Type *t = phase->type( in(2) );
  if( t == Type::TOP ) return NULL;
  const TypeInt *ti = t->is_int();

  // Check for useless control input
  // Check for excluding mod-zero case
  if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
    set_req(0, NULL);        // Yank control input
    return this;
  }

  // See if we are MOD'ing by 2^k or 2^k-1.
  if( !ti->is_con() ) return NULL;
  jint con = ti->get_con();

  Node *hook = new (phase->C, 1) Node(1);

  // First, special check for modulo 2^k-1
  if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
    uint k = exact_log2(con+1);  // Extract k

    // Basic algorithm by David Detlefs.  See fastmod_int.java for gory details.
    static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
    int trip_count = 1;
    if( k < ARRAY_SIZE(unroll_factor))  trip_count = unroll_factor[k];

    // If the unroll factor is not too large, and if conditional moves are
    // ok, then use this case
    if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
      Node *x = in(1);            // Value being mod'd
      Node *divisor = in(2);      // Also is mask

      hook->init_req(0, x);       // Add a use to x to prevent him from dying
      // Generate code to reduce X rapidly to nearly 2^k-1.
      for( int i = 0; i < trip_count; i++ ) {
          Node *xl = phase->transform( new (phase->C, 3) AndINode(x,divisor) );
          Node *xh = phase->transform( new (phase->C, 3) RShiftINode(x,phase->intcon(k)) ); // Must be signed
          x = phase->transform( new (phase->C, 3) AddINode(xh,xl) );
          hook->set_req(0, x);
      }

      // Generate sign-fixup code.  Was original value positive?
      // int hack_res = (i >= 0) ? divisor : 1;
      Node *cmp1 = phase->transform( new (phase->C, 3) CmpINode( in(1), phase->intcon(0) ) );
      Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
      Node *cmov1= phase->transform( new (phase->C, 4) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
      // if( x >= hack_res ) x -= divisor;
      Node *sub  = phase->transform( new (phase->C, 3) SubINode( x, divisor ) );
      Node *cmp2 = phase->transform( new (phase->C, 3) CmpINode( x, cmov1 ) );
      Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
      // Convention is to not transform the return value of an Ideal
      // since Ideal is expected to return a modified 'this' or a new node.
      Node *cmov2= new (phase->C, 4) CMoveINode(bol2, x, sub, TypeInt::INT);
      // cmov2 is now the mod

      // Now remove the bogus extra edges used to keep things alive
      if (can_reshape) {
        phase->is_IterGVN()->remove_dead_node(hook);
      } else {
        hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
      }
      return cmov2;
    }
  }

  // Fell thru, the unroll case is not appropriate. Transform the modulo
  // into a long multiply/int multiply/subtract case

  // Cannot handle mod 0, and min_jint isn't handled by the transform
  if( con == 0 || con == min_jint ) return NULL;

  // Get the absolute value of the constant; at this point, we can use this
  jint pos_con = (con >= 0) ? con : -con;

  // integer Mod 1 is always 0
  if( pos_con == 1 ) return new (phase->C, 1) ConINode(TypeInt::ZERO);

  int log2_con = -1;

  // If this is a power of two, they maybe we can mask it
  if( is_power_of_2(pos_con) ) {
    log2_con = log2_intptr((intptr_t)pos_con);

    const Type *dt = phase->type(in(1));
    const TypeInt *dti = dt->isa_int();

    // See if this can be masked, if the dividend is non-negative
    if( dti && dti->_lo >= 0 )
      return ( new (phase->C, 3) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
  }

  // Save in(1) so that it cannot be changed or deleted
  hook->init_req(0, in(1));

  // Divide using the transform from DivI to MulL
  Node *divide = phase->transform( transform_int_divide_to_long_multiply( phase, in(1), pos_con ) );

  // Re-multiply, using a shift if this is a power of two
  Node *mult = NULL;

  if( log2_con >= 0 )
    mult = phase->transform( new (phase->C, 3) LShiftINode( divide, phase->intcon( log2_con ) ) );
  else
    mult = phase->transform( new (phase->C, 3) MulINode( divide, phase->intcon( pos_con ) ) );

  // Finally, subtract the multiplied divided value from the original
  Node *result = new (phase->C, 3) SubINode( in(1), mult );

  // Now remove the bogus extra edges used to keep things alive
  if (can_reshape) {
    phase->is_IterGVN()->remove_dead_node(hook);
  } else {
    hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
  }

  // return the value
  return result;
}

//------------------------------Value------------------------------------------
const Type *ModINode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // We always generate the dynamic check for 0.
  // 0 MOD X is 0
  if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
  // X MOD X is 0
  if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  const TypeInt *i1 = t1->is_int();
  const TypeInt *i2 = t2->is_int();
  if( !i1->is_con() || !i2->is_con() ) {
    if( i1->_lo >= 0 && i2->_lo >= 0 )
      return TypeInt::POS;
    // If both numbers are not constants, we know little.
    return TypeInt::INT;
  }
  // Mod by zero?  Throw exception at runtime!
  if( !i2->get_con() ) return TypeInt::POS;

  // We must be modulo'ing 2 float constants.
  // Check for min_jint % '-1', result is defined to be '0'.
  if( i1->get_con() == min_jint && i2->get_con() == -1 )
    return TypeInt::ZERO;

  return TypeInt::make( i1->get_con() % i2->get_con() );
}


//=============================================================================
//------------------------------Idealize---------------------------------------
Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Check for dead control input
  if( remove_dead_region(phase, can_reshape) )  return this;

  // Get the modulus
  const Type *t = phase->type( in(2) );
  if( t == Type::TOP ) return NULL;
  const TypeLong *ti = t->is_long();

  // Check for useless control input
  // Check for excluding mod-zero case
  if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
    set_req(0, NULL);        // Yank control input
    return this;
  }

  // See if we are MOD'ing by 2^k or 2^k-1.
  if( !ti->is_con() ) return NULL;
  jlong con = ti->get_con();
  bool m1 = false;
  if( !is_power_of_2_long(con) ) {      // Not 2^k
    if( !is_power_of_2_long(con+1) ) // Not 2^k-1?
      return NULL;              // No interesting mod hacks
    m1 = true;                  // Found 2^k-1
    con++;                      // Convert to 2^k form
  }
  uint k = log2_long(con);       // Extract k

  // Expand mod
  if( !m1 ) {                   // Case 2^k
  } else {                      // Case 2^k-1
    // Basic algorithm by David Detlefs.  See fastmod_long.java for gory details.
    // Used to help a popular random number generator which does a long-mod
    // of 2^31-1 and shows up in SpecJBB and SciMark.
    static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
    int trip_count = 1;
    if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
    if( trip_count > 4 ) return NULL; // Too much unrolling
    if (ConditionalMoveLimit == 0) return NULL;  // cmov is required

    Node *x = in(1);            // Value being mod'd
    Node *divisor = in(2);      // Also is mask

    Node *hook = new (phase->C, 1) Node(x);
    // Generate code to reduce X rapidly to nearly 2^k-1.
    for( int i = 0; i < trip_count; i++ ) {
        Node *xl = phase->transform( new (phase->C, 3) AndLNode(x,divisor) );
        Node *xh = phase->transform( new (phase->C, 3) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
        x = phase->transform( new (phase->C, 3) AddLNode(xh,xl) );
        hook->set_req(0, x);    // Add a use to x to prevent him from dying
    }
    // Generate sign-fixup code.  Was original value positive?
    // long hack_res = (i >= 0) ? divisor : CONST64(1);
    Node *cmp1 = phase->transform( new (phase->C, 3) CmpLNode( in(1), phase->longcon(0) ) );
    Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
    Node *cmov1= phase->transform( new (phase->C, 4) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
    // if( x >= hack_res ) x -= divisor;
    Node *sub  = phase->transform( new (phase->C, 3) SubLNode( x, divisor ) );
    Node *cmp2 = phase->transform( new (phase->C, 3) CmpLNode( x, cmov1 ) );
    Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
    // Convention is to not transform the return value of an Ideal
    // since Ideal is expected to return a modified 'this' or a new node.
    Node *cmov2= new (phase->C, 4) CMoveLNode(bol2, x, sub, TypeLong::LONG);
    // cmov2 is now the mod

    // Now remove the bogus extra edges used to keep things alive
    if (can_reshape) {
      phase->is_IterGVN()->remove_dead_node(hook);
    } else {
      hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
    }
    return cmov2;
  }
  return NULL;
}

//------------------------------Value------------------------------------------
const Type *ModLNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // We always generate the dynamic check for 0.
  // 0 MOD X is 0
  if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
  // X MOD X is 0
  if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  const TypeLong *i1 = t1->is_long();
  const TypeLong *i2 = t2->is_long();
  if( !i1->is_con() || !i2->is_con() ) {
    if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
      return TypeLong::POS;
    // If both numbers are not constants, we know little.
    return TypeLong::LONG;
  }
  // Mod by zero?  Throw exception at runtime!
  if( !i2->get_con() ) return TypeLong::POS;

  // We must be modulo'ing 2 float constants.
  // Check for min_jint % '-1', result is defined to be '0'.
  if( i1->get_con() == min_jlong && i2->get_con() == -1 )
    return TypeLong::ZERO;

  return TypeLong::make( i1->get_con() % i2->get_con() );
}


//=============================================================================
//------------------------------Value------------------------------------------
const Type *ModFNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

875 876 877 878
  // If either number is not a constant, we know nothing.
  if ((t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon)) {
    return Type::FLOAT;         // note: x%x can be either NaN or 0
  }
D
duke 已提交
879

880 881 882 883
  float f1 = t1->getf();
  float f2 = t2->getf();
  jint  x1 = jint_cast(f1);     // note:  *(int*)&f1, not just (int)f1
  jint  x2 = jint_cast(f2);
D
duke 已提交
884

885 886 887
  // If either is a NaN, return an input NaN
  if (g_isnan(f1))    return t1;
  if (g_isnan(f2))    return t2;
D
duke 已提交
888

889 890
  // If an operand is infinity or the divisor is +/- zero, punt.
  if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jint)
D
duke 已提交
891 892 893 894
    return Type::FLOAT;

  // We must be modulo'ing 2 float constants.
  // Make sure that the sign of the fmod is equal to the sign of the dividend
895 896 897
  jint xr = jint_cast(fmod(f1, f2));
  if ((x1 ^ xr) < 0) {
    xr ^= min_jint;
D
duke 已提交
898
  }
899 900

  return TypeF::make(jfloat_cast(xr));
D
duke 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
}


//=============================================================================
//------------------------------Value------------------------------------------
const Type *ModDNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

919 920 921
  // If either number is not a constant, we know nothing.
  if ((t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon)) {
    return Type::DOUBLE;        // note: x%x can be either NaN or 0
D
duke 已提交
922 923
  }

924 925 926 927
  double f1 = t1->getd();
  double f2 = t2->getd();
  jlong  x1 = jlong_cast(f1);   // note:  *(long*)&f1, not just (long)f1
  jlong  x2 = jlong_cast(f2);
D
duke 已提交
928

929 930 931
  // If either is a NaN, return an input NaN
  if (g_isnan(f1))    return t1;
  if (g_isnan(f2))    return t2;
D
duke 已提交
932

933 934
  // If an operand is infinity or the divisor is +/- zero, punt.
  if (!g_isfinite(f1) || !g_isfinite(f2) || x2 == 0 || x2 == min_jlong)
D
duke 已提交
935 936 937
    return Type::DOUBLE;

  // We must be modulo'ing 2 double constants.
938 939 940 941 942 943 944
  // Make sure that the sign of the fmod is equal to the sign of the dividend
  jlong xr = jlong_cast(fmod(f1, f2));
  if ((x1 ^ xr) < 0) {
    xr ^= min_jlong;
  }

  return TypeD::make(jdouble_cast(xr));
D
duke 已提交
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
}

//=============================================================================

DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
  init_req(0, c);
  init_req(1, dividend);
  init_req(2, divisor);
}

//------------------------------make------------------------------------------
DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
  Node* n = div_or_mod;
  assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
         "only div or mod input pattern accepted");

  DivModINode* divmod = new (C, 3) DivModINode(n->in(0), n->in(1), n->in(2));
  Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  return divmod;
}

//------------------------------make------------------------------------------
DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
  Node* n = div_or_mod;
  assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
         "only div or mod input pattern accepted");

  DivModLNode* divmod = new (C, 3) DivModLNode(n->in(0), n->in(1), n->in(2));
  Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
  Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
  return divmod;
}

//------------------------------match------------------------------------------
// return result(s) along with their RegMask info
Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
  uint ideal_reg = proj->ideal_reg();
  RegMask rm;
  if (proj->_con == div_proj_num) {
    rm = match->divI_proj_mask();
  } else {
    assert(proj->_con == mod_proj_num, "must be div or mod projection");
    rm = match->modI_proj_mask();
  }
  return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
}


//------------------------------match------------------------------------------
// return result(s) along with their RegMask info
Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
  uint ideal_reg = proj->ideal_reg();
  RegMask rm;
  if (proj->_con == div_proj_num) {
    rm = match->divL_proj_mask();
  } else {
    assert(proj->_con == mod_proj_num, "must be div or mod projection");
    rm = match->modL_proj_mask();
  }
  return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
}