parNewGeneration.cpp 41.8 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
/*
 * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_parNewGeneration.cpp.incl"

#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif
ParScanThreadState::ParScanThreadState(Space* to_space_,
                                       ParNewGeneration* gen_,
                                       Generation* old_gen_,
                                       int thread_num_,
                                       ObjToScanQueueSet* work_queue_set_,
                                       size_t desired_plab_sz_,
                                       ParallelTaskTerminator& term_) :
  _to_space(to_space_), _old_gen(old_gen_), _thread_num(thread_num_),
  _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
  _ageTable(false), // false ==> not the global age table, no perf data.
  _to_space_alloc_buffer(desired_plab_sz_),
  _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
  _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
  _older_gen_closure(gen_, this),
  _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
                      &_to_space_root_closure, gen_, &_old_gen_root_closure,
                      work_queue_set_, &term_),
  _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
  _keep_alive_closure(&_scan_weak_ref_closure),
  _pushes(0), _pops(0), _steals(0), _steal_attempts(0), _term_attempts(0),
  _strong_roots_time(0.0), _term_time(0.0)
{
  _survivor_chunk_array =
    (ChunkArray*) old_gen()->get_data_recorder(thread_num());
  _hash_seed = 17;  // Might want to take time-based random value.
  _start = os::elapsedTime();
  _old_gen_closure.set_generation(old_gen_);
  _old_gen_root_closure.set_generation(old_gen_);
}
#ifdef _MSC_VER
#pragma warning( pop )
#endif

void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
                                              size_t plab_word_size) {
  ChunkArray* sca = survivor_chunk_array();
  if (sca != NULL) {
    // A non-null SCA implies that we want the PLAB data recorded.
    sca->record_sample(plab_start, plab_word_size);
  }
}

bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
  return new_obj->is_objArray() &&
         arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
         new_obj != old_obj;
}

void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
  assert(old->is_objArray(), "must be obj array");
  assert(old->is_forwarded(), "must be forwarded");
  assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  assert(!_old_gen->is_in(old), "must be in young generation.");

  objArrayOop obj = objArrayOop(old->forwardee());
  // Process ParGCArrayScanChunk elements now
  // and push the remainder back onto queue
  int start     = arrayOop(old)->length();
  int end       = obj->length();
  int remainder = end - start;
  assert(start <= end, "just checking");
  if (remainder > 2 * ParGCArrayScanChunk) {
    // Test above combines last partial chunk with a full chunk
    end = start + ParGCArrayScanChunk;
    arrayOop(old)->set_length(end);
    // Push remainder.
    bool ok = work_queue()->push(old);
    assert(ok, "just popped, push must be okay");
    note_push();
  } else {
    // Restore length so that it can be used if there
    // is a promotion failure and forwarding pointers
    // must be removed.
    arrayOop(old)->set_length(end);
  }
  // process our set of indices (include header in first chunk)
  oop* start_addr = start == 0 ? (oop*)obj : obj->obj_at_addr(start);
  oop* end_addr   = obj->base() + end; // obj_at_addr(end) asserts end < length
  MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr);
  if ((HeapWord *)obj < young_old_boundary()) {
    // object is in to_space
    obj->oop_iterate(&_to_space_closure, mr);
  } else {
    // object is in old generation
    obj->oop_iterate(&_old_gen_closure, mr);
  }
}


void ParScanThreadState::trim_queues(int max_size) {
  ObjToScanQueue* queue = work_queue();
  while (queue->size() > (juint)max_size) {
    oop obj_to_scan;
    if (queue->pop_local(obj_to_scan)) {
      note_pop();

      if ((HeapWord *)obj_to_scan < young_old_boundary()) {
        if (obj_to_scan->is_objArray() &&
            obj_to_scan->is_forwarded() &&
            obj_to_scan->forwardee() != obj_to_scan) {
          scan_partial_array_and_push_remainder(obj_to_scan);
        } else {
          // object is in to_space
          obj_to_scan->oop_iterate(&_to_space_closure);
        }
      } else {
        // object is in old generation
        obj_to_scan->oop_iterate(&_old_gen_closure);
      }
    }
  }
}

HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {

  // Otherwise, if the object is small enough, try to reallocate the
  // buffer.
  HeapWord* obj = NULL;
  if (!_to_space_full) {
    ParGCAllocBuffer* const plab = to_space_alloc_buffer();
    Space*            const sp   = to_space();
    if (word_sz * 100 <
        ParallelGCBufferWastePct * plab->word_sz()) {
      // Is small enough; abandon this buffer and start a new one.
      plab->retire(false, false);
      size_t buf_size = plab->word_sz();
      HeapWord* buf_space = sp->par_allocate(buf_size);
      if (buf_space == NULL) {
        const size_t min_bytes =
          ParGCAllocBuffer::min_size() << LogHeapWordSize;
        size_t free_bytes = sp->free();
        while(buf_space == NULL && free_bytes >= min_bytes) {
          buf_size = free_bytes >> LogHeapWordSize;
          assert(buf_size == (size_t)align_object_size(buf_size),
                 "Invariant");
          buf_space  = sp->par_allocate(buf_size);
          free_bytes = sp->free();
        }
      }
      if (buf_space != NULL) {
        plab->set_word_size(buf_size);
        plab->set_buf(buf_space);
        record_survivor_plab(buf_space, buf_size);
        obj = plab->allocate(word_sz);
        // Note that we cannot compare buf_size < word_sz below
        // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
        assert(obj != NULL || plab->words_remaining() < word_sz,
               "Else should have been able to allocate");
        // It's conceivable that we may be able to use the
        // buffer we just grabbed for subsequent small requests
        // even if not for this one.
      } else {
        // We're used up.
        _to_space_full = true;
      }

    } else {
      // Too large; allocate the object individually.
      obj = sp->par_allocate(word_sz);
    }
  }
  return obj;
}


void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
                                                size_t word_sz) {
  // Is the alloc in the current alloc buffer?
  if (to_space_alloc_buffer()->contains(obj)) {
    assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
           "Should contain whole object.");
    to_space_alloc_buffer()->undo_allocation(obj, word_sz);
  } else {
    SharedHeap::fill_region_with_object(MemRegion(obj, word_sz));
  }
}

class ParScanThreadStateSet: private ResourceArray {
public:
  // Initializes states for the specified number of threads;
  ParScanThreadStateSet(int                     num_threads,
                        Space&                  to_space,
                        ParNewGeneration&       gen,
                        Generation&             old_gen,
                        ObjToScanQueueSet&      queue_set,
                        size_t                  desired_plab_sz,
                        ParallelTaskTerminator& term);
  inline ParScanThreadState& thread_sate(int i);
  int pushes() { return _pushes; }
  int pops()   { return _pops; }
  int steals() { return _steals; }
  void reset();
  void flush();
private:
  ParallelTaskTerminator& _term;
  ParNewGeneration&       _gen;
  Generation&             _next_gen;
  // staticstics
  int _pushes;
  int _pops;
  int _steals;
};


ParScanThreadStateSet::ParScanThreadStateSet(
  int num_threads, Space& to_space, ParNewGeneration& gen,
  Generation& old_gen, ObjToScanQueueSet& queue_set,
  size_t desired_plab_sz, ParallelTaskTerminator& term)
  : ResourceArray(sizeof(ParScanThreadState), num_threads),
    _gen(gen), _next_gen(old_gen), _term(term),
    _pushes(0), _pops(0), _steals(0)
{
  assert(num_threads > 0, "sanity check!");
  // Initialize states.
  for (int i = 0; i < num_threads; ++i) {
    new ((ParScanThreadState*)_data + i)
        ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
                           desired_plab_sz, term);
  }
}

inline ParScanThreadState& ParScanThreadStateSet::thread_sate(int i)
{
  assert(i >= 0 && i < length(), "sanity check!");
  return ((ParScanThreadState*)_data)[i];
}


void ParScanThreadStateSet::reset()
{
  _term.reset_for_reuse();
}

void ParScanThreadStateSet::flush()
{
  for (int i = 0; i < length(); ++i) {
    ParScanThreadState& par_scan_state = thread_sate(i);

    // Flush stats related to To-space PLAB activity and
    // retire the last buffer.
    par_scan_state.to_space_alloc_buffer()->
      flush_stats_and_retire(_gen.plab_stats(),
                             false /* !retain */);

    // Every thread has its own age table.  We need to merge
    // them all into one.
    ageTable *local_table = par_scan_state.age_table();
    _gen.age_table()->merge(local_table);

    // Inform old gen that we're done.
    _next_gen.par_promote_alloc_done(i);
    _next_gen.par_oop_since_save_marks_iterate_done(i);

    // Flush stats related to work queue activity (push/pop/steal)
    // This could conceivably become a bottleneck; if so, we'll put the
    // stat's gathering under the flag.
    if (PAR_STATS_ENABLED) {
      _pushes += par_scan_state.pushes();
      _pops   += par_scan_state.pops();
      _steals += par_scan_state.steals();
      if (ParallelGCVerbose) {
        gclog_or_tty->print("Thread %d complete:\n"
                            "  Pushes: %7d    Pops: %7d    Steals %7d (in %d attempts)\n",
                            i, par_scan_state.pushes(), par_scan_state.pops(),
                            par_scan_state.steals(), par_scan_state.steal_attempts());
        if (par_scan_state.overflow_pushes() > 0 ||
            par_scan_state.overflow_refills() > 0) {
          gclog_or_tty->print("  Overflow pushes: %7d    "
                              "Overflow refills: %7d for %d objs.\n",
                              par_scan_state.overflow_pushes(),
                              par_scan_state.overflow_refills(),
                              par_scan_state.overflow_refill_objs());
        }

        double elapsed = par_scan_state.elapsed();
        double strong_roots = par_scan_state.strong_roots_time();
        double term = par_scan_state.term_time();
        gclog_or_tty->print(
                            "  Elapsed: %7.2f ms.\n"
                            "    Strong roots: %7.2f ms (%6.2f%%)\n"
                            "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
                           elapsed * 1000.0,
                           strong_roots * 1000.0, (strong_roots*100.0/elapsed),
                           term * 1000.0, (term*100.0/elapsed),
                           par_scan_state.term_attempts());
      }
    }
  }
}


ParScanClosure::ParScanClosure(ParNewGeneration* g,
                               ParScanThreadState* par_scan_state) :
  OopsInGenClosure(g), _par_scan_state(par_scan_state), _g(g)
{
  assert(_g->level() == 0, "Optimized for youngest generation");
  _boundary = _g->reserved().end();
}

ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
                                             ParScanThreadState* par_scan_state)
  : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
{
}

#ifdef WIN32
#pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
#endif

ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
    ParScanThreadState* par_scan_state_,
    ParScanWithoutBarrierClosure* to_space_closure_,
    ParScanWithBarrierClosure* old_gen_closure_,
    ParRootScanWithoutBarrierClosure* to_space_root_closure_,
    ParNewGeneration* par_gen_,
    ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
    ObjToScanQueueSet* task_queues_,
    ParallelTaskTerminator* terminator_) :

    _par_scan_state(par_scan_state_),
    _to_space_closure(to_space_closure_),
    _old_gen_closure(old_gen_closure_),
    _to_space_root_closure(to_space_root_closure_),
    _old_gen_root_closure(old_gen_root_closure_),
    _par_gen(par_gen_),
    _task_queues(task_queues_),
    _terminator(terminator_)
{}

void ParEvacuateFollowersClosure::do_void() {
  ObjToScanQueue* work_q = par_scan_state()->work_queue();

  while (true) {

    // Scan to-space and old-gen objs until we run out of both.
    oop obj_to_scan;
    par_scan_state()->trim_queues(0);

    // We have no local work, attempt to steal from other threads.

    // attempt to steal work from promoted.
    par_scan_state()->note_steal_attempt();
    if (task_queues()->steal(par_scan_state()->thread_num(),
                             par_scan_state()->hash_seed(),
                             obj_to_scan)) {
      par_scan_state()->note_steal();
      bool res = work_q->push(obj_to_scan);
      assert(res, "Empty queue should have room for a push.");

      par_scan_state()->note_push();
      //   if successful, goto Start.
      continue;

      // try global overflow list.
    } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
      continue;
    }

    // Otherwise, offer termination.
    par_scan_state()->start_term_time();
    if (terminator()->offer_termination()) break;
    par_scan_state()->end_term_time();
  }
  // Finish the last termination pause.
  par_scan_state()->end_term_time();
}

ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
                HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
    AbstractGangTask("ParNewGeneration collection"),
    _gen(gen), _next_gen(next_gen),
    _young_old_boundary(young_old_boundary),
    _state_set(state_set)
  {}

void ParNewGenTask::work(int i) {
  GenCollectedHeap* gch = GenCollectedHeap::heap();
  // Since this is being done in a separate thread, need new resource
  // and handle marks.
  ResourceMark rm;
  HandleMark hm;
  // We would need multiple old-gen queues otherwise.
  guarantee(gch->n_gens() == 2,
     "Par young collection currently only works with one older gen.");

  Generation* old_gen = gch->next_gen(_gen);

  ParScanThreadState& par_scan_state = _state_set->thread_sate(i);
  par_scan_state.set_young_old_boundary(_young_old_boundary);

  par_scan_state.start_strong_roots();
  gch->gen_process_strong_roots(_gen->level(),
                                true, // Process younger gens, if any,
                                      // as strong roots.
                                false,// not collecting perm generation.
                                SharedHeap::SO_AllClasses,
                                &par_scan_state.older_gen_closure(),
                                &par_scan_state.to_space_root_closure());
  par_scan_state.end_strong_roots();

  // "evacuate followers".
  par_scan_state.evacuate_followers_closure().do_void();
}

#ifdef _MSC_VER
#pragma warning( push )
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif
ParNewGeneration::
ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
  : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
  _overflow_list(NULL),
  _is_alive_closure(this),
  _plab_stats(YoungPLABSize, PLABWeight)
{
  _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
  guarantee(_task_queues != NULL, "task_queues allocation failure.");

  for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
    ObjToScanQueuePadded *q_padded = new ObjToScanQueuePadded();
    guarantee(q_padded != NULL, "work_queue Allocation failure.");

    _task_queues->register_queue(i1, &q_padded->work_queue);
  }

  for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
    _task_queues->queue(i2)->initialize();

  if (UsePerfData) {
    EXCEPTION_MARK;
    ResourceMark rm;

    const char* cname =
         PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
    PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
                                     ParallelGCThreads, CHECK);
  }
}
#ifdef _MSC_VER
#pragma warning( pop )
#endif

// ParNewGeneration::
ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
  DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}

void
// ParNewGeneration::
ParKeepAliveClosure::do_oop(oop* p) {
  // We never expect to see a null reference being processed
  // as a weak reference.
  assert (*p != NULL, "expected non-null ref");
  assert ((*p)->is_oop(), "expected an oop while scanning weak refs");

  _par_cl->do_oop_nv(p);

  if (Universe::heap()->is_in_reserved(p)) {
    _rs->write_ref_field_gc_par(p, *p);
  }
}

// ParNewGeneration::
KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
  DefNewGeneration::KeepAliveClosure(cl) {}

void
// ParNewGeneration::
KeepAliveClosure::do_oop(oop* p) {
  // We never expect to see a null reference being processed
  // as a weak reference.
  assert (*p != NULL, "expected non-null ref");
  assert ((*p)->is_oop(), "expected an oop while scanning weak refs");

  _cl->do_oop_nv(p);

  if (Universe::heap()->is_in_reserved(p)) {
    _rs->write_ref_field_gc_par(p, *p);
  }
}

void ScanClosureWithParBarrier::do_oop(oop* p) {
  oop obj = *p;
  // Should we copy the obj?
  if (obj != NULL) {
    if ((HeapWord*)obj < _boundary) {
      assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
      if (obj->is_forwarded()) {
        *p = obj->forwardee();
      } else {
        *p = _g->DefNewGeneration::copy_to_survivor_space(obj, p);
      }
    }
    if (_gc_barrier) {
      // If p points to a younger generation, mark the card.
      if ((HeapWord*)obj < _gen_boundary) {
        _rs->write_ref_field_gc_par(p, obj);
      }
    }
  }
}

class ParNewRefProcTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
public:
  ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
                         Generation& next_gen,
                         HeapWord* young_old_boundary,
                         ParScanThreadStateSet& state_set);

private:
  virtual void work(int i);

private:
  ParNewGeneration&      _gen;
  ProcessTask&           _task;
  Generation&            _next_gen;
  HeapWord*              _young_old_boundary;
  ParScanThreadStateSet& _state_set;
};

ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
    ProcessTask& task, ParNewGeneration& gen,
    Generation& next_gen,
    HeapWord* young_old_boundary,
    ParScanThreadStateSet& state_set)
  : AbstractGangTask("ParNewGeneration parallel reference processing"),
    _gen(gen),
    _task(task),
    _next_gen(next_gen),
    _young_old_boundary(young_old_boundary),
    _state_set(state_set)
{
}

void ParNewRefProcTaskProxy::work(int i)
{
  ResourceMark rm;
  HandleMark hm;
  ParScanThreadState& par_scan_state = _state_set.thread_sate(i);
  par_scan_state.set_young_old_boundary(_young_old_boundary);
  _task.work(i, par_scan_state.is_alive_closure(),
             par_scan_state.keep_alive_closure(),
             par_scan_state.evacuate_followers_closure());
}

class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  EnqueueTask& _task;

public:
  ParNewRefEnqueueTaskProxy(EnqueueTask& task)
    : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
      _task(task)
  { }

  virtual void work(int i)
  {
    _task.work(i);
  }
};


void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
{
  GenCollectedHeap* gch = GenCollectedHeap::heap();
  assert(gch->kind() == CollectedHeap::GenCollectedHeap,
         "not a generational heap");
  WorkGang* workers = gch->workers();
  assert(workers != NULL, "Need parallel worker threads.");
  ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
                                 _generation.reserved().end(), _state_set);
  workers->run_task(&rp_task);
  _state_set.reset();
}

void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
{
  GenCollectedHeap* gch = GenCollectedHeap::heap();
  WorkGang* workers = gch->workers();
  assert(workers != NULL, "Need parallel worker threads.");
  ParNewRefEnqueueTaskProxy enq_task(task);
  workers->run_task(&enq_task);
}

void ParNewRefProcTaskExecutor::set_single_threaded_mode()
{
  _state_set.flush();
  GenCollectedHeap* gch = GenCollectedHeap::heap();
  gch->set_par_threads(0);  // 0 ==> non-parallel.
  gch->save_marks();
}

ScanClosureWithParBarrier::
ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
  ScanClosure(g, gc_barrier) {}

EvacuateFollowersClosureGeneral::
EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
                                OopsInGenClosure* cur,
                                OopsInGenClosure* older) :
  _gch(gch), _level(level),
  _scan_cur_or_nonheap(cur), _scan_older(older)
{}

void EvacuateFollowersClosureGeneral::do_void() {
  do {
    // Beware: this call will lead to closure applications via virtual
    // calls.
    _gch->oop_since_save_marks_iterate(_level,
                                       _scan_cur_or_nonheap,
                                       _scan_older);
  } while (!_gch->no_allocs_since_save_marks(_level));
}


bool ParNewGeneration::_avoid_promotion_undo = false;

void ParNewGeneration::adjust_desired_tenuring_threshold() {
  // Set the desired survivor size to half the real survivor space
  _tenuring_threshold =
    age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
}

// A Generation that does parallel young-gen collection.

void ParNewGeneration::collect(bool   full,
                               bool   clear_all_soft_refs,
                               size_t size,
                               bool   is_tlab) {
  assert(full || size > 0, "otherwise we don't want to collect");
  GenCollectedHeap* gch = GenCollectedHeap::heap();
  assert(gch->kind() == CollectedHeap::GenCollectedHeap,
    "not a CMS generational heap");
  AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
  WorkGang* workers = gch->workers();
  _next_gen = gch->next_gen(this);
  assert(_next_gen != NULL,
    "This must be the youngest gen, and not the only gen");
  assert(gch->n_gens() == 2,
         "Par collection currently only works with single older gen.");
  // Do we have to avoid promotion_undo?
  if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
    set_avoid_promotion_undo(true);
  }

  // If the next generation is too full to accomodate worst-case promotion
  // from this generation, pass on collection; let the next generation
  // do it.
  if (!collection_attempt_is_safe()) {
    gch->set_incremental_collection_will_fail();
    return;
  }
  assert(to()->is_empty(), "Else not collection_attempt_is_safe");

  init_assuming_no_promotion_failure();

  if (UseAdaptiveSizePolicy) {
    set_survivor_overflow(false);
    size_policy->minor_collection_begin();
  }

  TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
  // Capture heap used before collection (for printing).
  size_t gch_prev_used = gch->used();

  SpecializationStats::clear();

  age_table()->clear();
  to()->clear();

  gch->save_marks();
  assert(workers != NULL, "Need parallel worker threads.");
  ParallelTaskTerminator _term(workers->total_workers(), task_queues());
  ParScanThreadStateSet thread_state_set(workers->total_workers(),
                                         *to(), *this, *_next_gen, *task_queues(),
                                         desired_plab_sz(), _term);

  ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
  int n_workers = workers->total_workers();
  gch->set_par_threads(n_workers);
  gch->change_strong_roots_parity();
  gch->rem_set()->prepare_for_younger_refs_iterate(true);
  // It turns out that even when we're using 1 thread, doing the work in a
  // separate thread causes wide variance in run times.  We can't help this
  // in the multi-threaded case, but we special-case n=1 here to get
  // repeatable measurements of the 1-thread overhead of the parallel code.
  if (n_workers > 1) {
    workers->run_task(&tsk);
  } else {
    tsk.work(0);
  }
  thread_state_set.reset();

  if (PAR_STATS_ENABLED && ParallelGCVerbose) {
    gclog_or_tty->print("Thread totals:\n"
               "  Pushes: %7d    Pops: %7d    Steals %7d (sum = %7d).\n",
               thread_state_set.pushes(), thread_state_set.pops(),
               thread_state_set.steals(),
               thread_state_set.pops()+thread_state_set.steals());
  }
  assert(thread_state_set.pushes() == thread_state_set.pops() + thread_state_set.steals(),
         "Or else the queues are leaky.");

  // For now, process discovered weak refs sequentially.
#ifdef COMPILER2
  ReferencePolicy *soft_ref_policy = new LRUMaxHeapPolicy();
#else
  ReferencePolicy *soft_ref_policy = new LRUCurrentHeapPolicy();
#endif // COMPILER2

  // Process (weak) reference objects found during scavenge.
  IsAliveClosure is_alive(this);
  ScanWeakRefClosure scan_weak_ref(this);
  KeepAliveClosure keep_alive(&scan_weak_ref);
  ScanClosure               scan_without_gc_barrier(this, false);
  ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
  set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
  EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
    &scan_without_gc_barrier, &scan_with_gc_barrier);
  if (ref_processor()->processing_is_mt()) {
    ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
    ref_processor()->process_discovered_references(
        soft_ref_policy, &is_alive, &keep_alive, &evacuate_followers,
        &task_executor);
  } else {
    thread_state_set.flush();
    gch->set_par_threads(0);  // 0 ==> non-parallel.
    gch->save_marks();
    ref_processor()->process_discovered_references(
      soft_ref_policy, &is_alive, &keep_alive, &evacuate_followers,
      NULL);
  }
  if (!promotion_failed()) {
    // Swap the survivor spaces.
    eden()->clear();
    from()->clear();
    swap_spaces();

    assert(to()->is_empty(), "to space should be empty now");
  } else {
    assert(HandlePromotionFailure,
      "Should only be here if promotion failure handling is on");
    if (_promo_failure_scan_stack != NULL) {
      // Can be non-null because of reference processing.
      // Free stack with its elements.
      delete _promo_failure_scan_stack;
      _promo_failure_scan_stack = NULL;
    }
    remove_forwarding_pointers();
    if (PrintGCDetails) {
      gclog_or_tty->print(" (promotion failed)");
    }
    // All the spaces are in play for mark-sweep.
    swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
    from()->set_next_compaction_space(to());
    gch->set_incremental_collection_will_fail();
788 789 790

    // Reset the PromotionFailureALot counters.
    NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
D
duke 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
  }
  // set new iteration safe limit for the survivor spaces
  from()->set_concurrent_iteration_safe_limit(from()->top());
  to()->set_concurrent_iteration_safe_limit(to()->top());

  adjust_desired_tenuring_threshold();
  if (ResizePLAB) {
    plab_stats()->adjust_desired_plab_sz();
  }

  if (PrintGC && !PrintGCDetails) {
    gch->print_heap_change(gch_prev_used);
  }

  if (UseAdaptiveSizePolicy) {
    size_policy->minor_collection_end(gch->gc_cause());
    size_policy->avg_survived()->sample(from()->used());
  }

  update_time_of_last_gc(os::javaTimeMillis());

  SpecializationStats::print();

  ref_processor()->set_enqueuing_is_done(true);
  if (ref_processor()->processing_is_mt()) {
    ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
    ref_processor()->enqueue_discovered_references(&task_executor);
  } else {
    ref_processor()->enqueue_discovered_references(NULL);
  }
  ref_processor()->verify_no_references_recorded();
}

static int sum;
void ParNewGeneration::waste_some_time() {
  for (int i = 0; i < 100; i++) {
    sum += i;
  }
}

static const oop ClaimedForwardPtr = oop(0x4);

// Because of concurrency, there are times where an object for which
// "is_forwarded()" is true contains an "interim" forwarding pointer
// value.  Such a value will soon be overwritten with a real value.
// This method requires "obj" to have a forwarding pointer, and waits, if
// necessary for a real one to be inserted, and returns it.

oop ParNewGeneration::real_forwardee(oop obj) {
  oop forward_ptr = obj->forwardee();
  if (forward_ptr != ClaimedForwardPtr) {
    return forward_ptr;
  } else {
    return real_forwardee_slow(obj);
  }
}

oop ParNewGeneration::real_forwardee_slow(oop obj) {
  // Spin-read if it is claimed but not yet written by another thread.
  oop forward_ptr = obj->forwardee();
  while (forward_ptr == ClaimedForwardPtr) {
    waste_some_time();
    assert(obj->is_forwarded(), "precondition");
    forward_ptr = obj->forwardee();
  }
  return forward_ptr;
}

#ifdef ASSERT
bool ParNewGeneration::is_legal_forward_ptr(oop p) {
  return
    (_avoid_promotion_undo && p == ClaimedForwardPtr)
    || Universe::heap()->is_in_reserved(p);
}
#endif

void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
  if ((m != markOopDesc::prototype()) &&
      (!UseBiasedLocking || (m != markOopDesc::biased_locking_prototype()))) {
    MutexLocker ml(ParGCRareEvent_lock);
    DefNewGeneration::preserve_mark_if_necessary(obj, m);
  }
}

// Multiple GC threads may try to promote an object.  If the object
// is successfully promoted, a forwarding pointer will be installed in
// the object in the young generation.  This method claims the right
// to install the forwarding pointer before it copies the object,
// thus avoiding the need to undo the copy as in
// copy_to_survivor_space_avoiding_with_undo.

oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
        ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
  // In the sequential version, this assert also says that the object is
  // not forwarded.  That might not be the case here.  It is the case that
  // the caller observed it to be not forwarded at some time in the past.
  assert(is_in_reserved(old), "shouldn't be scavenging this oop");

  // The sequential code read "old->age()" below.  That doesn't work here,
  // since the age is in the mark word, and that might be overwritten with
  // a forwarding pointer by a parallel thread.  So we must save the mark
  // word in a local and then analyze it.
  oopDesc dummyOld;
  dummyOld.set_mark(m);
  assert(!dummyOld.is_forwarded(),
         "should not be called with forwarding pointer mark word.");

  oop new_obj = NULL;
  oop forward_ptr;

  // Try allocating obj in to-space (unless too old)
  if (dummyOld.age() < tenuring_threshold()) {
    new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
    if (new_obj == NULL) {
      set_survivor_overflow(true);
    }
  }

  if (new_obj == NULL) {
    // Either to-space is full or we decided to promote
    // try allocating obj tenured

    // Attempt to install a null forwarding pointer (atomically),
    // to claim the right to install the real forwarding pointer.
    forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
    if (forward_ptr != NULL) {
      // someone else beat us to it.
        return real_forwardee(old);
    }

    new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
                                       old, m, sz);

    if (new_obj == NULL) {
      if (!HandlePromotionFailure) {
        // A failed promotion likely means the MaxLiveObjectEvacuationRatio flag
        // is incorrectly set. In any case, its seriously wrong to be here!
        vm_exit_out_of_memory(sz*wordSize, "promotion");
      }
      // promotion failed, forward to self
      _promotion_failed = true;
      new_obj = old;

      preserve_mark_if_necessary(old, m);
    }

    old->forward_to(new_obj);
    forward_ptr = NULL;
  } else {
    // Is in to-space; do copying ourselves.
    Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
    forward_ptr = old->forward_to_atomic(new_obj);
    // Restore the mark word copied above.
    new_obj->set_mark(m);
    // Increment age if obj still in new generation
    new_obj->incr_age();
    par_scan_state->age_table()->add(new_obj, sz);
  }
  assert(new_obj != NULL, "just checking");

  if (forward_ptr == NULL) {
    oop obj_to_push = new_obj;
    if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
      // Length field used as index of next element to be scanned.
      // Real length can be obtained from real_forwardee()
      arrayOop(old)->set_length(0);
      obj_to_push = old;
      assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
             "push forwarded object");
    }
    // Push it on one of the queues of to-be-scanned objects.
    if (!par_scan_state->work_queue()->push(obj_to_push)) {
      // Add stats for overflow pushes.
      if (Verbose && PrintGCDetails) {
        gclog_or_tty->print("queue overflow!\n");
      }
      push_on_overflow_list(old);
      par_scan_state->note_overflow_push();
    }
    par_scan_state->note_push();

    return new_obj;
  }

  // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
  // allocate it?
  if (is_in_reserved(new_obj)) {
    // Must be in to_space.
    assert(to()->is_in_reserved(new_obj), "Checking");
    if (forward_ptr == ClaimedForwardPtr) {
      // Wait to get the real forwarding pointer value.
      forward_ptr = real_forwardee(old);
    }
    par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
  }

  return forward_ptr;
}


// Multiple GC threads may try to promote the same object.  If two
// or more GC threads copy the object, only one wins the race to install
// the forwarding pointer.  The other threads have to undo their copy.

oop ParNewGeneration::copy_to_survivor_space_with_undo(
        ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {

  // In the sequential version, this assert also says that the object is
  // not forwarded.  That might not be the case here.  It is the case that
  // the caller observed it to be not forwarded at some time in the past.
  assert(is_in_reserved(old), "shouldn't be scavenging this oop");

  // The sequential code read "old->age()" below.  That doesn't work here,
  // since the age is in the mark word, and that might be overwritten with
  // a forwarding pointer by a parallel thread.  So we must save the mark
  // word here, install it in a local oopDesc, and then analyze it.
  oopDesc dummyOld;
  dummyOld.set_mark(m);
  assert(!dummyOld.is_forwarded(),
         "should not be called with forwarding pointer mark word.");

  bool failed_to_promote = false;
  oop new_obj = NULL;
  oop forward_ptr;

  // Try allocating obj in to-space (unless too old)
  if (dummyOld.age() < tenuring_threshold()) {
    new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
    if (new_obj == NULL) {
      set_survivor_overflow(true);
    }
  }

  if (new_obj == NULL) {
    // Either to-space is full or we decided to promote
    // try allocating obj tenured
    new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
                                       old, m, sz);

    if (new_obj == NULL) {
      if (!HandlePromotionFailure) {
        // A failed promotion likely means the MaxLiveObjectEvacuationRatio
        // flag is incorrectly set. In any case, its seriously wrong to be
        // here!
        vm_exit_out_of_memory(sz*wordSize, "promotion");
      }
      // promotion failed, forward to self
      forward_ptr = old->forward_to_atomic(old);
      new_obj = old;

      if (forward_ptr != NULL) {
        return forward_ptr;   // someone else succeeded
      }

      _promotion_failed = true;
      failed_to_promote = true;

      preserve_mark_if_necessary(old, m);
    }
  } else {
    // Is in to-space; do copying ourselves.
    Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
    // Restore the mark word copied above.
    new_obj->set_mark(m);
    // Increment age if new_obj still in new generation
    new_obj->incr_age();
    par_scan_state->age_table()->add(new_obj, sz);
  }
  assert(new_obj != NULL, "just checking");

  // Now attempt to install the forwarding pointer (atomically).
  // We have to copy the mark word before overwriting with forwarding
  // ptr, so we can restore it below in the copy.
  if (!failed_to_promote) {
    forward_ptr = old->forward_to_atomic(new_obj);
  }

  if (forward_ptr == NULL) {
    oop obj_to_push = new_obj;
    if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
      // Length field used as index of next element to be scanned.
      // Real length can be obtained from real_forwardee()
      arrayOop(old)->set_length(0);
      obj_to_push = old;
      assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
             "push forwarded object");
    }
    // Push it on one of the queues of to-be-scanned objects.
    if (!par_scan_state->work_queue()->push(obj_to_push)) {
      // Add stats for overflow pushes.
      push_on_overflow_list(old);
      par_scan_state->note_overflow_push();
    }
    par_scan_state->note_push();

    return new_obj;
  }

  // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
  // allocate it?
  if (is_in_reserved(new_obj)) {
    // Must be in to_space.
    assert(to()->is_in_reserved(new_obj), "Checking");
    par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
  } else {
    assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
    _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
                                      (HeapWord*)new_obj, sz);
  }

  return forward_ptr;
}

void ParNewGeneration::push_on_overflow_list(oop from_space_obj) {
  oop cur_overflow_list = _overflow_list;
  // if the object has been forwarded to itself, then we cannot
  // use the klass pointer for the linked list.  Instead we have
  // to allocate an oopDesc in the C-Heap and use that for the linked list.
  if (from_space_obj->forwardee() == from_space_obj) {
    oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1);
    listhead->forward_to(from_space_obj);
    from_space_obj = listhead;
  }
  while (true) {
    from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
    oop observed_overflow_list =
      (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
    if (observed_overflow_list == cur_overflow_list) break;
    // Otherwise...
    cur_overflow_list = observed_overflow_list;
  }
}

bool
ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
  ObjToScanQueue* work_q = par_scan_state->work_queue();
  // How many to take?
  int objsFromOverflow = MIN2(work_q->max_elems()/4,
                              (juint)ParGCDesiredObjsFromOverflowList);

  if (_overflow_list == NULL) return false;

  // Otherwise, there was something there; try claiming the list.
  oop prefix = (oop)Atomic::xchg_ptr(NULL, &_overflow_list);

  if (prefix == NULL) {
    return false;
  }
  // Trim off a prefix of at most objsFromOverflow items
  int i = 1;
  oop cur = prefix;
  while (i < objsFromOverflow && cur->klass() != NULL) {
    i++; cur = oop(cur->klass());
  }

  // Reattach remaining (suffix) to overflow list
  if (cur->klass() != NULL) {
    oop suffix = oop(cur->klass());
    cur->set_klass_to_list_ptr(NULL);

    // Find last item of suffix list
    oop last = suffix;
    while (last->klass() != NULL) {
      last = oop(last->klass());
    }
    // Atomically prepend suffix to current overflow list
    oop cur_overflow_list = _overflow_list;
    while (true) {
      last->set_klass_to_list_ptr(cur_overflow_list);
      oop observed_overflow_list =
        (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
      if (observed_overflow_list == cur_overflow_list) break;
      // Otherwise...
      cur_overflow_list = observed_overflow_list;
    }
  }

  // Push objects on prefix list onto this thread's work queue
  assert(cur != NULL, "program logic");
  cur = prefix;
  int n = 0;
  while (cur != NULL) {
    oop obj_to_push = cur->forwardee();
    oop next        = oop(cur->klass());
    cur->set_klass(obj_to_push->klass());
    if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
      obj_to_push = cur;
      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
    }
    work_q->push(obj_to_push);
    cur = next;
    n++;
  }
  par_scan_state->note_overflow_refill(n);
  return true;
}

void ParNewGeneration::ref_processor_init()
{
  if (_ref_processor == NULL) {
    // Allocate and initialize a reference processor
    _ref_processor = ReferenceProcessor::create_ref_processor(
        _reserved,                  // span
        refs_discovery_is_atomic(), // atomic_discovery
        refs_discovery_is_mt(),     // mt_discovery
        NULL,                       // is_alive_non_header
        ParallelGCThreads,
        ParallelRefProcEnabled);
  }
}

const char* ParNewGeneration::name() const {
  return "par new generation";
}