ptrQueue.cpp 10.2 KB
Newer Older
1
/*
X
xdono 已提交
2
 * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_ptrQueue.cpp.incl"

28 29
PtrQueue::PtrQueue(PtrQueueSet* qset_, bool perm, bool active) :
  _qset(qset_), _buf(NULL), _index(0), _active(active),
30 31 32
  _perm(perm), _lock(NULL)
{}

33
void PtrQueue::flush() {
34 35 36 37 38 39 40 41 42 43 44
  if (!_perm && _buf != NULL) {
    if (_index == _sz) {
      // No work to do.
      qset()->deallocate_buffer(_buf);
    } else {
      // We must NULL out the unused entries, then enqueue.
      for (size_t i = 0; i < _index; i += oopSize) {
        _buf[byte_index_to_index((int)i)] = NULL;
      }
      qset()->enqueue_complete_buffer(_buf);
    }
45 46
    _buf = NULL;
    _index = 0;
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
  }
}


static int byte_index_to_index(int ind) {
  assert((ind % oopSize) == 0, "Invariant.");
  return ind / oopSize;
}

static int index_to_byte_index(int byte_ind) {
  return byte_ind * oopSize;
}

void PtrQueue::enqueue_known_active(void* ptr) {
  assert(0 <= _index && _index <= _sz, "Invariant.");
  assert(_index == 0 || _buf != NULL, "invariant");

  while (_index == 0) {
    handle_zero_index();
  }

68
  assert(_index > 0, "postcondition");
69 70 71 72 73 74 75
  _index -= oopSize;
  _buf[byte_index_to_index((int)_index)] = ptr;
  assert(0 <= _index && _index <= _sz, "Invariant.");
}

void PtrQueue::locking_enqueue_completed_buffer(void** buf) {
  assert(_lock->owned_by_self(), "Required.");
76 77 78 79

  // We have to unlock _lock (which may be Shared_DirtyCardQ_lock) before
  // we acquire DirtyCardQ_CBL_mon inside enqeue_complete_buffer as they
  // have the same rank and we may get the "possible deadlock" message
80
  _lock->unlock();
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  qset()->enqueue_complete_buffer(buf);
  // We must relock only because the caller will unlock, for the normal
  // case.
  _lock->lock_without_safepoint_check();
}


PtrQueueSet::PtrQueueSet(bool notify_when_complete) :
  _max_completed_queue(0),
  _cbl_mon(NULL), _fl_lock(NULL),
  _notify_when_complete(notify_when_complete),
  _sz(0),
  _completed_buffers_head(NULL),
  _completed_buffers_tail(NULL),
  _n_completed_buffers(0),
  _process_completed_threshold(0), _process_completed(false),
  _buf_free_list(NULL), _buf_free_list_sz(0)
99 100 101
{
  _fl_owner = this;
}
102 103 104

void** PtrQueueSet::allocate_buffer() {
  assert(_sz > 0, "Didn't set a buffer size.");
105 106
  MutexLockerEx x(_fl_owner->_fl_lock, Mutex::_no_safepoint_check_flag);
  if (_fl_owner->_buf_free_list != NULL) {
107 108
    void** res = BufferNode::make_buffer_from_node(_fl_owner->_buf_free_list);
    _fl_owner->_buf_free_list = _fl_owner->_buf_free_list->next();
109
    _fl_owner->_buf_free_list_sz--;
110 111
    return res;
  } else {
112 113 114
    // Allocate space for the BufferNode in front of the buffer.
    char *b =  NEW_C_HEAP_ARRAY(char, _sz + BufferNode::aligned_size());
    return BufferNode::make_buffer_from_block(b);
115 116 117 118 119
  }
}

void PtrQueueSet::deallocate_buffer(void** buf) {
  assert(_sz > 0, "Didn't set a buffer size.");
120
  MutexLockerEx x(_fl_owner->_fl_lock, Mutex::_no_safepoint_check_flag);
121 122 123
  BufferNode *node = BufferNode::make_node_from_buffer(buf);
  node->set_next(_fl_owner->_buf_free_list);
  _fl_owner->_buf_free_list = node;
124
  _fl_owner->_buf_free_list_sz++;
125 126 127
}

void PtrQueueSet::reduce_free_list() {
128
  assert(_fl_owner == this, "Free list reduction is allowed only for the owner");
129 130 131 132 133
  // For now we'll adopt the strategy of deleting half.
  MutexLockerEx x(_fl_lock, Mutex::_no_safepoint_check_flag);
  size_t n = _buf_free_list_sz / 2;
  while (n > 0) {
    assert(_buf_free_list != NULL, "_buf_free_list_sz must be wrong.");
134 135 136
    void* b = BufferNode::make_block_from_node(_buf_free_list);
    _buf_free_list = _buf_free_list->next();
    FREE_C_HEAP_ARRAY(char, b);
137
    _buf_free_list_sz --;
138 139 140 141
    n--;
  }
}

142 143 144 145 146 147
void PtrQueue::handle_zero_index() {
  assert(0 == _index, "Precondition.");
  // This thread records the full buffer and allocates a new one (while
  // holding the lock if there is one).
  if (_buf != NULL) {
    if (_lock) {
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
      assert(_lock->owned_by_self(), "Required.");

      // The current PtrQ may be the shared dirty card queue and
      // may be being manipulated by more than one worker thread
      // during a pause. Since the enqueuing of the completed
      // buffer unlocks the Shared_DirtyCardQ_lock more than one
      // worker thread can 'race' on reading the shared queue attributes
      // (_buf and _index) and multiple threads can call into this
      // routine for the same buffer. This will cause the completed
      // buffer to be added to the CBL multiple times.

      // We "claim" the current buffer by caching value of _buf in
      // a local and clearing the field while holding _lock. When
      // _lock is released (while enqueueing the completed buffer)
      // the thread that acquires _lock will skip this code,
      // preventing the subsequent the multiple enqueue, and
      // install a newly allocated buffer below.

      void** buf = _buf;   // local pointer to completed buffer
      _buf = NULL;         // clear shared _buf field

      locking_enqueue_completed_buffer(buf);  // enqueue completed buffer

      // While the current thread was enqueuing the buffer another thread
      // may have a allocated a new buffer and inserted it into this pointer
      // queue. If that happens then we just return so that the current
      // thread doesn't overwrite the buffer allocated by the other thread
      // and potentially losing some dirtied cards.

      if (_buf != NULL) return;
178 179 180 181 182 183 184
    } else {
      if (qset()->process_or_enqueue_complete_buffer(_buf)) {
        // Recycle the buffer. No allocation.
        _sz = qset()->buffer_size();
        _index = _sz;
        return;
      }
185
    }
186 187 188 189 190 191 192
  }
  // Reallocate the buffer
  _buf = qset()->allocate_buffer();
  _sz = qset()->buffer_size();
  _index = _sz;
  assert(0 <= _index && _index <= _sz, "Invariant.");
}
193

194 195 196 197 198 199 200 201 202 203 204
bool PtrQueueSet::process_or_enqueue_complete_buffer(void** buf) {
  if (Thread::current()->is_Java_thread()) {
    // We don't lock. It is fine to be epsilon-precise here.
    if (_max_completed_queue == 0 || _max_completed_queue > 0 &&
        _n_completed_buffers >= _max_completed_queue + _completed_queue_padding) {
      bool b = mut_process_buffer(buf);
      if (b) {
        // True here means that the buffer hasn't been deallocated and the caller may reuse it.
        return true;
      }
    }
205
  }
206 207 208 209
  // The buffer will be enqueued. The caller will have to get a new one.
  enqueue_complete_buffer(buf);
  return false;
}
210

211 212 213 214
void PtrQueueSet::enqueue_complete_buffer(void** buf, size_t index) {
  MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
  BufferNode* cbn = BufferNode::new_from_buffer(buf);
  cbn->set_index(index);
215 216 217 218 219
  if (_completed_buffers_tail == NULL) {
    assert(_completed_buffers_head == NULL, "Well-formedness");
    _completed_buffers_head = cbn;
    _completed_buffers_tail = cbn;
  } else {
220
    _completed_buffers_tail->set_next(cbn);
221 222 223 224
    _completed_buffers_tail = cbn;
  }
  _n_completed_buffers++;

225
  if (!_process_completed && _process_completed_threshold >= 0 &&
226
      _n_completed_buffers >= _process_completed_threshold) {
227 228
    _process_completed = true;
    if (_notify_when_complete)
229
      _cbl_mon->notify();
230 231 232 233 234 235
  }
  debug_only(assert_completed_buffer_list_len_correct_locked());
}

int PtrQueueSet::completed_buffers_list_length() {
  int n = 0;
236
  BufferNode* cbn = _completed_buffers_head;
237 238
  while (cbn != NULL) {
    n++;
239
    cbn = cbn->next();
240 241 242 243 244 245 246 247 248 249
  }
  return n;
}

void PtrQueueSet::assert_completed_buffer_list_len_correct() {
  MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
  assert_completed_buffer_list_len_correct_locked();
}

void PtrQueueSet::assert_completed_buffer_list_len_correct_locked() {
250
  guarantee(completed_buffers_list_length() ==  _n_completed_buffers,
251 252 253 254 255 256 257 258
            "Completed buffer length is wrong.");
}

void PtrQueueSet::set_buffer_size(size_t sz) {
  assert(_sz == 0 && sz > 0, "Should be called only once.");
  _sz = sz * oopSize;
}

259 260
// Merge lists of buffers. Notify the processing threads.
// The source queue is emptied as a result. The queues
261 262 263 264 265 266 267 268 269 270 271
// must share the monitor.
void PtrQueueSet::merge_bufferlists(PtrQueueSet *src) {
  assert(_cbl_mon == src->_cbl_mon, "Should share the same lock");
  MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
  if (_completed_buffers_tail == NULL) {
    assert(_completed_buffers_head == NULL, "Well-formedness");
    _completed_buffers_head = src->_completed_buffers_head;
    _completed_buffers_tail = src->_completed_buffers_tail;
  } else {
    assert(_completed_buffers_head != NULL, "Well formedness");
    if (src->_completed_buffers_head != NULL) {
272
      _completed_buffers_tail->set_next(src->_completed_buffers_head);
273 274 275 276 277 278 279 280 281 282 283 284
      _completed_buffers_tail = src->_completed_buffers_tail;
    }
  }
  _n_completed_buffers += src->_n_completed_buffers;

  src->_n_completed_buffers = 0;
  src->_completed_buffers_head = NULL;
  src->_completed_buffers_tail = NULL;

  assert(_completed_buffers_head == NULL && _completed_buffers_tail == NULL ||
         _completed_buffers_head != NULL && _completed_buffers_tail != NULL,
         "Sanity");
285
}
286

287 288 289
void PtrQueueSet::notify_if_necessary() {
  MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag);
  if (_n_completed_buffers >= _process_completed_threshold || _max_completed_queue == 0) {
290 291
    _process_completed = true;
    if (_notify_when_complete)
292
      _cbl_mon->notify();
293 294
  }
}