sharedRuntimeTrans.cpp 24.4 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2005, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_sharedRuntimeTrans.cpp.incl"

// This file contains copies of the fdlibm routines used by
// StrictMath. It turns out that it is almost always required to use
// these runtime routines; the Intel CPU doesn't meet the Java
// specification for sin/cos outside a certain limited argument range,
// and the SPARC CPU doesn't appear to have sin/cos instructions. It
// also turns out that avoiding the indirect call through function
// pointer out to libjava.so in SharedRuntime speeds these routines up
// by roughly 15% on both Win32/x86 and Solaris/SPARC.

// Enabling optimizations in this file causes incorrect code to be
// generated; can not figure out how to turn down optimization for one
// file in the IDE on Windows
#ifdef WIN32
# pragma optimize ( "", off )
#endif

#include <math.h>

// VM_LITTLE_ENDIAN is #defined appropriately in the Makefiles
// [jk] this is not 100% correct because the float word order may different
// from the byte order (e.g. on ARM)
#ifdef VM_LITTLE_ENDIAN
# define __HI(x) *(1+(int*)&x)
# define __LO(x) *(int*)&x
#else
# define __HI(x) *(int*)&x
# define __LO(x) *(1+(int*)&x)
#endif

double copysign(double x, double y) {
  __HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
  return x;
}

/*
 * ====================================================
64
 * Copyright (c) 1998 Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
 *
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/*
 * scalbn (double x, int n)
 * scalbn(x,n) returns x* 2**n  computed by  exponent
 * manipulation rather than by actually performing an
 * exponentiation or a multiplication.
 */

static const double
two54   =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
  twom54  =  5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
  hugeX   = 1.0e+300,
  tiny   = 1.0e-300;

double scalbn (double x, int n) {
  int  k,hx,lx;
  hx = __HI(x);
  lx = __LO(x);
  k = (hx&0x7ff00000)>>20;              /* extract exponent */
  if (k==0) {                           /* 0 or subnormal x */
    if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
    x *= two54;
    hx = __HI(x);
    k = ((hx&0x7ff00000)>>20) - 54;
    if (n< -50000) return tiny*x;       /*underflow*/
  }
  if (k==0x7ff) return x+x;             /* NaN or Inf */
  k = k+n;
  if (k >  0x7fe) return hugeX*copysign(hugeX,x); /* overflow  */
  if (k > 0)                            /* normal result */
    {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
  if (k <= -54) {
    if (n > 50000)      /* in case integer overflow in n+k */
      return hugeX*copysign(hugeX,x);   /*overflow*/
    else return tiny*copysign(tiny,x);  /*underflow*/
  }
  k += 54;                              /* subnormal result */
  __HI(x) = (hx&0x800fffff)|(k<<20);
  return x*twom54;
}

/* __ieee754_log(x)
 * Return the logrithm of x
 *
 * Method :
 *   1. Argument Reduction: find k and f such that
 *                    x = 2^k * (1+f),
 *       where  sqrt(2)/2 < 1+f < sqrt(2) .
 *
 *   2. Approximation of log(1+f).
 *    Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 *             = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 *             = 2s + s*R
 *      We use a special Reme algorithm on [0,0.1716] to generate
 *    a polynomial of degree 14 to approximate R The maximum error
 *    of this polynomial approximation is bounded by 2**-58.45. In
 *    other words,
 *                    2      4      6      8      10      12      14
 *        R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
 *    (the values of Lg1 to Lg7 are listed in the program)
 *    and
 *        |      2          14          |     -58.45
 *        | Lg1*s +...+Lg7*s    -  R(z) | <= 2
 *        |                             |
 *    Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
 *    In order to guarantee error in log below 1ulp, we compute log
 *    by
 *            log(1+f) = f - s*(f - R)        (if f is not too large)
 *            log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
 *
 *    3. Finally,  log(x) = k*ln2 + log(1+f).
 *                        = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
 *       Here ln2 is split into two floating point number:
 *                    ln2_hi + ln2_lo,
 *       where n*ln2_hi is always exact for |n| < 2000.
 *
 * Special cases:
 *    log(x) is NaN with signal if x < 0 (including -INF) ;
 *    log(+INF) is +INF; log(0) is -INF with signal;
 *    log(NaN) is that NaN with no signal.
 *
 * Accuracy:
 *    according to an error analysis, the error is always less than
 *    1 ulp (unit in the last place).
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

static const double
ln2_hi  =  6.93147180369123816490e-01,        /* 3fe62e42 fee00000 */
  ln2_lo  =  1.90821492927058770002e-10,        /* 3dea39ef 35793c76 */
  Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
  Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
  Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
  Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
  Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
  Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
  Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */

static double zero = 0.0;

static double __ieee754_log(double x) {
  double hfsq,f,s,z,R,w,t1,t2,dk;
  int k,hx,i,j;
  unsigned lx;

  hx = __HI(x);               /* high word of x */
  lx = __LO(x);               /* low  word of x */

  k=0;
  if (hx < 0x00100000) {                   /* x < 2**-1022  */
    if (((hx&0x7fffffff)|lx)==0)
      return -two54/zero;             /* log(+-0)=-inf */
    if (hx<0) return (x-x)/zero;   /* log(-#) = NaN */
    k -= 54; x *= two54; /* subnormal number, scale up x */
    hx = __HI(x);             /* high word of x */
  }
  if (hx >= 0x7ff00000) return x+x;
  k += (hx>>20)-1023;
  hx &= 0x000fffff;
  i = (hx+0x95f64)&0x100000;
  __HI(x) = hx|(i^0x3ff00000);        /* normalize x or x/2 */
  k += (i>>20);
  f = x-1.0;
  if((0x000fffff&(2+hx))<3) {  /* |f| < 2**-20 */
    if(f==zero) {
      if (k==0) return zero;
      else {dk=(double)k; return dk*ln2_hi+dk*ln2_lo;}
    }
    R = f*f*(0.5-0.33333333333333333*f);
    if(k==0) return f-R; else {dk=(double)k;
    return dk*ln2_hi-((R-dk*ln2_lo)-f);}
  }
  s = f/(2.0+f);
  dk = (double)k;
  z = s*s;
  i = hx-0x6147a;
  w = z*z;
  j = 0x6b851-hx;
  t1= w*(Lg2+w*(Lg4+w*Lg6));
  t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
  i |= j;
  R = t2+t1;
  if(i>0) {
    hfsq=0.5*f*f;
    if(k==0) return f-(hfsq-s*(hfsq+R)); else
      return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
  } else {
    if(k==0) return f-s*(f-R); else
      return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
  }
}

JRT_LEAF(jdouble, SharedRuntime::dlog(jdouble x))
  return __ieee754_log(x);
JRT_END

/* __ieee754_log10(x)
 * Return the base 10 logarithm of x
 *
 * Method :
 *    Let log10_2hi = leading 40 bits of log10(2) and
 *        log10_2lo = log10(2) - log10_2hi,
 *        ivln10   = 1/log(10) rounded.
 *    Then
 *            n = ilogb(x),
 *            if(n<0)  n = n+1;
 *            x = scalbn(x,-n);
 *            log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
 *
 * Note 1:
 *    To guarantee log10(10**n)=n, where 10**n is normal, the rounding
 *    mode must set to Round-to-Nearest.
 * Note 2:
 *    [1/log(10)] rounded to 53 bits has error  .198   ulps;
 *    log10 is monotonic at all binary break points.
 *
 * Special cases:
 *    log10(x) is NaN with signal if x < 0;
 *    log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
 *    log10(NaN) is that NaN with no signal;
 *    log10(10**N) = N  for N=0,1,...,22.
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */

static const double
ivln10     =  4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
  log10_2hi  =  3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
  log10_2lo  =  3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */

static double __ieee754_log10(double x) {
  double y,z;
  int i,k,hx;
  unsigned lx;

  hx = __HI(x);       /* high word of x */
  lx = __LO(x);       /* low word of x */

  k=0;
  if (hx < 0x00100000) {                  /* x < 2**-1022  */
    if (((hx&0x7fffffff)|lx)==0)
      return -two54/zero;             /* log(+-0)=-inf */
    if (hx<0) return (x-x)/zero;        /* log(-#) = NaN */
    k -= 54; x *= two54; /* subnormal number, scale up x */
    hx = __HI(x);                /* high word of x */
  }
  if (hx >= 0x7ff00000) return x+x;
  k += (hx>>20)-1023;
  i  = ((unsigned)k&0x80000000)>>31;
  hx = (hx&0x000fffff)|((0x3ff-i)<<20);
  y  = (double)(k+i);
  __HI(x) = hx;
  z  = y*log10_2lo + ivln10*__ieee754_log(x);
  return  z+y*log10_2hi;
}

JRT_LEAF(jdouble, SharedRuntime::dlog10(jdouble x))
  return __ieee754_log10(x);
JRT_END


/* __ieee754_exp(x)
 * Returns the exponential of x.
 *
 * Method
 *   1. Argument reduction:
 *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
 *      Given x, find r and integer k such that
 *
 *               x = k*ln2 + r,  |r| <= 0.5*ln2.
 *
 *      Here r will be represented as r = hi-lo for better
 *      accuracy.
 *
 *   2. Approximation of exp(r) by a special rational function on
 *      the interval [0,0.34658]:
 *      Write
 *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
 *      We use a special Reme algorithm on [0,0.34658] to generate
 *      a polynomial of degree 5 to approximate R. The maximum error
 *      of this polynomial approximation is bounded by 2**-59. In
 *      other words,
 *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
 *      (where z=r*r, and the values of P1 to P5 are listed below)
 *      and
 *          |                  5          |     -59
 *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
 *          |                             |
 *      The computation of exp(r) thus becomes
 *                             2*r
 *              exp(r) = 1 + -------
 *                            R - r
 *                                 r*R1(r)
 *                     = 1 + r + ----------- (for better accuracy)
 *                                2 - R1(r)
 *      where
 *                               2       4             10
 *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
 *
 *   3. Scale back to obtain exp(x):
 *      From step 1, we have
 *         exp(x) = 2^k * exp(r)
 *
 * Special cases:
 *      exp(INF) is INF, exp(NaN) is NaN;
 *      exp(-INF) is 0, and
 *      for finite argument, only exp(0)=1 is exact.
 *
 * Accuracy:
 *      according to an error analysis, the error is always less than
 *      1 ulp (unit in the last place).
 *
 * Misc. info.
 *      For IEEE double
 *          if x >  7.09782712893383973096e+02 then exp(x) overflow
 *          if x < -7.45133219101941108420e+02 then exp(x) underflow
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

static const double
one     = 1.0,
  halF[2]       = {0.5,-0.5,},
  twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
    o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
    u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
    ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
                  -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
    ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
                  -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
      invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
        P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
        P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
        P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
        P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
        P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */

static double __ieee754_exp(double x) {
  double y,hi=0,lo=0,c,t;
  int k=0,xsb;
  unsigned hx;

  hx  = __HI(x);        /* high word of x */
  xsb = (hx>>31)&1;             /* sign bit of x */
  hx &= 0x7fffffff;             /* high word of |x| */

  /* filter out non-finite argument */
  if(hx >= 0x40862E42) {                        /* if |x|>=709.78... */
    if(hx>=0x7ff00000) {
      if(((hx&0xfffff)|__LO(x))!=0)
        return x+x;             /* NaN */
      else return (xsb==0)? x:0.0;      /* exp(+-inf)={inf,0} */
    }
    if(x > o_threshold) return hugeX*hugeX; /* overflow */
    if(x < u_threshold) return twom1000*twom1000; /* underflow */
  }

  /* argument reduction */
  if(hx > 0x3fd62e42) {         /* if  |x| > 0.5 ln2 */
    if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
      hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
    } else {
      k  = (int)(invln2*x+halF[xsb]);
      t  = k;
      hi = x - t*ln2HI[0];      /* t*ln2HI is exact here */
      lo = t*ln2LO[0];
    }
    x  = hi - lo;
  }
  else if(hx < 0x3e300000)  {   /* when |x|<2**-28 */
    if(hugeX+x>one) return one+x;/* trigger inexact */
  }
  else k = 0;

  /* x is now in primary range */
  t  = x*x;
  c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  if(k==0)      return one-((x*c)/(c-2.0)-x);
  else          y = one-((lo-(x*c)/(2.0-c))-hi);
  if(k >= -1021) {
    __HI(y) += (k<<20); /* add k to y's exponent */
    return y;
  } else {
    __HI(y) += ((k+1000)<<20);/* add k to y's exponent */
    return y*twom1000;
  }
}

JRT_LEAF(jdouble, SharedRuntime::dexp(jdouble x))
  return __ieee754_exp(x);
JRT_END

/* __ieee754_pow(x,y) return x**y
 *
 *                    n
 * Method:  Let x =  2   * (1+f)
 *      1. Compute and return log2(x) in two pieces:
 *              log2(x) = w1 + w2,
 *         where w1 has 53-24 = 29 bit trailing zeros.
 *      2. Perform y*log2(x) = n+y' by simulating muti-precision
 *         arithmetic, where |y'|<=0.5.
 *      3. Return x**y = 2**n*exp(y'*log2)
 *
 * Special cases:
 *      1.  (anything) ** 0  is 1
 *      2.  (anything) ** 1  is itself
 *      3.  (anything) ** NAN is NAN
 *      4.  NAN ** (anything except 0) is NAN
 *      5.  +-(|x| > 1) **  +INF is +INF
 *      6.  +-(|x| > 1) **  -INF is +0
 *      7.  +-(|x| < 1) **  +INF is +0
 *      8.  +-(|x| < 1) **  -INF is +INF
 *      9.  +-1         ** +-INF is NAN
 *      10. +0 ** (+anything except 0, NAN)               is +0
 *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 *      12. +0 ** (-anything except 0, NAN)               is +INF
 *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 *      15. +INF ** (+anything except 0,NAN) is +INF
 *      16. +INF ** (-anything except 0,NAN) is +0
 *      17. -INF ** (anything)  = -0 ** (-anything)
 *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 *      19. (-anything except 0 and inf) ** (non-integer) is NAN
 *
 * Accuracy:
 *      pow(x,y) returns x**y nearly rounded. In particular
 *                      pow(integer,integer)
 *      always returns the correct integer provided it is
 *      representable.
 *
 * Constants :
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

static const double
bp[] = {1.0, 1.5,},
  dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
    dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
      zeroX    =  0.0,
        two     =  2.0,
        two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
        /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
        L1X  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
        L2X  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
        L3X  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
        L4X  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
        L5X  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
        L6X  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
        lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
        lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
        lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
        ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
        cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
        cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
        cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
        ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
        ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
        ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/

double __ieee754_pow(double x, double y) {
  double z,ax,z_h,z_l,p_h,p_l;
  double y1,t1,t2,r,s,t,u,v,w;
  int i0,i1,i,j,k,yisint,n;
  int hx,hy,ix,iy;
  unsigned lx,ly;

  i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
  hx = __HI(x); lx = __LO(x);
  hy = __HI(y); ly = __LO(y);
  ix = hx&0x7fffffff;  iy = hy&0x7fffffff;

  /* y==zero: x**0 = 1 */
  if((iy|ly)==0) return one;

  /* +-NaN return x+y */
  if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
     iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
    return x+y;

  /* determine if y is an odd int when x < 0
   * yisint = 0 ... y is not an integer
   * yisint = 1 ... y is an odd int
   * yisint = 2 ... y is an even int
   */
  yisint  = 0;
  if(hx<0) {
    if(iy>=0x43400000) yisint = 2; /* even integer y */
    else if(iy>=0x3ff00000) {
      k = (iy>>20)-0x3ff;          /* exponent */
      if(k>20) {
        j = ly>>(52-k);
        if((unsigned)(j<<(52-k))==ly) yisint = 2-(j&1);
      } else if(ly==0) {
        j = iy>>(20-k);
        if((j<<(20-k))==iy) yisint = 2-(j&1);
      }
    }
  }

  /* special value of y */
  if(ly==0) {
    if (iy==0x7ff00000) {       /* y is +-inf */
      if(((ix-0x3ff00000)|lx)==0)
        return  y - y;  /* inf**+-1 is NaN */
      else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
        return (hy>=0)? y: zeroX;
      else                      /* (|x|<1)**-,+inf = inf,0 */
        return (hy<0)?-y: zeroX;
    }
    if(iy==0x3ff00000) {        /* y is  +-1 */
      if(hy<0) return one/x; else return x;
    }
    if(hy==0x40000000) return x*x; /* y is  2 */
    if(hy==0x3fe00000) {        /* y is  0.5 */
      if(hx>=0) /* x >= +0 */
        return sqrt(x);
    }
  }

  ax   = fabsd(x);
  /* special value of x */
  if(lx==0) {
    if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
      z = ax;                   /*x is +-0,+-inf,+-1*/
      if(hy<0) z = one/z;       /* z = (1/|x|) */
      if(hx<0) {
        if(((ix-0x3ff00000)|yisint)==0) {
          z = (z-z)/(z-z); /* (-1)**non-int is NaN */
        } else if(yisint==1)
          z = -1.0*z;           /* (x<0)**odd = -(|x|**odd) */
      }
      return z;
    }
  }

  n = (hx>>31)+1;

  /* (x<0)**(non-int) is NaN */
  if((n|yisint)==0) return (x-x)/(x-x);

  s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
  if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */

  /* |y| is huge */
  if(iy>0x41e00000) { /* if |y| > 2**31 */
    if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
      if(ix<=0x3fefffff) return (hy<0)? hugeX*hugeX:tiny*tiny;
      if(ix>=0x3ff00000) return (hy>0)? hugeX*hugeX:tiny*tiny;
    }
    /* over/underflow if x is not close to one */
    if(ix<0x3fefffff) return (hy<0)? s*hugeX*hugeX:s*tiny*tiny;
    if(ix>0x3ff00000) return (hy>0)? s*hugeX*hugeX:s*tiny*tiny;
    /* now |1-x| is tiny <= 2**-20, suffice to compute
       log(x) by x-x^2/2+x^3/3-x^4/4 */
    t = ax-one;         /* t has 20 trailing zeros */
    w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
    u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
    v = t*ivln2_l-w*ivln2;
    t1 = u+v;
    __LO(t1) = 0;
    t2 = v-(t1-u);
  } else {
    double ss,s2,s_h,s_l,t_h,t_l;
    n = 0;
    /* take care subnormal number */
    if(ix<0x00100000)
      {ax *= two53; n -= 53; ix = __HI(ax); }
    n  += ((ix)>>20)-0x3ff;
    j  = ix&0x000fffff;
    /* determine interval */
    ix = j|0x3ff00000;          /* normalize ix */
    if(j<=0x3988E) k=0;         /* |x|<sqrt(3/2) */
    else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */
    else {k=0;n+=1;ix -= 0x00100000;}
    __HI(ax) = ix;

    /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
    u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
    v = one/(ax+bp[k]);
    ss = u*v;
    s_h = ss;
    __LO(s_h) = 0;
    /* t_h=ax+bp[k] High */
    t_h = zeroX;
    __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
    t_l = ax - (t_h-bp[k]);
    s_l = v*((u-s_h*t_h)-s_h*t_l);
    /* compute log(ax) */
    s2 = ss*ss;
    r = s2*s2*(L1X+s2*(L2X+s2*(L3X+s2*(L4X+s2*(L5X+s2*L6X)))));
    r += s_l*(s_h+ss);
    s2  = s_h*s_h;
    t_h = 3.0+s2+r;
    __LO(t_h) = 0;
    t_l = r-((t_h-3.0)-s2);
    /* u+v = ss*(1+...) */
    u = s_h*t_h;
    v = s_l*t_h+t_l*ss;
    /* 2/(3log2)*(ss+...) */
    p_h = u+v;
    __LO(p_h) = 0;
    p_l = v-(p_h-u);
    z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */
    z_l = cp_l*p_h+p_l*cp+dp_l[k];
    /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
    t = (double)n;
    t1 = (((z_h+z_l)+dp_h[k])+t);
    __LO(t1) = 0;
    t2 = z_l-(((t1-t)-dp_h[k])-z_h);
  }

  /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
  y1  = y;
  __LO(y1) = 0;
  p_l = (y-y1)*t1+y*t2;
  p_h = y1*t1;
  z = p_l+p_h;
  j = __HI(z);
  i = __LO(z);
  if (j>=0x40900000) {                          /* z >= 1024 */
    if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */
      return s*hugeX*hugeX;                     /* overflow */
    else {
      if(p_l+ovt>z-p_h) return s*hugeX*hugeX;   /* overflow */
    }
  } else if((j&0x7fffffff)>=0x4090cc00 ) {      /* z <= -1075 */
    if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */
      return s*tiny*tiny;               /* underflow */
    else {
      if(p_l<=z-p_h) return s*tiny*tiny;        /* underflow */
    }
  }
  /*
   * compute 2**(p_h+p_l)
   */
  i = j&0x7fffffff;
  k = (i>>20)-0x3ff;
  n = 0;
  if(i>0x3fe00000) {            /* if |z| > 0.5, set n = [z+0.5] */
    n = j+(0x00100000>>(k+1));
    k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */
    t = zeroX;
    __HI(t) = (n&~(0x000fffff>>k));
    n = ((n&0x000fffff)|0x00100000)>>(20-k);
    if(j<0) n = -n;
    p_h -= t;
  }
  t = p_l+p_h;
  __LO(t) = 0;
  u = t*lg2_h;
  v = (p_l-(t-p_h))*lg2+t*lg2_l;
  z = u+v;
  w = v-(z-u);
  t  = z*z;
  t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  r  = (z*t1)/(t1-two)-(w+z*w);
  z  = one-(r-z);
  j  = __HI(z);
  j += (n<<20);
  if((j>>20)<=0) z = scalbn(z,n);       /* subnormal output */
  else __HI(z) += (n<<20);
  return s*z;
}


JRT_LEAF(jdouble, SharedRuntime::dpow(jdouble x, jdouble y))
  return __ieee754_pow(x, y);
JRT_END

#ifdef WIN32
# pragma optimize ( "", on )
#endif