g1ParScanThreadState.cpp 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/*
 * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/prefetch.inline.hpp"

G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
    _ct_bs(g1h->g1_barrier_set()),
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
41
    _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
42
    _age_table(false), _scanner(g1h, rp),
43
    _strong_roots_time(0), _term_time(0) {
44
  _scanner.set_par_scan_thread_state(this);
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
  uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  uint array_length = PADDING_ELEM_NUM +
                      real_length +
                      PADDING_ELEM_NUM;
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  if (_surviving_young_words_base == NULL)
    vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));

61
  _g1_par_allocator = G1ParGCAllocator::create_allocator(_g1h);
62

63 64 65 66 67 68
  _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  // The dest for Young is used when the objects are aged enough to
  // need to be moved to the next space.
  _dest[InCSetState::Young]        = InCSetState::Old;
  _dest[InCSetState::Old]          = InCSetState::Old;

69 70 71
  _start = os::elapsedTime();
}

72
G1ParScanThreadState::~G1ParScanThreadState() {
73 74
  _g1_par_allocator->retire_alloc_buffers();
  delete _g1_par_allocator;
75 76 77
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
97 98
  const size_t alloc_buffer_waste = _g1_par_allocator->alloc_buffer_waste();
  const size_t undo_waste         = _g1_par_allocator->undo_waste();
99 100 101 102 103
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
104 105 106
               (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
               alloc_buffer_waste * HeapWordSize / K,
               undo_waste * HeapWordSize / K);
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
}

#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref)));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
  assert(_evac_failure_cl != NULL, "not set");

  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
150 151
    while (_refs->pop_overflow(ref)) {
      dispatch_reference(ref);
152 153
    }

154 155
    while (_refs->pop_local(ref)) {
      dispatch_reference(ref);
156
    }
157
  } while (!_refs->is_empty());
158 159
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
                                                      InCSetState* dest,
                                                      size_t word_sz,
                                                      AllocationContext_t const context) {
  assert(state.is_in_cset_or_humongous(), err_msg("Unexpected state: " CSETSTATE_FORMAT, state.value()));
  assert(dest->is_in_cset_or_humongous(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));

  // Right now we only have two types of regions (young / old) so
  // let's keep the logic here simple. We can generalize it when necessary.
  if (dest->is_young()) {
    HeapWord* const obj_ptr = _g1_par_allocator->allocate(InCSetState::Old,
                                                          word_sz, context);
    if (obj_ptr == NULL) {
      return NULL;
    }
    // Make sure that we won't attempt to copy any other objects out
    // of a survivor region (given that apparently we cannot allocate
    // any new ones) to avoid coming into this slow path.
    _tenuring_threshold = 0;
    dest->set_old();
    return obj_ptr;
  } else {
    assert(dest->is_old(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
    // no other space to try.
    return NULL;
  }
}

InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
  if (state.is_young()) {
    age = !m->has_displaced_mark_helper() ? m->age()
                                          : m->displaced_mark_helper()->age();
    if (age < _tenuring_threshold) {
      return state;
    }
  }
  return dest(state);
}

oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
                                                 oop const old,
201
                                                 markOop const old_mark) {
202 203
  const size_t word_sz = old->size();
  HeapRegion* const from_region = _g1h->heap_region_containing_raw(old);
204
  // +1 to make the -1 indexes valid...
205
  const int young_index = from_region->young_index_in_cset()+1;
206 207
  assert( (from_region->is_young() && young_index >  0) ||
         (!from_region->is_young() && young_index == 0), "invariant" );
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  const AllocationContext_t context = from_region->allocation_context();

  uint age = 0;
  InCSetState dest_state = next_state(state, old_mark, age);
  HeapWord* obj_ptr = _g1_par_allocator->plab_allocate(dest_state, word_sz, context);

  // PLAB allocations should succeed most of the time, so we'll
  // normally check against NULL once and that's it.
  if (obj_ptr == NULL) {
    obj_ptr = _g1_par_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context);
    if (obj_ptr == NULL) {
      obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context);
      if (obj_ptr == NULL) {
        // This will either forward-to-self, or detect that someone else has
        // installed a forwarding pointer.
        return _g1h->handle_evacuation_failure_par(this, old);
      }
225 226 227
    }
  }

228 229 230 231 232 233 234
  assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
#ifndef PRODUCT
  // Should this evacuation fail?
  if (_g1h->evacuation_should_fail()) {
    // Doing this after all the allocation attempts also tests the
    // undo_allocation() method too.
    _g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
235 236
    return _g1h->handle_evacuation_failure_par(this, old);
  }
237
#endif // !PRODUCT
238 239 240 241

  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

242 243
  const oop obj = oop(obj_ptr);
  const oop forward_ptr = old->forward_to_atomic(obj);
244 245 246
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);

247
    if (dest_state.is_young()) {
248 249 250 251 252
      if (age < markOopDesc::max_age) {
        age++;
      }
      if (old_mark->has_displaced_mark_helper()) {
        // In this case, we have to install the mark word first,
253 254
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
255 256 257
        obj->set_mark(old_mark);
        markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
        old_mark->set_displaced_mark_helper(new_mark);
258
      } else {
259
        obj->set_mark(old_mark->set_age(age));
260
      }
261
      age_table()->add(age, word_sz);
262
    } else {
263
      obj->set_mark(old_mark);
264 265 266
    }

    if (G1StringDedup::is_enabled()) {
267 268 269 270 271 272 273 274
      const bool is_from_young = state.is_young();
      const bool is_to_young = dest_state.is_young();
      assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(),
             "sanity");
      assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(),
             "sanity");
      G1StringDedup::enqueue_from_evacuation(is_from_young,
                                             is_to_young,
275 276 277 278
                                             queue_num(),
                                             obj);
    }

279
    size_t* const surv_young_words = surviving_young_words();
280 281 282 283 284 285 286 287 288 289
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
      // We keep track of the next start index in the length field of
      // the to-space object. The actual length can be found in the
      // length field of the from-space object.
      arrayOop(obj)->set_length(0);
      oop* old_p = set_partial_array_mask(old);
      push_on_queue(old_p);
    } else {
290 291
      HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr);
      _scanner.set_region(to_region);
292 293
      obj->oop_iterate_backwards(&_scanner);
    }
294
    return obj;
295
  } else {
296 297
    _g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
    return forward_ptr;
298 299
  }
}