matcher.cpp 93.3 KB
Newer Older
D
duke 已提交
1
/*
S
sla 已提交
2
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36 37
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/callnode.hpp"
#include "opto/connode.hpp"
#include "opto/idealGraphPrinter.hpp"
#include "opto/matcher.hpp"
#include "opto/memnode.hpp"
#include "opto/opcodes.hpp"
#include "opto/regmask.hpp"
#include "opto/rootnode.hpp"
#include "opto/runtime.hpp"
#include "opto/type.hpp"
38
#include "opto/vectornode.hpp"
39 40 41 42 43 44 45 46 47 48 49 50 51 52
#include "runtime/atomic.hpp"
#include "runtime/os.hpp"
#ifdef TARGET_ARCH_MODEL_x86_32
# include "adfiles/ad_x86_32.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_x86_64
# include "adfiles/ad_x86_64.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_sparc
# include "adfiles/ad_sparc.hpp"
#endif
#ifdef TARGET_ARCH_MODEL_zero
# include "adfiles/ad_zero.hpp"
#endif
53 54 55
#ifdef TARGET_ARCH_MODEL_arm
# include "adfiles/ad_arm.hpp"
#endif
56 57 58
#ifdef TARGET_ARCH_MODEL_ppc
# include "adfiles/ad_ppc.hpp"
#endif
D
duke 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

OptoReg::Name OptoReg::c_frame_pointer;

const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
RegMask Matcher::mreg2regmask[_last_Mach_Reg];
RegMask Matcher::STACK_ONLY_mask;
RegMask Matcher::c_frame_ptr_mask;
const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;

//---------------------------Matcher-------------------------------------------
Matcher::Matcher( Node_List &proj_list ) :
  PhaseTransform( Phase::Ins_Select ),
#ifdef ASSERT
  _old2new_map(C->comp_arena()),
74
  _new2old_map(C->comp_arena()),
D
duke 已提交
75
#endif
76
  _shared_nodes(C->comp_arena()),
D
duke 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  _swallowed(swallowed),
  _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  _must_clone(must_clone), _proj_list(proj_list),
  _register_save_policy(register_save_policy),
  _c_reg_save_policy(c_reg_save_policy),
  _register_save_type(register_save_type),
  _ruleName(ruleName),
  _allocation_started(false),
  _states_arena(Chunk::medium_size),
  _visited(&_states_arena),
  _shared(&_states_arena),
  _dontcare(&_states_arena) {
  C->set_matcher(this);

93 94 95 96 97 98
  idealreg2spillmask  [Op_RegI] = NULL;
  idealreg2spillmask  [Op_RegN] = NULL;
  idealreg2spillmask  [Op_RegL] = NULL;
  idealreg2spillmask  [Op_RegF] = NULL;
  idealreg2spillmask  [Op_RegD] = NULL;
  idealreg2spillmask  [Op_RegP] = NULL;
99 100 101 102
  idealreg2spillmask  [Op_VecS] = NULL;
  idealreg2spillmask  [Op_VecD] = NULL;
  idealreg2spillmask  [Op_VecX] = NULL;
  idealreg2spillmask  [Op_VecY] = NULL;
103 104 105 106 107 108 109

  idealreg2debugmask  [Op_RegI] = NULL;
  idealreg2debugmask  [Op_RegN] = NULL;
  idealreg2debugmask  [Op_RegL] = NULL;
  idealreg2debugmask  [Op_RegF] = NULL;
  idealreg2debugmask  [Op_RegD] = NULL;
  idealreg2debugmask  [Op_RegP] = NULL;
110 111 112 113
  idealreg2debugmask  [Op_VecS] = NULL;
  idealreg2debugmask  [Op_VecD] = NULL;
  idealreg2debugmask  [Op_VecX] = NULL;
  idealreg2debugmask  [Op_VecY] = NULL;
114 115 116 117 118 119 120

  idealreg2mhdebugmask[Op_RegI] = NULL;
  idealreg2mhdebugmask[Op_RegN] = NULL;
  idealreg2mhdebugmask[Op_RegL] = NULL;
  idealreg2mhdebugmask[Op_RegF] = NULL;
  idealreg2mhdebugmask[Op_RegD] = NULL;
  idealreg2mhdebugmask[Op_RegP] = NULL;
121 122 123 124
  idealreg2mhdebugmask[Op_VecS] = NULL;
  idealreg2mhdebugmask[Op_VecD] = NULL;
  idealreg2mhdebugmask[Op_VecX] = NULL;
  idealreg2mhdebugmask[Op_VecY] = NULL;
125

126
  debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
D
duke 已提交
127 128 129 130 131 132 133 134 135 136 137
}

//------------------------------warp_incoming_stk_arg------------------------
// This warps a VMReg into an OptoReg::Name
OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
  OptoReg::Name warped;
  if( reg->is_stack() ) {  // Stack slot argument?
    warped = OptoReg::add(_old_SP, reg->reg2stack() );
    warped = OptoReg::add(warped, C->out_preserve_stack_slots());
    if( warped >= _in_arg_limit )
      _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
138
    if (!RegMask::can_represent_arg(warped)) {
D
duke 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
      // the compiler cannot represent this method's calling sequence
      C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
      return OptoReg::Bad;
    }
    return warped;
  }
  return OptoReg::as_OptoReg(reg);
}

//---------------------------compute_old_SP------------------------------------
OptoReg::Name Compile::compute_old_SP() {
  int fixed    = fixed_slots();
  int preserve = in_preserve_stack_slots();
  return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
}



#ifdef ASSERT
void Matcher::verify_new_nodes_only(Node* xroot) {
  // Make sure that the new graph only references new nodes
  ResourceMark rm;
  Unique_Node_List worklist;
  VectorSet visited(Thread::current()->resource_area());
  worklist.push(xroot);
  while (worklist.size() > 0) {
    Node* n = worklist.pop();
    visited <<= n->_idx;
    assert(C->node_arena()->contains(n), "dead node");
    for (uint j = 0; j < n->req(); j++) {
      Node* in = n->in(j);
      if (in != NULL) {
        assert(C->node_arena()->contains(in), "dead node");
        if (!visited.test(in->_idx)) {
          worklist.push(in);
        }
      }
    }
  }
}
#endif


//---------------------------match---------------------------------------------
void Matcher::match( ) {
184 185 186 187
  if( MaxLabelRootDepth < 100 ) { // Too small?
    assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
    MaxLabelRootDepth = 100;
  }
D
duke 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200
  // One-time initialization of some register masks.
  init_spill_mask( C->root()->in(1) );
  _return_addr_mask = return_addr();
#ifdef _LP64
  // Pointers take 2 slots in 64-bit land
  _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
#endif

  // Map a Java-signature return type into return register-value
  // machine registers for 0, 1 and 2 returned values.
  const TypeTuple *range = C->tf()->range();
  if( range->cnt() > TypeFunc::Parms ) { // If not a void function
    // Get ideal-register return type
201
    int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
D
duke 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    // Get machine return register
    uint sop = C->start()->Opcode();
    OptoRegPair regs = return_value(ireg, false);

    // And mask for same
    _return_value_mask = RegMask(regs.first());
    if( OptoReg::is_valid(regs.second()) )
      _return_value_mask.Insert(regs.second());
  }

  // ---------------
  // Frame Layout

  // Need the method signature to determine the incoming argument types,
  // because the types determine which registers the incoming arguments are
  // in, and this affects the matched code.
  const TypeTuple *domain = C->tf()->domain();
  uint             argcnt = domain->cnt() - TypeFunc::Parms;
  BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
  _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
  uint i;
  for( i = 0; i<argcnt; i++ ) {
    sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  }

  // Pass array of ideal registers and length to USER code (from the AD file)
  // that will convert this to an array of register numbers.
  const StartNode *start = C->start();
  start->calling_convention( sig_bt, vm_parm_regs, argcnt );
#ifdef ASSERT
  // Sanity check users' calling convention.  Real handy while trying to
  // get the initial port correct.
  { for (uint i = 0; i<argcnt; i++) {
      if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
        assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
        _parm_regs[i].set_bad();
        continue;
      }
      VMReg parm_reg = vm_parm_regs[i].first();
      assert(parm_reg->is_valid(), "invalid arg?");
      if (parm_reg->is_reg()) {
        OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
        assert(can_be_java_arg(opto_parm_reg) ||
               C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
               opto_parm_reg == inline_cache_reg(),
               "parameters in register must be preserved by runtime stubs");
      }
      for (uint j = 0; j < i; j++) {
        assert(parm_reg != vm_parm_regs[j].first(),
               "calling conv. must produce distinct regs");
      }
    }
  }
#endif

  // Do some initial frame layout.

  // Compute the old incoming SP (may be called FP) as
  //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
  _old_SP = C->compute_old_SP();
  assert( is_even(_old_SP), "must be even" );

  // Compute highest incoming stack argument as
  //   _old_SP + out_preserve_stack_slots + incoming argument size.
  _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
  assert( is_even(_in_arg_limit), "out_preserve must be even" );
  for( i = 0; i < argcnt; i++ ) {
    // Permit args to have no register
    _calling_convention_mask[i].Clear();
    if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
      continue;
    }
    // calling_convention returns stack arguments as a count of
    // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
    // the allocators point of view, taking into account all the
    // preserve area, locks & pad2.

    OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
    if( OptoReg::is_valid(reg1))
      _calling_convention_mask[i].Insert(reg1);

    OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
    if( OptoReg::is_valid(reg2))
      _calling_convention_mask[i].Insert(reg2);

    // Saved biased stack-slot register number
    _parm_regs[i].set_pair(reg2, reg1);
  }

  // Finally, make sure the incoming arguments take up an even number of
  // words, in case the arguments or locals need to contain doubleword stack
  // slots.  The rest of the system assumes that stack slot pairs (in
  // particular, in the spill area) which look aligned will in fact be
  // aligned relative to the stack pointer in the target machine.  Double
  // stack slots will always be allocated aligned.
  _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));

  // Compute highest outgoing stack argument as
  //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
  _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  assert( is_even(_out_arg_limit), "out_preserve must be even" );

306
  if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
D
duke 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319
    // the compiler cannot represent this method's calling sequence
    C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
  }

  if (C->failing())  return;  // bailed out on incoming arg failure

  // ---------------
  // Collect roots of matcher trees.  Every node for which
  // _shared[_idx] is cleared is guaranteed to not be shared, and thus
  // can be a valid interior of some tree.
  find_shared( C->root() );
  find_shared( C->top() );

S
sla 已提交
320
  C->print_method(PHASE_BEFORE_MATCHING);
D
duke 已提交
321

322 323 324 325 326 327
  // Create new ideal node ConP #NULL even if it does exist in old space
  // to avoid false sharing if the corresponding mach node is not used.
  // The corresponding mach node is only used in rare cases for derived
  // pointers.
  Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);

D
duke 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  // Swap out to old-space; emptying new-space
  Arena *old = C->node_arena()->move_contents(C->old_arena());

  // Save debug and profile information for nodes in old space:
  _old_node_note_array = C->node_note_array();
  if (_old_node_note_array != NULL) {
    C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
                           (C->comp_arena(), _old_node_note_array->length(),
                            0, NULL));
  }

  // Pre-size the new_node table to avoid the need for range checks.
  grow_new_node_array(C->unique());

  // Reset node counter so MachNodes start with _idx at 0
  int nodes = C->unique(); // save value
  C->set_unique(0);
345
  C->reset_dead_node_list();
D
duke 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369

  // Recursively match trees from old space into new space.
  // Correct leaves of new-space Nodes; they point to old-space.
  _visited.Clear();             // Clear visit bits for xform call
  C->set_cached_top_node(xform( C->top(), nodes ));
  if (!C->failing()) {
    Node* xroot =        xform( C->root(), 1 );
    if (xroot == NULL) {
      Matcher::soft_match_failure();  // recursive matching process failed
      C->record_method_not_compilable("instruction match failed");
    } else {
      // During matching shared constants were attached to C->root()
      // because xroot wasn't available yet, so transfer the uses to
      // the xroot.
      for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
        Node* n = C->root()->fast_out(j);
        if (C->node_arena()->contains(n)) {
          assert(n->in(0) == C->root(), "should be control user");
          n->set_req(0, xroot);
          --j;
          --jmax;
        }
      }

370 371 372 373 374 375 376 377
      // Generate new mach node for ConP #NULL
      assert(new_ideal_null != NULL, "sanity");
      _mach_null = match_tree(new_ideal_null);
      // Don't set control, it will confuse GCM since there are no uses.
      // The control will be set when this node is used first time
      // in find_base_for_derived().
      assert(_mach_null != NULL, "");

D
duke 已提交
378
      C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
379

D
duke 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
#ifdef ASSERT
      verify_new_nodes_only(xroot);
#endif
    }
  }
  if (C->top() == NULL || C->root() == NULL) {
    C->record_method_not_compilable("graph lost"); // %%% cannot happen?
  }
  if (C->failing()) {
    // delete old;
    old->destruct_contents();
    return;
  }
  assert( C->top(), "" );
  assert( C->root(), "" );
  validate_null_checks();

  // Now smoke old-space
  NOT_DEBUG( old->destruct_contents() );

  // ------------------------
  // Set up save-on-entry registers
  Fixup_Save_On_Entry( );
}


//------------------------------Fixup_Save_On_Entry----------------------------
// The stated purpose of this routine is to take care of save-on-entry
// registers.  However, the overall goal of the Match phase is to convert into
// machine-specific instructions which have RegMasks to guide allocation.
// So what this procedure really does is put a valid RegMask on each input
// to the machine-specific variations of all Return, TailCall and Halt
// instructions.  It also adds edgs to define the save-on-entry values (and of
// course gives them a mask).

static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
  RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
  // Do all the pre-defined register masks
  rms[TypeFunc::Control  ] = RegMask::Empty;
  rms[TypeFunc::I_O      ] = RegMask::Empty;
  rms[TypeFunc::Memory   ] = RegMask::Empty;
  rms[TypeFunc::ReturnAdr] = ret_adr;
  rms[TypeFunc::FramePtr ] = fp;
  return rms;
}

//---------------------------init_first_stack_mask-----------------------------
// Create the initial stack mask used by values spilling to the stack.
// Disallow any debug info in outgoing argument areas by setting the
// initial mask accordingly.
void Matcher::init_first_stack_mask() {

  // Allocate storage for spill masks as masks for the appropriate load type.
433
  RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454

  idealreg2spillmask  [Op_RegN] = &rms[0];
  idealreg2spillmask  [Op_RegI] = &rms[1];
  idealreg2spillmask  [Op_RegL] = &rms[2];
  idealreg2spillmask  [Op_RegF] = &rms[3];
  idealreg2spillmask  [Op_RegD] = &rms[4];
  idealreg2spillmask  [Op_RegP] = &rms[5];

  idealreg2debugmask  [Op_RegN] = &rms[6];
  idealreg2debugmask  [Op_RegI] = &rms[7];
  idealreg2debugmask  [Op_RegL] = &rms[8];
  idealreg2debugmask  [Op_RegF] = &rms[9];
  idealreg2debugmask  [Op_RegD] = &rms[10];
  idealreg2debugmask  [Op_RegP] = &rms[11];

  idealreg2mhdebugmask[Op_RegN] = &rms[12];
  idealreg2mhdebugmask[Op_RegI] = &rms[13];
  idealreg2mhdebugmask[Op_RegL] = &rms[14];
  idealreg2mhdebugmask[Op_RegF] = &rms[15];
  idealreg2mhdebugmask[Op_RegD] = &rms[16];
  idealreg2mhdebugmask[Op_RegP] = &rms[17];
D
duke 已提交
455

456 457 458 459 460
  idealreg2spillmask  [Op_VecS] = &rms[18];
  idealreg2spillmask  [Op_VecD] = &rms[19];
  idealreg2spillmask  [Op_VecX] = &rms[20];
  idealreg2spillmask  [Op_VecY] = &rms[21];

D
duke 已提交
461 462 463 464 465 466 467 468 469 470 471
  OptoReg::Name i;

  // At first, start with the empty mask
  C->FIRST_STACK_mask().Clear();

  // Add in the incoming argument area
  OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
  for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
    C->FIRST_STACK_mask().Insert(i);

  // Add in all bits past the outgoing argument area
472
  guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
D
duke 已提交
473 474 475 476 477 478 479 480 481
            "must be able to represent all call arguments in reg mask");
  init = _out_arg_limit;
  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
    C->FIRST_STACK_mask().Insert(i);

  // Finally, set the "infinite stack" bit.
  C->FIRST_STACK_mask().set_AllStack();

  // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
482 483 484 485 486 487
  RegMask aligned_stack_mask = C->FIRST_STACK_mask();
  // Keep spill masks aligned.
  aligned_stack_mask.clear_to_pairs();
  assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");

  *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
488 489 490
#ifdef _LP64
  *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
   idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
491 492 493
   idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
#else
   idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
494
#endif
D
duke 已提交
495 496 497
  *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
  *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
498
   idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
D
duke 已提交
499 500 501
  *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
  *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
502
   idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
D
duke 已提交
503

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
  if (Matcher::vector_size_supported(T_BYTE,4)) {
    *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
     idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
  }
  if (Matcher::vector_size_supported(T_FLOAT,2)) {
    *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
     idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
  }
  if (Matcher::vector_size_supported(T_FLOAT,4)) {
     aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
     assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
    *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
     idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
  }
  if (Matcher::vector_size_supported(T_FLOAT,8)) {
     aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
     assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
    *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
     idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
  }
524 525 526 527 528 529 530 531 532 533 534 535 536 537
   if (UseFPUForSpilling) {
     // This mask logic assumes that the spill operations are
     // symmetric and that the registers involved are the same size.
     // On sparc for instance we may have to use 64 bit moves will
     // kill 2 registers when used with F0-F31.
     idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
     idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
#ifdef _LP64
     idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
#else
     idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
538 539 540 541 542 543
#ifdef ARM
     // ARM has support for moving 64bit values between a pair of
     // integer registers and a double register
     idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
     idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
#endif
544 545 546
#endif
   }

D
duke 已提交
547 548 549
  // Make up debug masks.  Any spill slot plus callee-save registers.
  // Caller-save registers are assumed to be trashable by the various
  // inline-cache fixup routines.
550 551 552 553 554 555 556 557 558 559 560 561 562
  *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
  *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
  *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
  *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
  *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
  *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];

  *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
  *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
  *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
  *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
  *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
  *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
D
duke 已提交
563 564 565 566 567 568 569 570 571 572

  // Prevent stub compilations from attempting to reference
  // callee-saved registers from debug info
  bool exclude_soe = !Compile::current()->is_method_compilation();

  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
    // registers the caller has to save do not work
    if( _register_save_policy[i] == 'C' ||
        _register_save_policy[i] == 'A' ||
        (_register_save_policy[i] == 'E' && exclude_soe) ) {
573 574 575 576 577 578 579 580 581 582 583 584 585
      idealreg2debugmask  [Op_RegN]->Remove(i);
      idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
      idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
      idealreg2debugmask  [Op_RegF]->Remove(i); // masks
      idealreg2debugmask  [Op_RegD]->Remove(i);
      idealreg2debugmask  [Op_RegP]->Remove(i);

      idealreg2mhdebugmask[Op_RegN]->Remove(i);
      idealreg2mhdebugmask[Op_RegI]->Remove(i);
      idealreg2mhdebugmask[Op_RegL]->Remove(i);
      idealreg2mhdebugmask[Op_RegF]->Remove(i);
      idealreg2mhdebugmask[Op_RegD]->Remove(i);
      idealreg2mhdebugmask[Op_RegP]->Remove(i);
D
duke 已提交
586 587
    }
  }
588 589 590 591 592 593 594 595 596 597

  // Subtract the register we use to save the SP for MethodHandle
  // invokes to from the debug mask.
  const RegMask save_mask = method_handle_invoke_SP_save_mask();
  idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
  idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
  idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
  idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
  idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
  idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
D
duke 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
}

//---------------------------is_save_on_entry----------------------------------
bool Matcher::is_save_on_entry( int reg ) {
  return
    _register_save_policy[reg] == 'E' ||
    _register_save_policy[reg] == 'A' || // Save-on-entry register?
    // Also save argument registers in the trampolining stubs
    (C->save_argument_registers() && is_spillable_arg(reg));
}

//---------------------------Fixup_Save_On_Entry-------------------------------
void Matcher::Fixup_Save_On_Entry( ) {
  init_first_stack_mask();

  Node *root = C->root();       // Short name for root
  // Count number of save-on-entry registers.
  uint soe_cnt = number_of_saved_registers();
  uint i;

  // Find the procedure Start Node
  StartNode *start = C->start();
  assert( start, "Expect a start node" );

  // Save argument registers in the trampolining stubs
  if( C->save_argument_registers() )
    for( i = 0; i < _last_Mach_Reg; i++ )
      if( is_spillable_arg(i) )
        soe_cnt++;

  // Input RegMask array shared by all Returns.
  // The type for doubles and longs has a count of 2, but
  // there is only 1 returned value
  uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
  RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
  // Returns have 0 or 1 returned values depending on call signature.
  // Return register is specified by return_value in the AD file.
  if (ret_edge_cnt > TypeFunc::Parms)
    ret_rms[TypeFunc::Parms+0] = _return_value_mask;

  // Input RegMask array shared by all Rethrows.
  uint reth_edge_cnt = TypeFunc::Parms+1;
  RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
  // Rethrow takes exception oop only, but in the argument 0 slot.
  reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
#ifdef _LP64
  // Need two slots for ptrs in 64-bit land
  reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
#endif

  // Input RegMask array shared by all TailCalls
  uint tail_call_edge_cnt = TypeFunc::Parms+2;
  RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );

  // Input RegMask array shared by all TailJumps
  uint tail_jump_edge_cnt = TypeFunc::Parms+2;
  RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );

  // TailCalls have 2 returned values (target & moop), whose masks come
  // from the usual MachNode/MachOper mechanism.  Find a sample
  // TailCall to extract these masks and put the correct masks into
  // the tail_call_rms array.
  for( i=1; i < root->req(); i++ ) {
    MachReturnNode *m = root->in(i)->as_MachReturn();
    if( m->ideal_Opcode() == Op_TailCall ) {
      tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
      tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
      break;
    }
  }

  // TailJumps have 2 returned values (target & ex_oop), whose masks come
  // from the usual MachNode/MachOper mechanism.  Find a sample
  // TailJump to extract these masks and put the correct masks into
  // the tail_jump_rms array.
  for( i=1; i < root->req(); i++ ) {
    MachReturnNode *m = root->in(i)->as_MachReturn();
    if( m->ideal_Opcode() == Op_TailJump ) {
      tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
      tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
      break;
    }
  }

  // Input RegMask array shared by all Halts
  uint halt_edge_cnt = TypeFunc::Parms;
  RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );

  // Capture the return input masks into each exit flavor
  for( i=1; i < root->req(); i++ ) {
    MachReturnNode *exit = root->in(i)->as_MachReturn();
    switch( exit->ideal_Opcode() ) {
      case Op_Return   : exit->_in_rms = ret_rms;  break;
      case Op_Rethrow  : exit->_in_rms = reth_rms; break;
      case Op_TailCall : exit->_in_rms = tail_call_rms; break;
      case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
      case Op_Halt     : exit->_in_rms = halt_rms; break;
      default          : ShouldNotReachHere();
    }
  }

  // Next unused projection number from Start.
  int proj_cnt = C->tf()->domain()->cnt();

  // Do all the save-on-entry registers.  Make projections from Start for
  // them, and give them a use at the exit points.  To the allocator, they
  // look like incoming register arguments.
  for( i = 0; i < _last_Mach_Reg; i++ ) {
    if( is_save_on_entry(i) ) {

      // Add the save-on-entry to the mask array
      ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
      reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
      tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
      tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
      // Halts need the SOE registers, but only in the stack as debug info.
      // A just-prior uncommon-trap or deoptimization will use the SOE regs.
      halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];

      Node *mproj;

      // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
      // into a single RegD.
      if( (i&1) == 0 &&
          _register_save_type[i  ] == Op_RegF &&
          _register_save_type[i+1] == Op_RegF &&
          is_save_on_entry(i+1) ) {
        // Add other bit for double
        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
731
        mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
D
duke 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
        proj_cnt += 2;          // Skip 2 for doubles
      }
      else if( (i&1) == 1 &&    // Else check for high half of double
               _register_save_type[i-1] == Op_RegF &&
               _register_save_type[i  ] == Op_RegF &&
               is_save_on_entry(i-1) ) {
        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
        mproj = C->top();
      }
      // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
      // into a single RegL.
      else if( (i&1) == 0 &&
          _register_save_type[i  ] == Op_RegI &&
          _register_save_type[i+1] == Op_RegI &&
        is_save_on_entry(i+1) ) {
        // Add other bit for long
        ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
        reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
        tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
        tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
        halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
757
        mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
D
duke 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771
        proj_cnt += 2;          // Skip 2 for longs
      }
      else if( (i&1) == 1 &&    // Else check for high half of long
               _register_save_type[i-1] == Op_RegI &&
               _register_save_type[i  ] == Op_RegI &&
               is_save_on_entry(i-1) ) {
        ret_rms      [      ret_edge_cnt] = RegMask::Empty;
        reth_rms     [     reth_edge_cnt] = RegMask::Empty;
        tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
        tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
        halt_rms     [     halt_edge_cnt] = RegMask::Empty;
        mproj = C->top();
      } else {
        // Make a projection for it off the Start
772
        mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
D
duke 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
      }

      ret_edge_cnt ++;
      reth_edge_cnt ++;
      tail_call_edge_cnt ++;
      tail_jump_edge_cnt ++;
      halt_edge_cnt ++;

      // Add a use of the SOE register to all exit paths
      for( uint j=1; j < root->req(); j++ )
        root->in(j)->add_req(mproj);
    } // End of if a save-on-entry register
  } // End of for all machine registers
}

//------------------------------init_spill_mask--------------------------------
void Matcher::init_spill_mask( Node *ret ) {
  if( idealreg2regmask[Op_RegI] ) return; // One time only init

  OptoReg::c_frame_pointer = c_frame_pointer();
  c_frame_ptr_mask = c_frame_pointer();
#ifdef _LP64
  // pointers are twice as big
  c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
#endif

  // Start at OptoReg::stack0()
  STACK_ONLY_mask.Clear();
  OptoReg::Name init = OptoReg::stack2reg(0);
  // STACK_ONLY_mask is all stack bits
  OptoReg::Name i;
  for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
    STACK_ONLY_mask.Insert(i);
  // Also set the "infinite stack" bit.
  STACK_ONLY_mask.set_AllStack();

  // Copy the register names over into the shared world
  for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
    // SharedInfo::regName[i] = regName[i];
    // Handy RegMasks per machine register
    mreg2regmask[i].Insert(i);
  }

  // Grab the Frame Pointer
  Node *fp  = ret->in(TypeFunc::FramePtr);
  Node *mem = ret->in(TypeFunc::Memory);
  const TypePtr* atp = TypePtr::BOTTOM;
  // Share frame pointer while making spill ops
  set_shared(fp);

  // Compute generic short-offset Loads
824
#ifdef _LP64
825
  MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
826
#endif
827 828 829 830 831
  MachNode *spillI  = match_tree(new (C) LoadINode(NULL,mem,fp,atp));
  MachNode *spillL  = match_tree(new (C) LoadLNode(NULL,mem,fp,atp));
  MachNode *spillF  = match_tree(new (C) LoadFNode(NULL,mem,fp,atp));
  MachNode *spillD  = match_tree(new (C) LoadDNode(NULL,mem,fp,atp));
  MachNode *spillP  = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
D
duke 已提交
832 833 834 835
  assert(spillI != NULL && spillL != NULL && spillF != NULL &&
         spillD != NULL && spillP != NULL, "");

  // Get the ADLC notion of the right regmask, for each basic type.
836 837 838
#ifdef _LP64
  idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
#endif
D
duke 已提交
839 840 841 842 843
  idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
  idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
  idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
  idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
  idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
844 845 846 847

  // Vector regmasks.
  if (Matcher::vector_size_supported(T_BYTE,4)) {
    TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
848
    MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
849 850 851
    idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
  }
  if (Matcher::vector_size_supported(T_FLOAT,2)) {
852
    MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
853 854 855
    idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
  }
  if (Matcher::vector_size_supported(T_FLOAT,4)) {
856
    MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
857 858 859
    idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
  }
  if (Matcher::vector_size_supported(T_FLOAT,8)) {
860
    MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
861 862
    idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
  }
D
duke 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
}

#ifdef ASSERT
static void match_alias_type(Compile* C, Node* n, Node* m) {
  if (!VerifyAliases)  return;  // do not go looking for trouble by default
  const TypePtr* nat = n->adr_type();
  const TypePtr* mat = m->adr_type();
  int nidx = C->get_alias_index(nat);
  int midx = C->get_alias_index(mat);
  // Detune the assert for cases like (AndI 0xFF (LoadB p)).
  if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
    for (uint i = 1; i < n->req(); i++) {
      Node* n1 = n->in(i);
      const TypePtr* n1at = n1->adr_type();
      if (n1at != NULL) {
        nat = n1at;
        nidx = C->get_alias_index(n1at);
      }
    }
  }
  // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
    switch (n->Opcode()) {
    case Op_PrefetchRead:
    case Op_PrefetchWrite:
888
    case Op_PrefetchAllocation:
D
duke 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
      nidx = Compile::AliasIdxRaw;
      nat = TypeRawPtr::BOTTOM;
      break;
    }
  }
  if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
    switch (n->Opcode()) {
    case Op_ClearArray:
      midx = Compile::AliasIdxRaw;
      mat = TypeRawPtr::BOTTOM;
      break;
    }
  }
  if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
    switch (n->Opcode()) {
    case Op_Return:
    case Op_Rethrow:
    case Op_Halt:
    case Op_TailCall:
    case Op_TailJump:
      nidx = Compile::AliasIdxBot;
      nat = TypePtr::BOTTOM;
      break;
    }
  }
  if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
    switch (n->Opcode()) {
    case Op_StrComp:
C
cfang 已提交
917 918
    case Op_StrEquals:
    case Op_StrIndexOf:
919
    case Op_AryEq:
D
duke 已提交
920 921
    case Op_MemBarVolatile:
    case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
922
    case Op_EncodeISOArray:
D
duke 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
      nidx = Compile::AliasIdxTop;
      nat = NULL;
      break;
    }
  }
  if (nidx != midx) {
    if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
      tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
      n->dump();
      m->dump();
    }
    assert(C->subsume_loads() && C->must_alias(nat, midx),
           "must not lose alias info when matching");
  }
}
#endif


//------------------------------MStack-----------------------------------------
// State and MStack class used in xform() and find_shared() iterative methods.
enum Node_State { Pre_Visit,  // node has to be pre-visited
                      Visit,  // visit node
                 Post_Visit,  // post-visit node
             Alt_Post_Visit   // alternative post-visit path
                };

class MStack: public Node_Stack {
  public:
    MStack(int size) : Node_Stack(size) { }

    void push(Node *n, Node_State ns) {
      Node_Stack::push(n, (uint)ns);
    }
    void push(Node *n, Node_State ns, Node *parent, int indx) {
      ++_inode_top;
      if ((_inode_top + 1) >= _inode_max) grow();
      _inode_top->node = parent;
      _inode_top->indx = (uint)indx;
      ++_inode_top;
      _inode_top->node = n;
      _inode_top->indx = (uint)ns;
    }
    Node *parent() {
      pop();
      return node();
    }
    Node_State state() const {
      return (Node_State)index();
    }
    void set_state(Node_State ns) {
      set_index((uint)ns);
    }
};


//------------------------------xform------------------------------------------
// Given a Node in old-space, Match him (Label/Reduce) to produce a machine
// Node in new-space.  Given a new-space Node, recursively walk his children.
Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
Node *Matcher::xform( Node *n, int max_stack ) {
  // Use one stack to keep both: child's node/state and parent's node/index
  MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
  mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root

  while (mstack.is_nonempty()) {
    n = mstack.node();          // Leave node on stack
    Node_State nstate = mstack.state();
    if (nstate == Visit) {
      mstack.set_state(Post_Visit);
      Node *oldn = n;
      // Old-space or new-space check
      if (!C->node_arena()->contains(n)) {
        // Old space!
        Node* m;
        if (has_new_node(n)) {  // Not yet Label/Reduced
          m = new_node(n);
        } else {
          if (!is_dontcare(n)) { // Matcher can match this guy
            // Calls match special.  They match alone with no children.
            // Their children, the incoming arguments, match normally.
            m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
            if (C->failing())  return NULL;
            if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
          } else {                  // Nothing the matcher cares about
            if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
              // Convert to machine-dependent projection
              m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1010 1011 1012
#ifdef ASSERT
              _new2old_map.map(m->_idx, n);
#endif
D
duke 已提交
1013
              if (m->in(0) != NULL) // m might be top
1014
                collect_null_checks(m, n);
D
duke 已提交
1015 1016
            } else {                // Else just a regular 'ol guy
              m = n->clone();       // So just clone into new-space
1017 1018 1019
#ifdef ASSERT
              _new2old_map.map(m->_idx, n);
#endif
D
duke 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
              // Def-Use edges will be added incrementally as Uses
              // of this node are matched.
              assert(m->outcnt() == 0, "no Uses of this clone yet");
            }
          }

          set_new_node(n, m);       // Map old to new
          if (_old_node_note_array != NULL) {
            Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
                                                  n->_idx);
            C->set_node_notes_at(m->_idx, nn);
          }
          debug_only(match_alias_type(C, n, m));
        }
        n = m;    // n is now a new-space node
        mstack.set_node(n);
      }

      // New space!
      if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())

      int i;
      // Put precedence edges on stack first (match them last).
      for (i = oldn->req(); (uint)i < oldn->len(); i++) {
        Node *m = oldn->in(i);
        if (m == NULL) break;
        // set -1 to call add_prec() instead of set_req() during Step1
        mstack.push(m, Visit, n, -1);
      }

      // For constant debug info, I'd rather have unmatched constants.
      int cnt = n->req();
      JVMState* jvms = n->jvms();
      int debug_cnt = jvms ? jvms->debug_start() : cnt;

      // Now do only debug info.  Clone constants rather than matching.
      // Constants are represented directly in the debug info without
      // the need for executable machine instructions.
      // Monitor boxes are also represented directly.
      for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
        Node *m = n->in(i);          // Get input
        int op = m->Opcode();
        assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1063
        if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
D
duke 已提交
1064 1065 1066 1067
            op == Op_ConF || op == Op_ConD || op == Op_ConL
            // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
            ) {
          m = m->clone();
1068 1069 1070
#ifdef ASSERT
          _new2old_map.map(m->_idx, n);
#endif
T
twisti 已提交
1071
          mstack.push(m, Post_Visit, n, i); // Don't need to visit
D
duke 已提交
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
          mstack.push(m->in(0), Visit, m, 0);
        } else {
          mstack.push(m, Visit, n, i);
        }
      }

      // And now walk his children, and convert his inputs to new-space.
      for( ; i >= 0; --i ) { // For all normal inputs do
        Node *m = n->in(i);  // Get input
        if(m != NULL)
          mstack.push(m, Visit, n, i);
      }

    }
    else if (nstate == Post_Visit) {
      // Set xformed input
      Node *p = mstack.parent();
      if (p != NULL) { // root doesn't have parent
        int i = (int)mstack.index();
        if (i >= 0)
          p->set_req(i, n); // required input
        else if (i == -1)
          p->add_prec(n);   // precedence input
        else
          ShouldNotReachHere();
      }
      mstack.pop(); // remove processed node from stack
    }
    else {
      ShouldNotReachHere();
    }
  } // while (mstack.is_nonempty())
  return n; // Return new-space Node
}

//------------------------------warp_outgoing_stk_arg------------------------
OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
  // Convert outgoing argument location to a pre-biased stack offset
  if (reg->is_stack()) {
    OptoReg::Name warped = reg->reg2stack();
    // Adjust the stack slot offset to be the register number used
    // by the allocator.
    warped = OptoReg::add(begin_out_arg_area, warped);
    // Keep track of the largest numbered stack slot used for an arg.
    // Largest used slot per call-site indicates the amount of stack
    // that is killed by the call.
    if( warped >= out_arg_limit_per_call )
      out_arg_limit_per_call = OptoReg::add(warped,1);
1120
    if (!RegMask::can_represent_arg(warped)) {
D
duke 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
      C->record_method_not_compilable_all_tiers("unsupported calling sequence");
      return OptoReg::Bad;
    }
    return warped;
  }
  return OptoReg::as_OptoReg(reg);
}


//------------------------------match_sfpt-------------------------------------
// Helper function to match call instructions.  Calls match special.
// They match alone with no children.  Their children, the incoming
// arguments, match normally.
MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
  MachSafePointNode *msfpt = NULL;
  MachCallNode      *mcall = NULL;
  uint               cnt;
  // Split out case for SafePoint vs Call
  CallNode *call;
  const TypeTuple *domain;
  ciMethod*        method = NULL;
1142
  bool             is_method_handle_invoke = false;  // for special kill effects
D
duke 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
  if( sfpt->is_Call() ) {
    call = sfpt->as_Call();
    domain = call->tf()->domain();
    cnt = domain->cnt();

    // Match just the call, nothing else
    MachNode *m = match_tree(call);
    if (C->failing())  return NULL;
    if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }

    // Copy data from the Ideal SafePoint to the machine version
    mcall = m->as_MachCall();

    mcall->set_tf(         call->tf());
    mcall->set_entry_point(call->entry_point());
    mcall->set_cnt(        call->cnt());

    if( mcall->is_MachCallJava() ) {
      MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
      const CallJavaNode *call_java =  call->as_CallJava();
      method = call_java->method();
      mcall_java->_method = method;
      mcall_java->_bci = call_java->_bci;
      mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1167 1168
      is_method_handle_invoke = call_java->is_method_handle_invoke();
      mcall_java->_method_handle_invoke = is_method_handle_invoke;
1169 1170 1171
      if (is_method_handle_invoke) {
        C->set_has_method_handle_invokes(true);
      }
D
duke 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
      if( mcall_java->is_MachCallStaticJava() )
        mcall_java->as_MachCallStaticJava()->_name =
         call_java->as_CallStaticJava()->_name;
      if( mcall_java->is_MachCallDynamicJava() )
        mcall_java->as_MachCallDynamicJava()->_vtable_index =
         call_java->as_CallDynamicJava()->_vtable_index;
    }
    else if( mcall->is_MachCallRuntime() ) {
      mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
    }
    msfpt = mcall;
  }
  // This is a non-call safepoint
  else {
    call = NULL;
    domain = NULL;
    MachNode *mn = match_tree(sfpt);
    if (C->failing())  return NULL;
    msfpt = mn->as_MachSafePoint();
    cnt = TypeFunc::Parms;
  }

  // Advertise the correct memory effects (for anti-dependence computation).
  msfpt->set_adr_type(sfpt->adr_type());

  // Allocate a private array of RegMasks.  These RegMasks are not shared.
  msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
  // Empty them all.
  memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );

  // Do all the pre-defined non-Empty register masks
  msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
  msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;

  // Place first outgoing argument can possibly be put.
  OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  assert( is_even(begin_out_arg_area), "" );
  // Compute max outgoing register number per call site.
  OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  // Calls to C may hammer extra stack slots above and beyond any arguments.
  // These are usually backing store for register arguments for varargs.
  if( call != NULL && call->is_CallRuntime() )
    out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());


  // Do the normal argument list (parameters) register masks
  int argcnt = cnt - TypeFunc::Parms;
  if( argcnt > 0 ) {          // Skip it all if we have no args
    BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
    VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
    int i;
    for( i = 0; i < argcnt; i++ ) {
      sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
    }
    // V-call to pick proper calling convention
    call->calling_convention( sig_bt, parm_regs, argcnt );

#ifdef ASSERT
    // Sanity check users' calling convention.  Really handy during
    // the initial porting effort.  Fairly expensive otherwise.
    { for (int i = 0; i<argcnt; i++) {
      if( !parm_regs[i].first()->is_valid() &&
          !parm_regs[i].second()->is_valid() ) continue;
      VMReg reg1 = parm_regs[i].first();
      VMReg reg2 = parm_regs[i].second();
      for (int j = 0; j < i; j++) {
        if( !parm_regs[j].first()->is_valid() &&
            !parm_regs[j].second()->is_valid() ) continue;
        VMReg reg3 = parm_regs[j].first();
        VMReg reg4 = parm_regs[j].second();
        if( !reg1->is_valid() ) {
          assert( !reg2->is_valid(), "valid halvsies" );
        } else if( !reg3->is_valid() ) {
          assert( !reg4->is_valid(), "valid halvsies" );
        } else {
          assert( reg1 != reg2, "calling conv. must produce distinct regs");
          assert( reg1 != reg3, "calling conv. must produce distinct regs");
          assert( reg1 != reg4, "calling conv. must produce distinct regs");
          assert( reg2 != reg3, "calling conv. must produce distinct regs");
          assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
          assert( reg3 != reg4, "calling conv. must produce distinct regs");
        }
      }
    }
    }
#endif

    // Visit each argument.  Compute its outgoing register mask.
    // Return results now can have 2 bits returned.
    // Compute max over all outgoing arguments both per call-site
    // and over the entire method.
    for( i = 0; i < argcnt; i++ ) {
      // Address of incoming argument mask to fill in
      RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
      if( !parm_regs[i].first()->is_valid() &&
          !parm_regs[i].second()->is_valid() ) {
        continue;               // Avoid Halves
      }
      // Grab first register, adjust stack slots and insert in mask.
      OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
      if (OptoReg::is_valid(reg1))
        rm->Insert( reg1 );
      // Grab second register (if any), adjust stack slots and insert in mask.
      OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
      if (OptoReg::is_valid(reg2))
        rm->Insert( reg2 );
    } // End of for all arguments

    // Compute number of stack slots needed to restore stack in case of
    // Pascal-style argument popping.
    mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  }

  // Compute the max stack slot killed by any call.  These will not be
  // available for debug info, and will be used to adjust FIRST_STACK_mask
  // after all call sites have been visited.
  if( _out_arg_limit < out_arg_limit_per_call)
    _out_arg_limit = out_arg_limit_per_call;

  if (mcall) {
    // Kill the outgoing argument area, including any non-argument holes and
    // any legacy C-killed slots.  Use Fat-Projections to do the killing.
    // Since the max-per-method covers the max-per-call-site and debug info
    // is excluded on the max-per-method basis, debug info cannot land in
    // this killed area.
    uint r_cnt = mcall->tf()->range()->cnt();
1298
    MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1299
    if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
D
duke 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
      C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
    } else {
      for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
        proj->_rout.Insert(OptoReg::Name(i));
    }
    if( proj->_rout.is_NotEmpty() )
      _proj_list.push(proj);
  }
  // Transfer the safepoint information from the call to the mcall
  // Move the JVMState list
  msfpt->set_jvms(sfpt->jvms());
  for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
    jvms->set_map(sfpt);
  }

  // Debug inputs begin just after the last incoming parameter
  assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );

  // Move the OopMap
  msfpt->_oop_map = sfpt->_oop_map;

  // Registers killed by the call are set in the local scheduling pass
  // of Global Code Motion.
  return msfpt;
}

//---------------------------match_tree----------------------------------------
// Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
// of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
// making GotoNodes while building the CFG and in init_spill_mask() to identify
// a Load's result RegMask for memoization in idealreg2regmask[]
MachNode *Matcher::match_tree( const Node *n ) {
  assert( n->Opcode() != Op_Phi, "cannot match" );
  assert( !n->is_block_start(), "cannot match" );
  // Set the mark for all locally allocated State objects.
  // When this call returns, the _states_arena arena will be reset
  // freeing all State objects.
  ResourceMark rm( &_states_arena );

  LabelRootDepth = 0;

  // StoreNodes require their Memory input to match any LoadNodes
  Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1344 1345 1346 1347
#ifdef ASSERT
  Node* save_mem_node = _mem_node;
  _mem_node = n->is_Store() ? (Node*)n : NULL;
#endif
D
duke 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
  // State object for root node of match tree
  // Allocate it on _states_arena - stack allocation can cause stack overflow.
  State *s = new (&_states_arena) State;
  s->_kids[0] = NULL;
  s->_kids[1] = NULL;
  s->_leaf = (Node*)n;
  // Label the input tree, allocating labels from top-level arena
  Label_Root( n, s, n->in(0), mem );
  if (C->failing())  return NULL;

  // The minimum cost match for the whole tree is found at the root State
  uint mincost = max_juint;
  uint cost = max_juint;
  uint i;
  for( i = 0; i < NUM_OPERANDS; i++ ) {
    if( s->valid(i) &&                // valid entry and
        s->_cost[i] < cost &&         // low cost and
        s->_rule[i] >= NUM_OPERANDS ) // not an operand
      cost = s->_cost[mincost=i];
  }
  if (mincost == max_juint) {
#ifndef PRODUCT
    tty->print("No matching rule for:");
    s->dump();
#endif
    Matcher::soft_match_failure();
    return NULL;
  }
  // Reduce input tree based upon the state labels to machine Nodes
  MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
#ifdef ASSERT
  _old2new_map.map(n->_idx, m);
1380
  _new2old_map.map(m->_idx, (Node*)n);
D
duke 已提交
1381 1382 1383 1384 1385 1386
#endif

  // Add any Matcher-ignored edges
  uint cnt = n->req();
  uint start = 1;
  if( mem != (Node*)1 ) start = MemNode::Memory+1;
1387
  if( n->is_AddP() ) {
D
duke 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
    assert( mem == (Node*)1, "" );
    start = AddPNode::Base+1;
  }
  for( i = start; i < cnt; i++ ) {
    if( !n->match_edge(i) ) {
      if( i < m->req() )
        m->ins_req( i, n->in(i) );
      else
        m->add_req( n->in(i) );
    }
  }

1400
  debug_only( _mem_node = save_mem_node; )
D
duke 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
  return m;
}


//------------------------------match_into_reg---------------------------------
// Choose to either match this Node in a register or part of the current
// match tree.  Return true for requiring a register and false for matching
// as part of the current match tree.
static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {

  const Type *t = m->bottom_type();

1413
  if (t->singleton()) {
D
duke 已提交
1414 1415
    // Never force constants into registers.  Allow them to match as
    // constants or registers.  Copies of the same value will share
1416
    // the same register.  See find_shared_node.
D
duke 已提交
1417 1418 1419
    return false;
  } else {                      // Not a constant
    // Stop recursion if they have different Controls.
1420 1421 1422 1423 1424
    Node* m_control = m->in(0);
    // Control of load's memory can post-dominates load's control.
    // So use it since load can't float above its memory.
    Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
    if (control && m_control && control != m_control && control != mem_control) {
D
duke 已提交
1425 1426 1427 1428 1429 1430

      // Actually, we can live with the most conservative control we
      // find, if it post-dominates the others.  This allows us to
      // pick up load/op/store trees where the load can float a little
      // above the store.
      Node *x = control;
1431
      const uint max_scan = 6;  // Arbitrary scan cutoff
D
duke 已提交
1432
      uint j;
1433 1434
      for (j=0; j<max_scan; j++) {
        if (x->is_Region())     // Bail out at merge points
D
duke 已提交
1435 1436
          return true;
        x = x->in(0);
1437
        if (x == m_control)     // Does 'control' post-dominate
D
duke 已提交
1438
          break;                // m->in(0)?  If so, we can use it
1439 1440
        if (x == mem_control)   // Does 'control' post-dominate
          break;                // mem_control?  If so, we can use it
D
duke 已提交
1441
      }
1442
      if (j == max_scan)        // No post-domination before scan end?
D
duke 已提交
1443 1444
        return true;            // Then break the match tree up
    }
1445 1446
    if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
        (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1447
      // These are commonly used in address expressions and can
1448 1449
      // efficiently fold into them on X64 in some cases.
      return false;
1450
    }
D
duke 已提交
1451 1452
  }

T
twisti 已提交
1453
  // Not forceable cloning.  If shared, put it into a register.
D
duke 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
  return shared;
}


//------------------------------Instruction Selection--------------------------
// Label method walks a "tree" of nodes, using the ADLC generated DFA to match
// ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
// things the Matcher does not match (e.g., Memory), and things with different
// Controls (hence forced into different blocks).  We pass in the Control
// selected for this entire State tree.

// The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
// Store and the Load must have identical Memories (as well as identical
// pointers).  Since the Matcher does not have anything for Memory (and
// does not handle DAGs), I have to match the Memory input myself.  If the
// Tree root is a Store, I require all Loads to have the identical memory.
Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  // Since Label_Root is a recursive function, its possible that we might run
  // out of stack space.  See bugs 6272980 & 6227033 for more info.
  LabelRootDepth++;
  if (LabelRootDepth > MaxLabelRootDepth) {
    C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
    return NULL;
  }
  uint care = 0;                // Edges matcher cares about
  uint cnt = n->req();
  uint i = 0;

  // Examine children for memory state
  // Can only subsume a child into your match-tree if that child's memory state
  // is not modified along the path to another input.
  // It is unsafe even if the other inputs are separate roots.
  Node *input_mem = NULL;
  for( i = 1; i < cnt; i++ ) {
    if( !n->match_edge(i) ) continue;
    Node *m = n->in(i);         // Get ith input
    assert( m, "expect non-null children" );
    if( m->is_Load() ) {
      if( input_mem == NULL ) {
        input_mem = m->in(MemNode::Memory);
      } else if( input_mem != m->in(MemNode::Memory) ) {
        input_mem = NodeSentinel;
      }
    }
  }

  for( i = 1; i < cnt; i++ ){// For my children
    if( !n->match_edge(i) ) continue;
    Node *m = n->in(i);         // Get ith input
    // Allocate states out of a private arena
    State *s = new (&_states_arena) State;
    svec->_kids[care++] = s;
    assert( care <= 2, "binary only for now" );

    // Recursively label the State tree.
    s->_kids[0] = NULL;
    s->_kids[1] = NULL;
    s->_leaf = m;

    // Check for leaves of the State Tree; things that cannot be a part of
    // the current tree.  If it finds any, that value is matched as a
    // register operand.  If not, then the normal matching is used.
    if( match_into_reg(n, m, control, i, is_shared(m)) ||
        //
        // Stop recursion if this is LoadNode and the root of this tree is a
        // StoreNode and the load & store have different memories.
        ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
        // Can NOT include the match of a subtree when its memory state
        // is used by any of the other subtrees
        (input_mem == NodeSentinel) ) {
#ifndef PRODUCT
      // Print when we exclude matching due to different memory states at input-loads
      if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
        && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
        tty->print_cr("invalid input_mem");
      }
#endif
      // Switch to a register-only opcode; this value must be in a register
      // and cannot be subsumed as part of a larger instruction.
      s->DFA( m->ideal_reg(), m );

    } else {
      // If match tree has no control and we do, adopt it for entire tree
      if( control == NULL && m->in(0) != NULL && m->req() > 1 )
        control = m->in(0);         // Pick up control
      // Else match as a normal part of the match tree.
      control = Label_Root(m,s,control,mem);
      if (C->failing()) return NULL;
    }
  }


  // Call DFA to match this node, and return
  svec->DFA( n->Opcode(), n );

#ifdef ASSERT
  uint x;
  for( x = 0; x < _LAST_MACH_OPER; x++ )
    if( svec->valid(x) )
      break;

  if (x >= _LAST_MACH_OPER) {
    n->dump();
    svec->dump();
    assert( false, "bad AD file" );
  }
#endif
  return control;
}


// Con nodes reduced using the same rule can share their MachNode
// which reduces the number of copies of a constant in the final
// program.  The register allocator is free to split uses later to
// split live ranges.
1569
MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1570
  if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
D
duke 已提交
1571 1572

  // See if this Con has already been reduced using this rule.
1573 1574
  if (_shared_nodes.Size() <= leaf->_idx) return NULL;
  MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
D
duke 已提交
1575
  if (last != NULL && rule == last->rule()) {
1576
    // Don't expect control change for DecodeN
1577
    if (leaf->is_DecodeNarrowPtr())
1578
      return last;
D
duke 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
    // Get the new space root.
    Node* xroot = new_node(C->root());
    if (xroot == NULL) {
      // This shouldn't happen give the order of matching.
      return NULL;
    }

    // Shared constants need to have their control be root so they
    // can be scheduled properly.
    Node* control = last->in(0);
    if (control != xroot) {
      if (control == NULL || control == C->root()) {
        last->set_req(0, xroot);
      } else {
        assert(false, "unexpected control");
        return NULL;
      }
    }
    return last;
  }
  return NULL;
}


//------------------------------ReduceInst-------------------------------------
// Reduce a State tree (with given Control) into a tree of MachNodes.
// This routine (and it's cohort ReduceOper) convert Ideal Nodes into
// complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
// Each MachNode has a number of complicated MachOper operands; each
// MachOper also covers a further tree of Ideal Nodes.

// The root of the Ideal match tree is always an instruction, so we enter
// the recursion here.  After building the MachNode, we need to recurse
// the tree checking for these cases:
// (1) Child is an instruction -
//     Build the instruction (recursively), add it as an edge.
//     Build a simple operand (register) to hold the result of the instruction.
// (2) Child is an interior part of an instruction -
//     Skip over it (do nothing)
// (3) Child is the start of a operand -
//     Build the operand, place it inside the instruction
//     Call ReduceOper.
MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  assert( rule >= NUM_OPERANDS, "called with operand rule" );

1624 1625 1626
  MachNode* shared_node = find_shared_node(s->_leaf, rule);
  if (shared_node != NULL) {
    return shared_node;
D
duke 已提交
1627 1628 1629 1630 1631 1632 1633 1634 1635
  }

  // Build the object to represent this state & prepare for recursive calls
  MachNode *mach = s->MachNodeGenerator( rule, C );
  mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  assert( mach->_opnds[0] != NULL, "Missing result operand" );
  Node *leaf = s->_leaf;
  // Check for instruction or instruction chain rule
  if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1636 1637
    assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
           "duplicating node that's already been matched");
D
duke 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
    // Instruction
    mach->add_req( leaf->in(0) ); // Set initial control
    // Reduce interior of complex instruction
    ReduceInst_Interior( s, rule, mem, mach, 1 );
  } else {
    // Instruction chain rules are data-dependent on their inputs
    mach->add_req(0);             // Set initial control to none
    ReduceInst_Chain_Rule( s, rule, mem, mach );
  }

  // If a Memory was used, insert a Memory edge
1649
  if( mem != (Node*)1 ) {
D
duke 已提交
1650
    mach->ins_req(MemNode::Memory,mem);
1651 1652 1653
#ifdef ASSERT
    // Verify adr type after matching memory operation
    const MachOper* oper = mach->memory_operand();
1654
    if (oper != NULL && oper != (MachOper*)-1) {
1655 1656 1657 1658 1659 1660 1661 1662
      // It has a unique memory operand.  Find corresponding ideal mem node.
      Node* m = NULL;
      if (leaf->is_Mem()) {
        m = leaf;
      } else {
        m = _mem_node;
        assert(m != NULL && m->is_Mem(), "expecting memory node");
      }
1663 1664 1665
      const Type* mach_at = mach->adr_type();
      // DecodeN node consumed by an address may have different type
      // then its input. Don't compare types for such case.
1666
      if (m->adr_type() != mach_at &&
1667
          (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1668
           m->in(MemNode::Address)->is_AddP() &&
1669
           m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1670 1671
           m->in(MemNode::Address)->is_AddP() &&
           m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1672
           m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1673 1674 1675
        mach_at = m->adr_type();
      }
      if (m->adr_type() != mach_at) {
1676 1677 1678 1679
        m->dump();
        tty->print_cr("mach:");
        mach->dump(1);
      }
1680
      assert(m->adr_type() == mach_at, "matcher should not change adr type");
1681 1682 1683
    }
#endif
  }
D
duke 已提交
1684 1685

  // If the _leaf is an AddP, insert the base edge
1686
  if( leaf->is_AddP() )
D
duke 已提交
1687 1688 1689 1690 1691
    mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));

  uint num_proj = _proj_list.size();

  // Perform any 1-to-many expansions required
N
never 已提交
1692
  MachNode *ex = mach->Expand(s,_proj_list, mem);
D
duke 已提交
1693 1694 1695 1696 1697 1698 1699 1700
  if( ex != mach ) {
    assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
    if( ex->in(1)->is_Con() )
      ex->in(1)->set_req(0, C->root());
    // Remove old node from the graph
    for( uint i=0; i<mach->req(); i++ ) {
      mach->set_req(i,NULL);
    }
1701 1702 1703
#ifdef ASSERT
    _new2old_map.map(ex->_idx, s->_leaf);
#endif
D
duke 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
  }

  // PhaseChaitin::fixup_spills will sometimes generate spill code
  // via the matcher.  By the time, nodes have been wired into the CFG,
  // and any further nodes generated by expand rules will be left hanging
  // in space, and will not get emitted as output code.  Catch this.
  // Also, catch any new register allocation constraints ("projections")
  // generated belatedly during spill code generation.
  if (_allocation_started) {
    guarantee(ex == mach, "no expand rules during spill generation");
    guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
  }

1717
  if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
D
duke 已提交
1718
    // Record the con for sharing
1719
    _shared_nodes.map(leaf->_idx, ex);
D
duke 已提交
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
  }

  return ex;
}

void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  // 'op' is what I am expecting to receive
  int op = _leftOp[rule];
  // Operand type to catch childs result
  // This is what my child will give me.
  int opnd_class_instance = s->_rule[op];
  // Choose between operand class or not.
T
twisti 已提交
1732
  // This is what I will receive.
D
duke 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
  int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  // New rule for child.  Chase operand classes to get the actual rule.
  int newrule = s->_rule[catch_op];

  if( newrule < NUM_OPERANDS ) {
    // Chain from operand or operand class, may be output of shared node
    assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
            "Bad AD file: Instruction chain rule must chain from operand");
    // Insert operand into array of operands for this instruction
    mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );

    ReduceOper( s, newrule, mem, mach );
  } else {
    // Chain from the result of an instruction
    assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
    mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
    Node *mem1 = (Node*)1;
1750
    debug_only(Node *save_mem_node = _mem_node;)
D
duke 已提交
1751
    mach->add_req( ReduceInst(s, newrule, mem1) );
1752
    debug_only(_mem_node = save_mem_node;)
D
duke 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761
  }
  return;
}


uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  if( s->_leaf->is_Load() ) {
    Node *mem2 = s->_leaf->in(MemNode::Memory);
    assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1762
    debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
D
duke 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
    mem = mem2;
  }
  if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
    if( mach->in(0) == NULL )
      mach->set_req(0, s->_leaf->in(0));
  }

  // Now recursively walk the state tree & add operand list.
  for( uint i=0; i<2; i++ ) {   // binary tree
    State *newstate = s->_kids[i];
    if( newstate == NULL ) break;      // Might only have 1 child
    // 'op' is what I am expecting to receive
    int op;
    if( i == 0 ) {
      op = _leftOp[rule];
    } else {
      op = _rightOp[rule];
    }
    // Operand type to catch childs result
    // This is what my child will give me.
    int opnd_class_instance = newstate->_rule[op];
    // Choose between operand class or not.
    // This is what I will receive.
    int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
    // New rule for child.  Chase operand classes to get the actual rule.
    int newrule = newstate->_rule[catch_op];

    if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
      // Operand/operandClass
      // Insert operand into array of operands for this instruction
      mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
      ReduceOper( newstate, newrule, mem, mach );

    } else {                    // Child is internal operand or new instruction
      if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
        // internal operand --> call ReduceInst_Interior
        // Interior of complex instruction.  Do nothing but recurse.
        num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
      } else {
        // instruction --> call build operand(  ) to catch result
        //             --> ReduceInst( newrule )
        mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
        Node *mem1 = (Node*)1;
1806
        debug_only(Node *save_mem_node = _mem_node;)
D
duke 已提交
1807
        mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1808
        debug_only(_mem_node = save_mem_node;)
D
duke 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
      }
    }
    assert( mach->_opnds[num_opnds-1], "" );
  }
  return num_opnds;
}

// This routine walks the interior of possible complex operands.
// At each point we check our children in the match tree:
// (1) No children -
//     We are a leaf; add _leaf field as an input to the MachNode
// (2) Child is an internal operand -
//     Skip over it ( do nothing )
// (3) Child is an instruction -
//     Call ReduceInst recursively and
//     and instruction as an input to the MachNode
void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  State *kid = s->_kids[0];
  assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );

  // Leaf?  And not subsumed?
  if( kid == NULL && !_swallowed[rule] ) {
    mach->add_req( s->_leaf );  // Add leaf pointer
    return;                     // Bail out
  }

  if( s->_leaf->is_Load() ) {
    assert( mem == (Node*)1, "multiple Memories being matched at once?" );
    mem = s->_leaf->in(MemNode::Memory);
1839
    debug_only(_mem_node = s->_leaf;)
D
duke 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
  }
  if( s->_leaf->in(0) && s->_leaf->req() > 1) {
    if( !mach->in(0) )
      mach->set_req(0,s->_leaf->in(0));
    else {
      assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
    }
  }

  for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
    int newrule;
S
sla 已提交
1851
    if( i == 0)
D
duke 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
      newrule = kid->_rule[_leftOp[rule]];
    else
      newrule = kid->_rule[_rightOp[rule]];

    if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
      // Internal operand; recurse but do nothing else
      ReduceOper( kid, newrule, mem, mach );

    } else {                    // Child is a new instruction
      // Reduce the instruction, and add a direct pointer from this
      // machine instruction to the newly reduced one.
      Node *mem1 = (Node*)1;
1864
      debug_only(Node *save_mem_node = _mem_node;)
D
duke 已提交
1865
      mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1866
      debug_only(_mem_node = save_mem_node;)
D
duke 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
    }
  }
}


// -------------------------------------------------------------------------
// Java-Java calling convention
// (what you use when Java calls Java)

//------------------------------find_receiver----------------------------------
// For a given signature, return the OptoReg for parameter 0.
OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  VMRegPair regs;
  BasicType sig_bt = T_OBJECT;
  calling_convention(&sig_bt, &regs, 1, is_outgoing);
  // Return argument 0 register.  In the LP64 build pointers
  // take 2 registers, but the VM wants only the 'main' name.
  return OptoReg::as_OptoReg(regs.first());
}

// A method-klass-holder may be passed in the inline_cache_reg
// and then expanded into the inline_cache_reg and a method_oop register
//   defined in ad_<arch>.cpp


//------------------------------find_shared------------------------------------
// Set bits if Node is shared or otherwise a root
void Matcher::find_shared( Node *n ) {
  // Allocate stack of size C->unique() * 2 to avoid frequent realloc
  MStack mstack(C->unique() * 2);
1897 1898
  // Mark nodes as address_visited if they are inputs to an address expression
  VectorSet address_visited(Thread::current()->resource_area());
D
duke 已提交
1899 1900 1901 1902
  mstack.push(n, Visit);     // Don't need to pre-visit root node
  while (mstack.is_nonempty()) {
    n = mstack.node();       // Leave node on stack
    Node_State nstate = mstack.state();
1903
    uint nop = n->Opcode();
D
duke 已提交
1904
    if (nstate == Pre_Visit) {
1905 1906 1907 1908
      if (address_visited.test(n->_idx)) { // Visited in address already?
        // Flag as visited and shared now.
        set_visited(n);
      }
D
duke 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
      if (is_visited(n)) {   // Visited already?
        // Node is shared and has no reason to clone.  Flag it as shared.
        // This causes it to match into a register for the sharing.
        set_shared(n);       // Flag as shared and
        mstack.pop();        // remove node from stack
        continue;
      }
      nstate = Visit; // Not already visited; so visit now
    }
    if (nstate == Visit) {
      mstack.set_state(Post_Visit);
      set_visited(n);   // Flag as visited now
      bool mem_op = false;

1923
      switch( nop ) {  // Handle some opcodes special
D
duke 已提交
1924 1925 1926
      case Op_Phi:             // Treat Phis as shared roots
      case Op_Parm:
      case Op_Proj:            // All handled specially during matching
1927
      case Op_SafePointScalarObject:
D
duke 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
        set_shared(n);
        set_dontcare(n);
        break;
      case Op_If:
      case Op_CountedLoopEnd:
        mstack.set_state(Alt_Post_Visit); // Alternative way
        // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
        // with matching cmp/branch in 1 instruction.  The Matcher needs the
        // Bool and CmpX side-by-side, because it can only get at constants
        // that are at the leaves of Match trees, and the Bool's condition acts
        // as a constant here.
        mstack.push(n->in(1), Visit);         // Clone the Bool
        mstack.push(n->in(0), Pre_Visit);     // Visit control input
        continue; // while (mstack.is_nonempty())
      case Op_ConvI2D:         // These forms efficiently match with a prior
      case Op_ConvI2F:         //   Load but not a following Store
        if( n->in(1)->is_Load() &&        // Prior load
            n->outcnt() == 1 &&           // Not already shared
            n->unique_out()->is_Store() ) // Following store
          set_shared(n);       // Force it to be a root
        break;
      case Op_ReverseBytesI:
      case Op_ReverseBytesL:
        if( n->in(1)->is_Load() &&        // Prior load
            n->outcnt() == 1 )            // Not already shared
          set_shared(n);                  // Force it to be a root
        break;
      case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
      case Op_IfFalse:
      case Op_IfTrue:
      case Op_MachProj:
      case Op_MergeMem:
      case Op_Catch:
      case Op_CatchProj:
      case Op_CProj:
      case Op_JumpProj:
      case Op_JProj:
      case Op_NeverBranch:
        set_dontcare(n);
        break;
      case Op_Jump:
1969
        mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
D
duke 已提交
1970 1971 1972
        mstack.push(n->in(0), Pre_Visit);     // Visit Control input
        continue;                             // while (mstack.is_nonempty())
      case Op_StrComp:
C
cfang 已提交
1973 1974
      case Op_StrEquals:
      case Op_StrIndexOf:
1975
      case Op_AryEq:
1976
      case Op_EncodeISOArray:
D
duke 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
        set_shared(n); // Force result into register (it will be anyways)
        break;
      case Op_ConP: {  // Convert pointers above the centerline to NUL
        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
        const TypePtr* tp = tn->type()->is_ptr();
        if (tp->_ptr == TypePtr::AnyNull) {
          tn->set_type(TypePtr::NULL_PTR);
        }
        break;
      }
1987 1988
      case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
        TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1989 1990
        const TypePtr* tp = tn->type()->make_ptr();
        if (tp && tp->_ptr == TypePtr::AnyNull) {
1991 1992 1993 1994
          tn->set_type(TypeNarrowOop::NULL_PTR);
        }
        break;
      }
D
duke 已提交
1995 1996 1997 1998 1999 2000 2001
      case Op_Binary:         // These are introduced in the Post_Visit state.
        ShouldNotReachHere();
        break;
      case Op_ClearArray:
      case Op_SafePoint:
        mem_op = true;
        break;
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
      default:
        if( n->is_Store() ) {
          // Do match stores, despite no ideal reg
          mem_op = true;
          break;
        }
        if( n->is_Mem() ) { // Loads and LoadStores
          mem_op = true;
          // Loads must be root of match tree due to prior load conflict
          if( C->subsume_loads() == false )
            set_shared(n);
D
duke 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
        }
        // Fall into default case
        if( !n->ideal_reg() )
          set_dontcare(n);  // Unmatchable Nodes
      } // end_switch

      for(int i = n->req() - 1; i >= 0; --i) { // For my children
        Node *m = n->in(i); // Get ith input
        if (m == NULL) continue;  // Ignore NULLs
        uint mop = m->Opcode();

        // Must clone all producers of flags, or we will not match correctly.
        // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
        // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
        // are also there, so we may match a float-branch to int-flags and
        // expect the allocator to haul the flags from the int-side to the
        // fp-side.  No can do.
        if( _must_clone[mop] ) {
          mstack.push(m, Visit);
          continue; // for(int i = ...)
        }

2035
        if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2036 2037 2038 2039 2040
          // Bases used in addresses must be shared but since
          // they are shared through a DecodeN they may appear
          // to have a single use so force sharing here.
          set_shared(m->in(AddPNode::Base)->in(1));
        }
2041

2042 2043
        // Clone addressing expressions as they are "free" in memory access instructions
        if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
2044 2045 2046 2047 2048 2049
          // Some inputs for address expression are not put on stack
          // to avoid marking them as shared and forcing them into register
          // if they are used only in address expressions.
          // But they should be marked as shared if there are other uses
          // besides address expressions.

D
duke 已提交
2050
          Node *off = m->in(AddPNode::Offset);
2051 2052 2053 2054 2055
          if( off->is_Con() &&
              // When there are other uses besides address expressions
              // put it on stack and mark as shared.
              !is_visited(m) ) {
            address_visited.test_set(m->_idx); // Flag as address_visited
D
duke 已提交
2056 2057 2058
            Node *adr = m->in(AddPNode::Address);

            // Intel, ARM and friends can handle 2 adds in addressing mode
2059
            if( clone_shift_expressions && adr->is_AddP() &&
D
duke 已提交
2060 2061
                // AtomicAdd is not an addressing expression.
                // Cheap to find it by looking for screwy base.
2062 2063 2064 2065
                !adr->in(AddPNode::Base)->is_top() &&
                // Are there other uses besides address expressions?
                !is_visited(adr) ) {
              address_visited.set(adr->_idx); // Flag as address_visited
D
duke 已提交
2066 2067 2068
              Node *shift = adr->in(AddPNode::Offset);
              // Check for shift by small constant as well
              if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2069 2070 2071 2072
                  shift->in(2)->get_int() <= 3 &&
                  // Are there other uses besides address expressions?
                  !is_visited(shift) ) {
                address_visited.set(shift->_idx); // Flag as address_visited
D
duke 已提交
2073
                mstack.push(shift->in(2), Visit);
2074
                Node *conv = shift->in(1);
D
duke 已提交
2075 2076 2077 2078
#ifdef _LP64
                // Allow Matcher to match the rule which bypass
                // ConvI2L operation for an array index on LP64
                // if the index value is positive.
2079 2080 2081 2082 2083 2084
                if( conv->Opcode() == Op_ConvI2L &&
                    conv->as_Type()->type()->is_long()->_lo >= 0 &&
                    // Are there other uses besides address expressions?
                    !is_visited(conv) ) {
                  address_visited.set(conv->_idx); // Flag as address_visited
                  mstack.push(conv->in(1), Pre_Visit);
D
duke 已提交
2085 2086
                } else
#endif
2087
                mstack.push(conv, Pre_Visit);
D
duke 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
              } else {
                mstack.push(shift, Pre_Visit);
              }
              mstack.push(adr->in(AddPNode::Address), Pre_Visit);
              mstack.push(adr->in(AddPNode::Base), Pre_Visit);
            } else {  // Sparc, Alpha, PPC and friends
              mstack.push(adr, Pre_Visit);
            }

            // Clone X+offset as it also folds into most addressing expressions
            mstack.push(off, Visit);
            mstack.push(m->in(AddPNode::Base), Pre_Visit);
            continue; // for(int i = ...)
          } // if( off->is_Con() )
        }   // if( mem_op &&
        mstack.push(m, Pre_Visit);
      }     // for(int i = ...)
    }
    else if (nstate == Alt_Post_Visit) {
      mstack.pop(); // Remove node from stack
      // We cannot remove the Cmp input from the Bool here, as the Bool may be
      // shared and all users of the Bool need to move the Cmp in parallel.
      // This leaves both the Bool and the If pointing at the Cmp.  To
      // prevent the Matcher from trying to Match the Cmp along both paths
      // BoolNode::match_edge always returns a zero.

      // We reorder the Op_If in a pre-order manner, so we can visit without
T
twisti 已提交
2115
      // accidentally sharing the Cmp (the Bool and the If make 2 users).
D
duke 已提交
2116 2117 2118 2119 2120 2121 2122 2123
      n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
    }
    else if (nstate == Post_Visit) {
      mstack.pop(); // Remove node from stack

      // Now hack a few special opcodes
      switch( n->Opcode() ) {       // Handle some opcodes special
      case Op_StorePConditional:
2124
      case Op_StoreIConditional:
D
duke 已提交
2125 2126 2127
      case Op_StoreLConditional:
      case Op_CompareAndSwapI:
      case Op_CompareAndSwapL:
2128 2129
      case Op_CompareAndSwapP:
      case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
D
duke 已提交
2130
        Node *newval = n->in(MemNode::ValueIn );
2131
        Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2132
        Node *pair = new (C) BinaryNode( oldval, newval );
D
duke 已提交
2133
        n->set_req(MemNode::ValueIn,pair);
2134
        n->del_req(LoadStoreConditionalNode::ExpectedIn);
D
duke 已提交
2135 2136 2137 2138 2139 2140
        break;
      }
      case Op_CMoveD:              // Convert trinary to binary-tree
      case Op_CMoveF:
      case Op_CMoveI:
      case Op_CMoveL:
2141
      case Op_CMoveN:
D
duke 已提交
2142 2143 2144 2145 2146
      case Op_CMoveP: {
        // Restructure into a binary tree for Matching.  It's possible that
        // we could move this code up next to the graph reshaping for IfNodes
        // or vice-versa, but I do not want to debug this for Ladybird.
        // 10/2/2000 CNC.
2147
        Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
D
duke 已提交
2148
        n->set_req(1,pair1);
2149
        Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
D
duke 已提交
2150 2151 2152 2153
        n->set_req(2,pair2);
        n->del_req(3);
        break;
      }
2154
      case Op_LoopLimit: {
2155
        Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
2156 2157 2158 2159 2160
        n->set_req(1,pair1);
        n->set_req(2,n->in(3));
        n->del_req(3);
        break;
      }
2161
      case Op_StrEquals: {
2162
        Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
2163 2164 2165 2166 2167 2168 2169
        n->set_req(2,pair1);
        n->set_req(3,n->in(4));
        n->del_req(4);
        break;
      }
      case Op_StrComp:
      case Op_StrIndexOf: {
2170
        Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
2171
        n->set_req(2,pair1);
2172
        Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
2173 2174 2175 2176
        n->set_req(3,pair2);
        n->del_req(5);
        n->del_req(4);
        break;
2177 2178 2179 2180 2181 2182 2183
      }
      case Op_EncodeISOArray: {
        // Restructure into a binary tree for Matching.
        Node* pair = new (C) BinaryNode(n->in(3), n->in(4));
        n->set_req(3, pair);
        n->del_req(4);
        break;
2184
      }
D
duke 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
      default:
        break;
      }
    }
    else {
      ShouldNotReachHere();
    }
  } // end of while (mstack.is_nonempty())
}

#ifdef ASSERT
// machine-independent root to machine-dependent root
void Matcher::dump_old2new_map() {
  _old2new_map.dump();
}
#endif

//---------------------------collect_null_checks-------------------------------
// Find null checks in the ideal graph; write a machine-specific node for
// it.  Used by later implicit-null-check handling.  Actually collects
// either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
// value being tested.
2207
void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
D
duke 已提交
2208 2209 2210 2211 2212
  Node *iff = proj->in(0);
  if( iff->Opcode() == Op_If ) {
    // During matching If's have Bool & Cmp side-by-side
    BoolNode *b = iff->in(1)->as_Bool();
    Node *cmp = iff->in(2);
2213 2214 2215 2216 2217 2218 2219
    int opc = cmp->Opcode();
    if (opc != Op_CmpP && opc != Op_CmpN) return;

    const Type* ct = cmp->in(2)->bottom_type();
    if (ct == TypePtr::NULL_PTR ||
        (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {

2220
      bool push_it = false;
2221 2222 2223 2224
      if( proj->Opcode() == Op_IfTrue ) {
        extern int all_null_checks_found;
        all_null_checks_found++;
        if( b->_test._test == BoolTest::ne ) {
2225
          push_it = true;
2226 2227 2228 2229
        }
      } else {
        assert( proj->Opcode() == Op_IfFalse, "" );
        if( b->_test._test == BoolTest::eq ) {
2230
          push_it = true;
D
duke 已提交
2231 2232
        }
      }
2233 2234 2235 2236
      if( push_it ) {
        _null_check_tests.push(proj);
        Node* val = cmp->in(1);
#ifdef _LP64
2237 2238
        if (val->bottom_type()->isa_narrowoop() &&
            !Matcher::narrow_oop_use_complex_address()) {
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
          //
          // Look for DecodeN node which should be pinned to orig_proj.
          // On platforms (Sparc) which can not handle 2 adds
          // in addressing mode we have to keep a DecodeN node and
          // use it to do implicit NULL check in address.
          //
          // DecodeN node was pinned to non-null path (orig_proj) during
          // CastPP transformation in final_graph_reshaping_impl().
          //
          uint cnt = orig_proj->outcnt();
          for (uint i = 0; i < orig_proj->outcnt(); i++) {
            Node* d = orig_proj->raw_out(i);
            if (d->is_DecodeN() && d->in(1) == val) {
              val = d;
              val->set_req(0, NULL); // Unpin now.
2254 2255 2256
              // Mark this as special case to distinguish from
              // a regular case: CmpP(DecodeN, NULL).
              val = (Node*)(((intptr_t)val) | 1);
2257 2258 2259 2260 2261 2262 2263
              break;
            }
          }
        }
#endif
        _null_check_tests.push(val);
      }
D
duke 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
    }
  }
}

//---------------------------validate_null_checks------------------------------
// Its possible that the value being NULL checked is not the root of a match
// tree.  If so, I cannot use the value in an implicit null check.
void Matcher::validate_null_checks( ) {
  uint cnt = _null_check_tests.size();
  for( uint i=0; i < cnt; i+=2 ) {
    Node *test = _null_check_tests[i];
    Node *val = _null_check_tests[i+1];
2276 2277
    bool is_decoden = ((intptr_t)val) & 1;
    val = (Node*)(((intptr_t)val) & ~1);
D
duke 已提交
2278
    if (has_new_node(val)) {
2279 2280
      Node* new_val = new_node(val);
      if (is_decoden) {
2281
        assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2282 2283 2284 2285 2286 2287 2288
        // Note: new_val may have a control edge if
        // the original ideal node DecodeN was matched before
        // it was unpinned in Matcher::collect_null_checks().
        // Unpin the mach node and mark it.
        new_val->set_req(0, NULL);
        new_val = (Node*)(((intptr_t)new_val) | 1);
      }
D
duke 已提交
2289
      // Is a match-tree root, so replace with the matched value
2290
      _null_check_tests.map(i+1, new_val);
D
duke 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
    } else {
      // Yank from candidate list
      _null_check_tests.map(i+1,_null_check_tests[--cnt]);
      _null_check_tests.map(i,_null_check_tests[--cnt]);
      _null_check_tests.pop();
      _null_check_tests.pop();
      i-=2;
    }
  }
}

// Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
// atomic instruction acting as a store_load barrier without any
// intervening volatile load, and thus we don't need a barrier here.
// We retain the Node to act as a compiler ordering barrier.
bool Matcher::post_store_load_barrier(const Node *vmb) {
  Compile *C = Compile::current();
  assert( vmb->is_MemBar(), "" );
  assert( vmb->Opcode() != Op_MemBarAcquire, "" );
  const MemBarNode *mem = (const MemBarNode*)vmb;

  // Get the Proj node, ctrl, that can be used to iterate forward
  Node *ctrl = NULL;
  DUIterator_Fast imax, i = mem->fast_outs(imax);
  while( true ) {
    ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
    assert( ctrl->is_Proj(), "only projections here" );
    ProjNode *proj = (ProjNode*)ctrl;
    if( proj->_con == TypeFunc::Control &&
        !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
      break;
    i++;
  }

  for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
    Node *x = ctrl->fast_out(j);
    int xop = x->Opcode();

    // We don't need current barrier if we see another or a lock
    // before seeing volatile load.
    //
    // Op_Fastunlock previously appeared in the Op_* list below.
    // With the advent of 1-0 lock operations we're no longer guaranteed
    // that a monitor exit operation contains a serializing instruction.

    if (xop == Op_MemBarVolatile ||
        xop == Op_FastLock ||
        xop == Op_CompareAndSwapL ||
        xop == Op_CompareAndSwapP ||
2340
        xop == Op_CompareAndSwapN ||
D
duke 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
        xop == Op_CompareAndSwapI)
      return true;

    if (x->is_MemBar()) {
      // We must retain this membar if there is an upcoming volatile
      // load, which will be preceded by acquire membar.
      if (xop == Op_MemBarAcquire)
        return false;
      // For other kinds of barriers, check by pretending we
      // are them, and seeing if we can be removed.
      else
        return post_store_load_barrier((const MemBarNode*)x);
    }

    // Delicate code to detect case of an upcoming fastlock block
    if( x->is_If() && x->req() > 1 &&
        !C->node_arena()->contains(x) ) { // Unmatched old-space only
      Node *iff = x;
      Node *bol = iff->in(1);
      // The iff might be some random subclass of If or bol might be Con-Top
      if (!bol->is_Bool())  return false;
      assert( bol->req() > 1, "" );
      return (bol->in(1)->Opcode() == Op_FastUnlock);
    }
    // probably not necessary to check for these
    if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
      return false;
  }
  return false;
}

//=============================================================================
//---------------------------State---------------------------------------------
State::State(void) {
#ifdef ASSERT
  _id = 0;
  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  //memset(_cost, -1, sizeof(_cost));
  //memset(_rule, -1, sizeof(_rule));
#endif
  memset(_valid, 0, sizeof(_valid));
}

#ifdef ASSERT
State::~State() {
  _id = 99;
  _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  memset(_cost, -3, sizeof(_cost));
  memset(_rule, -3, sizeof(_rule));
}
#endif

#ifndef PRODUCT
//---------------------------dump----------------------------------------------
void State::dump() {
  tty->print("\n");
  dump(0);
}

void State::dump(int depth) {
  for( int j = 0; j < depth; j++ )
    tty->print("   ");
  tty->print("--N: ");
  _leaf->dump();
  uint i;
  for( i = 0; i < _LAST_MACH_OPER; i++ )
    // Check for valid entry
    if( valid(i) ) {
      for( int j = 0; j < depth; j++ )
        tty->print("   ");
        assert(_cost[i] != max_juint, "cost must be a valid value");
        assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
        tty->print_cr("%s  %d  %s",
                      ruleName[i], _cost[i], ruleName[_rule[i]] );
      }
  tty->print_cr("");

  for( i=0; i<2; i++ )
    if( _kids[i] )
      _kids[i]->dump(depth+1);
}
#endif