concurrentMark.cpp 139.5 KB
Newer Older
1
/*
X
xdono 已提交
2
 * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_concurrentMark.cpp.incl"

//
// CMS Bit Map Wrapper

CMBitMapRO::CMBitMapRO(ReservedSpace rs, int shifter):
  _bm((uintptr_t*)NULL,0),
  _shifter(shifter) {
  _bmStartWord = (HeapWord*)(rs.base());
  _bmWordSize  = rs.size()/HeapWordSize;    // rs.size() is in bytes
  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));

  guarantee(brs.is_reserved(), "couldn't allocate CMS bit map");
  // For now we'll just commit all of the bit map up fromt.
  // Later on we'll try to be more parsimonious with swap.
  guarantee(_virtual_space.initialize(brs, brs.size()),
            "couldn't reseve backing store for CMS bit map");
  assert(_virtual_space.committed_size() == brs.size(),
         "didn't reserve backing store for all of CMS bit map?");
  _bm.set_map((uintptr_t*)_virtual_space.low());
  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
         _bmWordSize, "inconsistency in bit map sizing");
  _bm.set_size(_bmWordSize >> _shifter);
}

HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
                                               HeapWord* limit) const {
  // First we must round addr *up* to a possible object boundary.
  addr = (HeapWord*)align_size_up((intptr_t)addr,
                                  HeapWordSize << _shifter);
  size_t addrOffset = heapWordToOffset(addr);
  if (limit == NULL) limit = _bmStartWord + _bmWordSize;
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
                                                 HeapWord* limit) const {
  size_t addrOffset = heapWordToOffset(addr);
  if (limit == NULL) limit = _bmStartWord + _bmWordSize;
  size_t limitOffset = heapWordToOffset(limit);
  size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= addr, "get_next_one postcondition");
  assert(nextAddr == limit || !isMarked(nextAddr),
         "get_next_one postcondition");
  return nextAddr;
}

int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return (int) (diff >> _shifter);
}

bool CMBitMapRO::iterate(BitMapClosure* cl, MemRegion mr) {
  HeapWord* left  = MAX2(_bmStartWord, mr.start());
  HeapWord* right = MIN2(_bmStartWord + _bmWordSize, mr.end());
  if (right > left) {
    // Right-open interval [leftOffset, rightOffset).
    return _bm.iterate(cl, heapWordToOffset(left), heapWordToOffset(right));
  } else {
    return true;
  }
}

void CMBitMapRO::mostly_disjoint_range_union(BitMap*   from_bitmap,
                                             size_t    from_start_index,
                                             HeapWord* to_start_word,
                                             size_t    word_num) {
  _bm.mostly_disjoint_range_union(from_bitmap,
                                  from_start_index,
                                  heapWordToOffset(to_start_word),
                                  word_num);
}

#ifndef PRODUCT
bool CMBitMapRO::covers(ReservedSpace rs) const {
  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
110
  assert(((size_t)_bm.size() * (size_t)(1 << _shifter)) == _bmWordSize,
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
         "size inconsistency");
  return _bmStartWord == (HeapWord*)(rs.base()) &&
         _bmWordSize  == rs.size()>>LogHeapWordSize;
}
#endif

void CMBitMap::clearAll() {
  _bm.clear();
  return;
}

void CMBitMap::markRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
          ((HeapWord *) mr.end())),
         "markRange memory region end is not card aligned");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), true);
}

void CMBitMap::clearRange(MemRegion mr) {
  mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  assert(!mr.is_empty(), "unexpected empty region");
  // convert address range into offset range
  _bm.at_put_range(heapWordToOffset(mr.start()),
                   heapWordToOffset(mr.end()), false);
}

MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
                                            HeapWord* end_addr) {
  HeapWord* start = getNextMarkedWordAddress(addr);
  start = MIN2(start, end_addr);
  HeapWord* end   = getNextUnmarkedWordAddress(start);
  end = MIN2(end, end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clearRange(mr);
  }
  return mr;
}

CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
  _base(NULL), _cm(cm)
#ifdef ASSERT
  , _drain_in_progress(false)
  , _drain_in_progress_yields(false)
#endif
{}

void CMMarkStack::allocate(size_t size) {
  _base = NEW_C_HEAP_ARRAY(oop, size);
  if (_base == NULL)
    vm_exit_during_initialization("Failed to allocate "
                                  "CM region mark stack");
  _index = 0;
  // QQQQ cast ...
  _capacity = (jint) size;
  _oops_do_bound = -1;
  NOT_PRODUCT(_max_depth = 0);
}

CMMarkStack::~CMMarkStack() {
  if (_base != NULL) FREE_C_HEAP_ARRAY(oop, _base);
}

void CMMarkStack::par_push(oop ptr) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = ptr;
      // Note that we don't maintain this atomically.  We could, but it
      // doesn't seem necessary.
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}

void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index + n;
    if (next_index > _capacity) {
      _overflow = true;
      return;
    }
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      for (int i = 0; i < n; i++) {
        int ind = index + i;
        assert(ind < _capacity, "By overflow test above.");
        _base[ind] = ptr_arr[i];
      }
      NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
      return;
    }
    // Otherwise, we need to try again.
  }
}


void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint start = _index;
  jint next_index = start + n;
  if (next_index > _capacity) {
    _overflow = true;
    return;
  }
  // Otherwise.
  _index = next_index;
  for (int i = 0; i < n; i++) {
    int ind = start + i;
240
    assert(ind < _capacity, "By overflow test above.");
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    _base[ind] = ptr_arr[i];
  }
}


bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  jint index = _index;
  if (index == 0) {
    *n = 0;
    return false;
  } else {
    int k = MIN2(max, index);
    jint new_ind = index - k;
    for (int j = 0; j < k; j++) {
      ptr_arr[j] = _base[new_ind + j];
    }
    _index = new_ind;
    *n = k;
    return true;
  }
}


CMRegionStack::CMRegionStack() : _base(NULL) {}

void CMRegionStack::allocate(size_t size) {
  _base = NEW_C_HEAP_ARRAY(MemRegion, size);
  if (_base == NULL)
    vm_exit_during_initialization("Failed to allocate "
                                  "CM region mark stack");
  _index = 0;
  // QQQQ cast ...
  _capacity = (jint) size;
}

CMRegionStack::~CMRegionStack() {
  if (_base != NULL) FREE_C_HEAP_ARRAY(oop, _base);
}

void CMRegionStack::push(MemRegion mr) {
  assert(mr.word_size() > 0, "Precondition");
  while (true) {
    if (isFull()) {
      _overflow = true;
      return;
    }
    // Otherwise...
    jint index = _index;
    jint next_index = index+1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      _base[index] = mr;
      return;
    }
    // Otherwise, we need to try again.
  }
}

MemRegion CMRegionStack::pop() {
  while (true) {
    // Otherwise...
    jint index = _index;

    if (index == 0) {
      return MemRegion();
    }
    jint next_index = index-1;
    jint res = Atomic::cmpxchg(next_index, &_index, index);
    if (res == index) {
      MemRegion mr = _base[next_index];
      if (mr.start() != NULL) {
313 314
        assert(mr.end() != NULL, "invariant");
        assert(mr.word_size() > 0, "invariant");
315 316 317
        return mr;
      } else {
        // that entry was invalidated... let's skip it
318
        assert(mr.end() == NULL, "invariant");
319 320 321 322 323 324 325 326 327 328 329 330
      }
    }
    // Otherwise, we need to try again.
  }
}

bool CMRegionStack::invalidate_entries_into_cset() {
  bool result = false;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  for (int i = 0; i < _oops_do_bound; ++i) {
    MemRegion mr = _base[i];
    if (mr.start() != NULL) {
331 332
      assert(mr.end() != NULL, "invariant");
      assert(mr.word_size() > 0, "invariant");
333
      HeapRegion* hr = g1h->heap_region_containing(mr.start());
334
      assert(hr != NULL, "invariant");
335 336 337 338 339 340 341
      if (hr->in_collection_set()) {
        // The region points into the collection set
        _base[i] = MemRegion();
        result = true;
      }
    } else {
      // that entry was invalidated... let's skip it
342
      assert(mr.end() == NULL, "invariant");
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    }
  }
  return result;
}

template<class OopClosureClass>
bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
  assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
         || SafepointSynchronize::is_at_safepoint(),
         "Drain recursion must be yield-safe.");
  bool res = true;
  debug_only(_drain_in_progress = true);
  debug_only(_drain_in_progress_yields = yield_after);
  while (!isEmpty()) {
    oop newOop = pop();
    assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
    assert(newOop->is_oop(), "Expected an oop");
    assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
           "only grey objects on this stack");
    // iterate over the oops in this oop, marking and pushing
    // the ones in CMS generation.
    newOop->oop_iterate(cl);
    if (yield_after && _cm->do_yield_check()) {
      res = false; break;
    }
  }
  debug_only(_drain_in_progress = false);
  return res;
}

void CMMarkStack::oops_do(OopClosure* f) {
  if (_index == 0) return;
  assert(_oops_do_bound != -1 && _oops_do_bound <= _index,
         "Bound must be set.");
  for (int i = 0; i < _oops_do_bound; i++) {
    f->do_oop(&_base[i]);
  }
  _oops_do_bound = -1;
}

bool ConcurrentMark::not_yet_marked(oop obj) const {
  return (_g1h->is_obj_ill(obj)
          || (_g1h->is_in_permanent(obj)
              && !nextMarkBitMap()->isMarked((HeapWord*)obj)));
}

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

ConcurrentMark::ConcurrentMark(ReservedSpace rs,
                               int max_regions) :
  _markBitMap1(rs, MinObjAlignment - 1),
  _markBitMap2(rs, MinObjAlignment - 1),

  _parallel_marking_threads(0),
  _sleep_factor(0.0),
  _marking_task_overhead(1.0),
  _cleanup_sleep_factor(0.0),
  _cleanup_task_overhead(1.0),
  _region_bm(max_regions, false /* in_resource_area*/),
  _card_bm((rs.size() + CardTableModRefBS::card_size - 1) >>
           CardTableModRefBS::card_shift,
           false /* in_resource_area*/),
  _prevMarkBitMap(&_markBitMap1),
  _nextMarkBitMap(&_markBitMap2),
  _at_least_one_mark_complete(false),

  _markStack(this),
  _regionStack(),
  // _finger set in set_non_marking_state

  _max_task_num(MAX2(ParallelGCThreads, (size_t)1)),
  // _active_tasks set in set_non_marking_state
  // _tasks set inside the constructor
  _task_queues(new CMTaskQueueSet((int) _max_task_num)),
  _terminator(ParallelTaskTerminator((int) _max_task_num, _task_queues)),

  _has_overflown(false),
  _concurrent(false),
423 424 425 426
  _has_aborted(false),
  _restart_for_overflow(false),
  _concurrent_marking_in_progress(false),
  _should_gray_objects(false),
427 428 429 430 431 432 433 434 435

  // _verbose_level set below

  _init_times(),
  _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
  _cleanup_times(),
  _total_counting_time(0.0),
  _total_rs_scrub_time(0.0),

436
  _parallel_workers(NULL)
437 438 439 440 441 442 443 444 445 446 447 448 449
{
  CMVerboseLevel verbose_level =
    (CMVerboseLevel) G1MarkingVerboseLevel;
  if (verbose_level < no_verbose)
    verbose_level = no_verbose;
  if (verbose_level > high_verbose)
    verbose_level = high_verbose;
  _verbose_level = verbose_level;

  if (verbose_low())
    gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
                           "heap end = "PTR_FORMAT, _heap_start, _heap_end);

450
  _markStack.allocate(MarkStackSize);
J
johnc 已提交
451
  _regionStack.allocate(G1MarkRegionStackSize);
452 453

  // Create & start a ConcurrentMark thread.
454 455 456 457
  _cmThread = new ConcurrentMarkThread(this);
  assert(cmThread() != NULL, "CM Thread should have been created");
  assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");

458 459 460 461 462 463
  _g1h = G1CollectedHeap::heap();
  assert(CGC_lock != NULL, "Where's the CGC_lock?");
  assert(_markBitMap1.covers(rs), "_markBitMap1 inconsistency");
  assert(_markBitMap2.covers(rs), "_markBitMap2 inconsistency");

  SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
464
  satb_qs.set_buffer_size(G1SATBBufferSize);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

  int size = (int) MAX2(ParallelGCThreads, (size_t)1);
  _par_cleanup_thread_state = NEW_C_HEAP_ARRAY(ParCleanupThreadState*, size);
  for (int i = 0 ; i < size; i++) {
    _par_cleanup_thread_state[i] = new ParCleanupThreadState;
  }

  _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_task_num);
  _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_task_num);

  // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
  _active_tasks = _max_task_num;
  for (int i = 0; i < (int) _max_task_num; ++i) {
    CMTaskQueue* task_queue = new CMTaskQueue();
    task_queue->initialize();
    _task_queues->register_queue(i, task_queue);

    _tasks[i] = new CMTask(i, this, task_queue, _task_queues);
    _accum_task_vtime[i] = 0.0;
  }

486 487
  if (ConcGCThreads > ParallelGCThreads) {
    vm_exit_during_initialization("Can't have more ConcGCThreads "
488 489 490 491 492 493 494 495 496
                                  "than ParallelGCThreads.");
  }
  if (ParallelGCThreads == 0) {
    // if we are not running with any parallel GC threads we will not
    // spawn any marking threads either
    _parallel_marking_threads =   0;
    _sleep_factor             = 0.0;
    _marking_task_overhead    = 1.0;
  } else {
497 498
    if (ConcGCThreads > 0) {
      // notice that ConcGCThreads overwrites G1MarkingOverheadPercent
499 500
      // if both are set

501
      _parallel_marking_threads = ConcGCThreads;
502 503
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
J
johnc 已提交
504
    } else if (G1MarkingOverheadPercent > 0) {
505 506 507 508
      // we will calculate the number of parallel marking threads
      // based on a target overhead with respect to the soft real-time
      // goal

J
johnc 已提交
509
      double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
510
      double overall_cm_overhead =
J
johnc 已提交
511 512
        (double) MaxGCPauseMillis * marking_overhead /
        (double) GCPauseIntervalMillis;
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
      double cpu_ratio = 1.0 / (double) os::processor_count();
      double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
      double marking_task_overhead =
        overall_cm_overhead / marking_thread_num *
                                                (double) os::processor_count();
      double sleep_factor =
                         (1.0 - marking_task_overhead) / marking_task_overhead;

      _parallel_marking_threads = (size_t) marking_thread_num;
      _sleep_factor             = sleep_factor;
      _marking_task_overhead    = marking_task_overhead;
    } else {
      _parallel_marking_threads = MAX2((ParallelGCThreads + 2) / 4, (size_t)1);
      _sleep_factor             = 0.0;
      _marking_task_overhead    = 1.0;
    }

    if (parallel_marking_threads() > 1)
      _cleanup_task_overhead = 1.0;
    else
      _cleanup_task_overhead = marking_task_overhead();
    _cleanup_sleep_factor =
                     (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();

#if 0
    gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
    gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
    gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
    gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
    gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
#endif

545
    guarantee(parallel_marking_threads() > 0, "peace of mind");
T
tonyp 已提交
546
    _parallel_workers = new WorkGang("G1 Parallel Marking Threads",
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
                                     (int) parallel_marking_threads(), false, true);
    if (_parallel_workers == NULL)
      vm_exit_during_initialization("Failed necessary allocation.");
  }

  // so that the call below can read a sensible value
  _heap_start = (HeapWord*) rs.base();
  set_non_marking_state();
}

void ConcurrentMark::update_g1_committed(bool force) {
  // If concurrent marking is not in progress, then we do not need to
  // update _heap_end. This has a subtle and important
  // side-effect. Imagine that two evacuation pauses happen between
  // marking completion and remark. The first one can grow the
  // heap (hence now the finger is below the heap end). Then, the
  // second one could unnecessarily push regions on the region
  // stack. This causes the invariant that the region stack is empty
  // at the beginning of remark to be false. By ensuring that we do
  // not observe heap expansions after marking is complete, then we do
  // not have this problem.
  if (!concurrent_marking_in_progress() && !force)
    return;

  MemRegion committed = _g1h->g1_committed();
572
  assert(committed.start() == _heap_start, "start shouldn't change");
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
  HeapWord* new_end = committed.end();
  if (new_end > _heap_end) {
    // The heap has been expanded.

    _heap_end = new_end;
  }
  // Notice that the heap can also shrink. However, this only happens
  // during a Full GC (at least currently) and the entire marking
  // phase will bail out and the task will not be restarted. So, let's
  // do nothing.
}

void ConcurrentMark::reset() {
  // Starting values for these two. This should be called in a STW
  // phase. CM will be notified of any future g1_committed expansions
  // will be at the end of evacuation pauses, when tasks are
  // inactive.
  MemRegion committed = _g1h->g1_committed();
  _heap_start = committed.start();
  _heap_end   = committed.end();

594 595 596 597
  // Separated the asserts so that we know which one fires.
  assert(_heap_start != NULL, "heap bounds should look ok");
  assert(_heap_end != NULL, "heap bounds should look ok");
  assert(_heap_start < _heap_end, "heap bounds should look ok");
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

  // reset all the marking data structures and any necessary flags
  clear_marking_state();

  if (verbose_low())
    gclog_or_tty->print_cr("[global] resetting");

  // We do reset all of them, since different phases will use
  // different number of active threads. So, it's easiest to have all
  // of them ready.
  for (int i = 0; i < (int) _max_task_num; ++i)
    _tasks[i]->reset(_nextMarkBitMap);

  // we need this to make sure that the flag is on during the evac
  // pause with initial mark piggy-backed
  set_concurrent_marking_in_progress();
}

void ConcurrentMark::set_phase(size_t active_tasks, bool concurrent) {
617
  assert(active_tasks <= _max_task_num, "we should not have more");
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

  _active_tasks = active_tasks;
  // Need to update the three data structures below according to the
  // number of active threads for this phase.
  _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
  _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
  _second_overflow_barrier_sync.set_n_workers((int) active_tasks);

  _concurrent = concurrent;
  // We propagate this to all tasks, not just the active ones.
  for (int i = 0; i < (int) _max_task_num; ++i)
    _tasks[i]->set_concurrent(concurrent);

  if (concurrent) {
    set_concurrent_marking_in_progress();
  } else {
    // We currently assume that the concurrent flag has been set to
    // false before we start remark. At this point we should also be
    // in a STW phase.
637 638
    assert(!concurrent_marking_in_progress(), "invariant");
    assert(_finger == _heap_end, "only way to get here");
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
    update_g1_committed(true);
  }
}

void ConcurrentMark::set_non_marking_state() {
  // We set the global marking state to some default values when we're
  // not doing marking.
  clear_marking_state();
  _active_tasks = 0;
  clear_concurrent_marking_in_progress();
}

ConcurrentMark::~ConcurrentMark() {
  int size = (int) MAX2(ParallelGCThreads, (size_t)1);
  for (int i = 0; i < size; i++) delete _par_cleanup_thread_state[i];
  FREE_C_HEAP_ARRAY(ParCleanupThreadState*,
                    _par_cleanup_thread_state);

  for (int i = 0; i < (int) _max_task_num; ++i) {
    delete _task_queues->queue(i);
    delete _tasks[i];
  }
  delete _task_queues;
  FREE_C_HEAP_ARRAY(CMTask*, _max_task_num);
}

// This closure is used to mark refs into the g1 generation
// from external roots in the CMS bit map.
// Called at the first checkpoint.
//

void ConcurrentMark::clearNextBitmap() {
   guarantee(!G1CollectedHeap::heap()->mark_in_progress(), "Precondition.");

   // clear the mark bitmap (no grey objects to start with).
   // We need to do this in chunks and offer to yield in between
   // each chunk.
   HeapWord* start  = _nextMarkBitMap->startWord();
   HeapWord* end    = _nextMarkBitMap->endWord();
   HeapWord* cur    = start;
   size_t chunkSize = M;
   while (cur < end) {
     HeapWord* next = cur + chunkSize;
     if (next > end)
       next = end;
     MemRegion mr(cur,next);
     _nextMarkBitMap->clearRange(mr);
     cur = next;
     do_yield_check();
   }
}

class NoteStartOfMarkHRClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      r->note_start_of_marking(true);
    }
    return false;
  }
};

void ConcurrentMark::checkpointRootsInitialPre() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();
  G1CollectorPolicy* g1p = g1h->g1_policy();

  _has_aborted = false;

707 708 709
  if (G1PrintReachableAtInitialMark) {
    print_reachable(true, "before");
  }
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726

  // Initialise marking structures. This has to be done in a STW phase.
  reset();
}

class CMMarkRootsClosure: public OopsInGenClosure {
private:
  ConcurrentMark*  _cm;
  G1CollectedHeap* _g1h;
  bool             _do_barrier;

public:
  CMMarkRootsClosure(ConcurrentMark* cm,
                     G1CollectedHeap* g1h,
                     bool do_barrier) : _cm(cm), _g1h(g1h),
                                        _do_barrier(do_barrier) { }

727 728
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
729

730 731 732 733 734
  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      assert(obj->is_oop() || obj->mark() == NULL,
735
             "expected an oop, possibly with mark word displaced");
736
      HeapWord* addr = (HeapWord*)obj;
737
      if (_g1h->is_in_g1_reserved(addr)) {
738
        _cm->grayRoot(obj);
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
      }
    }
    if (_do_barrier) {
      assert(!_g1h->is_in_g1_reserved(p),
             "Should be called on external roots");
      do_barrier(p);
    }
  }
};

void ConcurrentMark::checkpointRootsInitialPost() {
  G1CollectedHeap*   g1h = G1CollectedHeap::heap();

  // For each region note start of marking.
  NoteStartOfMarkHRClosure startcl;
  g1h->heap_region_iterate(&startcl);

  // Start weak-reference discovery.
  ReferenceProcessor* rp = g1h->ref_processor();
  rp->verify_no_references_recorded();
  rp->enable_discovery(); // enable ("weak") refs discovery
760
  rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
761 762

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
763 764 765 766
  // This is the start of  the marking cycle, we're expected all
  // threads to have SATB queues with active set to false.
  satb_mq_set.set_active_all_threads(true, /* new active value */
                                     false /* expected_active */);
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

  // update_g1_committed() will be called at the end of an evac pause
  // when marking is on. So, it's also called at the end of the
  // initial-mark pause to update the heap end, if the heap expands
  // during it. No need to call it here.
}

// Checkpoint the roots into this generation from outside
// this generation. [Note this initial checkpoint need only
// be approximate -- we'll do a catch up phase subsequently.]
void ConcurrentMark::checkpointRootsInitial() {
  assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  double start = os::elapsedTime();

  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_init_start();
  checkpointRootsInitialPre();

  // YSR: when concurrent precleaning is in place, we'll
  // need to clear the cached card table here

  ResourceMark rm;
  HandleMark  hm;

  g1h->ensure_parsability(false);
  g1h->perm_gen()->save_marks();

  CMMarkRootsClosure notOlder(this, g1h, false);
  CMMarkRootsClosure older(this, g1h, true);

  g1h->set_marking_started();
  g1h->rem_set()->prepare_for_younger_refs_iterate(false);

802 803
  g1h->process_strong_roots(true,    // activate StrongRootsScope
                            false,   // fake perm gen collection
804 805
                            SharedHeap::SO_AllClasses,
                            &notOlder, // Regular roots
806
                            NULL,     // do not visit active blobs
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
                            &older    // Perm Gen Roots
                            );
  checkpointRootsInitialPost();

  // Statistics.
  double end = os::elapsedTime();
  _init_times.add((end - start) * 1000.0);

  g1p->record_concurrent_mark_init_end();
}

/*
   Notice that in the next two methods, we actually leave the STS
   during the barrier sync and join it immediately afterwards. If we
   do not do this, this then the following deadlock can occur: one
   thread could be in the barrier sync code, waiting for the other
   thread to also sync up, whereas another one could be trying to
   yield, while also waiting for the other threads to sync up too.

   Because the thread that does the sync barrier has left the STS, it
   is possible to be suspended for a Full GC or an evacuation pause
   could occur. This is actually safe, since the entering the sync
   barrier is one of the last things do_marking_step() does, and it
   doesn't manipulate any data structures afterwards.
*/

void ConcurrentMark::enter_first_sync_barrier(int task_num) {
  if (verbose_low())
    gclog_or_tty->print_cr("[%d] entering first barrier", task_num);

  ConcurrentGCThread::stsLeave();
  _first_overflow_barrier_sync.enter();
  ConcurrentGCThread::stsJoin();
  // at this point everyone should have synced up and not be doing any
  // more work

  if (verbose_low())
    gclog_or_tty->print_cr("[%d] leaving first barrier", task_num);

  // let task 0 do this
  if (task_num == 0) {
    // task 0 is responsible for clearing the global data structures
    clear_marking_state();

    if (PrintGC) {
      gclog_or_tty->date_stamp(PrintGCDateStamps);
      gclog_or_tty->stamp(PrintGCTimeStamps);
      gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
    }
  }

  // after this, each task should reset its own data structures then
  // then go into the second barrier
}

void ConcurrentMark::enter_second_sync_barrier(int task_num) {
  if (verbose_low())
    gclog_or_tty->print_cr("[%d] entering second barrier", task_num);

  ConcurrentGCThread::stsLeave();
  _second_overflow_barrier_sync.enter();
  ConcurrentGCThread::stsJoin();
  // at this point everything should be re-initialised and ready to go

  if (verbose_low())
    gclog_or_tty->print_cr("[%d] leaving second barrier", task_num);
}

void ConcurrentMark::grayRoot(oop p) {
  HeapWord* addr = (HeapWord*) p;
  // We can't really check against _heap_start and _heap_end, since it
  // is possible during an evacuation pause with piggy-backed
  // initial-mark that the committed space is expanded during the
  // pause without CM observing this change. So the assertions below
  // is a bit conservative; but better than nothing.
882 883
  assert(_g1h->g1_committed().contains(addr),
         "address should be within the heap bounds");
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908

  if (!_nextMarkBitMap->isMarked(addr))
    _nextMarkBitMap->parMark(addr);
}

void ConcurrentMark::grayRegionIfNecessary(MemRegion mr) {
  // The objects on the region have already been marked "in bulk" by
  // the caller. We only need to decide whether to push the region on
  // the region stack or not.

  if (!concurrent_marking_in_progress() || !_should_gray_objects)
    // We're done with marking and waiting for remark. We do not need to
    // push anything else on the region stack.
    return;

  HeapWord* finger = _finger;

  if (verbose_low())
    gclog_or_tty->print_cr("[global] attempting to push "
                           "region ["PTR_FORMAT", "PTR_FORMAT"), finger is at "
                           PTR_FORMAT, mr.start(), mr.end(), finger);

  if (mr.start() < finger) {
    // The finger is always heap region aligned and it is not possible
    // for mr to span heap regions.
909 910 911 912 913 914 915 916 917
    assert(mr.end() <= finger, "invariant");

    // Separated the asserts so that we know which one fires.
    assert(mr.start() <= mr.end(),
           "region boundaries should fall within the committed space");
    assert(_heap_start <= mr.start(),
           "region boundaries should fall within the committed space");
    assert(mr.end() <= _heap_end,
           "region boundaries should fall within the committed space");
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
    if (verbose_low())
      gclog_or_tty->print_cr("[global] region ["PTR_FORMAT", "PTR_FORMAT") "
                             "below the finger, pushing it",
                             mr.start(), mr.end());

    if (!region_stack_push(mr)) {
      if (verbose_low())
        gclog_or_tty->print_cr("[global] region stack has overflown.");
    }
  }
}

void ConcurrentMark::markAndGrayObjectIfNecessary(oop p) {
  // The object is not marked by the caller. We need to at least mark
  // it and maybe push in on the stack.

  HeapWord* addr = (HeapWord*)p;
  if (!_nextMarkBitMap->isMarked(addr)) {
    // We definitely need to mark it, irrespective whether we bail out
    // because we're done with marking.
    if (_nextMarkBitMap->parMark(addr)) {
      if (!concurrent_marking_in_progress() || !_should_gray_objects)
        // If we're done with concurrent marking and we're waiting for
        // remark, then we're not pushing anything on the stack.
        return;

      // No OrderAccess:store_load() is needed. It is implicit in the
      // CAS done in parMark(addr) above
      HeapWord* finger = _finger;

      if (addr < finger) {
        if (!mark_stack_push(oop(addr))) {
          if (verbose_low())
            gclog_or_tty->print_cr("[global] global stack overflow "
                                   "during parMark");
        }
      }
    }
  }
}

class CMConcurrentMarkingTask: public AbstractGangTask {
private:
  ConcurrentMark*       _cm;
  ConcurrentMarkThread* _cmt;

public:
  void work(int worker_i) {
966 967
    assert(Thread::current()->is_ConcurrentGC_thread(),
           "this should only be done by a conc GC thread");
968 969 970 971 972

    double start_vtime = os::elapsedVTime();

    ConcurrentGCThread::stsJoin();

973
    assert((size_t) worker_i < _cm->active_tasks(), "invariant");
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    CMTask* the_task = _cm->task(worker_i);
    the_task->record_start_time();
    if (!_cm->has_aborted()) {
      do {
        double start_vtime_sec = os::elapsedVTime();
        double start_time_sec = os::elapsedTime();
        the_task->do_marking_step(10.0);
        double end_time_sec = os::elapsedTime();
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
        double elapsed_time_sec = end_time_sec - start_time_sec;
        _cm->clear_has_overflown();

        bool ret = _cm->do_yield_check(worker_i);

        jlong sleep_time_ms;
        if (!_cm->has_aborted() && the_task->has_aborted()) {
          sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
          ConcurrentGCThread::stsLeave();
          os::sleep(Thread::current(), sleep_time_ms, false);
          ConcurrentGCThread::stsJoin();
        }
        double end_time2_sec = os::elapsedTime();
        double elapsed_time2_sec = end_time2_sec - start_time_sec;

#if 0
          gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
                                 "overhead %1.4lf",
                                 elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
                                 the_task->conc_overhead(os::elapsedTime()) * 8.0);
          gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
                                 elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
#endif
      } while (!_cm->has_aborted() && the_task->has_aborted());
    }
    the_task->record_end_time();
1011
    guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

    ConcurrentGCThread::stsLeave();

    double end_vtime = os::elapsedVTime();
    _cm->update_accum_task_vtime(worker_i, end_vtime - start_vtime);
  }

  CMConcurrentMarkingTask(ConcurrentMark* cm,
                          ConcurrentMarkThread* cmt) :
      AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }

  ~CMConcurrentMarkingTask() { }
};

void ConcurrentMark::markFromRoots() {
  // we might be tempted to assert that:
  // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  //        "inconsistent argument?");
  // However that wouldn't be right, because it's possible that
  // a safepoint is indeed in progress as a younger generation
  // stop-the-world GC happens even as we mark in this generation.

  _restart_for_overflow = false;

  set_phase(MAX2((size_t) 1, parallel_marking_threads()), true);

  CMConcurrentMarkingTask markingTask(this, cmThread());
  if (parallel_marking_threads() > 0)
    _parallel_workers->run_task(&markingTask);
  else
    markingTask.work(0);
  print_stats();
}

void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1058 1059 1060 1061 1062 1063 1064
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
    Universe::verify(true, false, true);
  }

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
  G1CollectorPolicy* g1p = g1h->g1_policy();
  g1p->record_concurrent_mark_remark_start();

  double start = os::elapsedTime();

  checkpointRootsFinalWork();

  double mark_work_end = os::elapsedTime();

  weakRefsWork(clear_all_soft_refs);

  if (has_overflown()) {
    // Oops.  We overflowed.  Restart concurrent marking.
    _restart_for_overflow = true;
    // Clear the flag. We do not need it any more.
    clear_has_overflown();
    if (G1TraceMarkStackOverflow)
      gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
  } else {
    // We're done with marking.
1085 1086 1087 1088 1089
    // This is the end of  the marking cycle, we're expected all
    // threads to have SATB queues with active set to true.
    JavaThread::satb_mark_queue_set().set_active_all_threads(
                                                  false, /* new active value */
                                                  true /* expected_active */);
1090 1091

    if (VerifyDuringGC) {
1092 1093 1094 1095 1096 1097
      HandleMark hm;  // handle scope
      gclog_or_tty->print(" VerifyDuringGC:(after)");
      Universe::heap()->prepare_for_verify();
      Universe::heap()->verify(/* allow_dirty */      true,
                               /* silent */           false,
                               /* use_prev_marking */ false);
1098
    }
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
  }

#if VERIFY_OBJS_PROCESSED
  _scan_obj_cl.objs_processed = 0;
  ThreadLocalObjQueue::objs_enqueued = 0;
#endif

  // Statistics
  double now = os::elapsedTime();
  _remark_mark_times.add((mark_work_end - start) * 1000.0);
  _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
  _remark_times.add((now - start) * 1000.0);

  g1p->record_concurrent_mark_remark_end();
}


#define CARD_BM_TEST_MODE 0

class CalcLiveObjectsClosure: public HeapRegionClosure {

  CMBitMapRO* _bm;
  ConcurrentMark* _cm;
  bool _changed;
  bool _yield;
  size_t _words_done;
  size_t _tot_live;
  size_t _tot_used;
  size_t _regions_done;
  double _start_vtime_sec;

  BitMap* _region_bm;
  BitMap* _card_bm;
  intptr_t _bottom_card_num;
  bool _final;

  void mark_card_num_range(intptr_t start_card_num, intptr_t last_card_num) {
    for (intptr_t i = start_card_num; i <= last_card_num; i++) {
#if CARD_BM_TEST_MODE
1138
      guarantee(_card_bm->at(i - _bottom_card_num), "Should already be set.");
1139 1140 1141 1142 1143 1144 1145 1146 1147
#else
      _card_bm->par_at_put(i - _bottom_card_num, 1);
#endif
    }
  }

public:
  CalcLiveObjectsClosure(bool final,
                         CMBitMapRO *bm, ConcurrentMark *cm,
1148
                         BitMap* region_bm, BitMap* card_bm) :
1149 1150
    _bm(bm), _cm(cm), _changed(false), _yield(true),
    _words_done(0), _tot_live(0), _tot_used(0),
1151
    _region_bm(region_bm), _card_bm(card_bm),_final(final),
1152 1153 1154 1155 1156 1157 1158
    _regions_done(0), _start_vtime_sec(0.0)
  {
    _bottom_card_num =
      intptr_t(uintptr_t(G1CollectedHeap::heap()->reserved_region().start()) >>
               CardTableModRefBS::card_shift);
  }

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
  // It takes a region that's not empty (i.e., it has at least one
  // live object in it and sets its corresponding bit on the region
  // bitmap to 1. If the region is "starts humongous" it will also set
  // to 1 the bits on the region bitmap that correspond to its
  // associated "continues humongous" regions.
  void set_bit_for_region(HeapRegion* hr) {
    assert(!hr->continuesHumongous(), "should have filtered those out");

    size_t index = hr->hrs_index();
    if (!hr->startsHumongous()) {
      // Normal (non-humongous) case: just set the bit.
      _region_bm->par_at_put((BitMap::idx_t) index, true);
    } else {
      // Starts humongous case: calculate how many regions are part of
      // this humongous region and then set the bit range. It might
      // have been a bit more efficient to look at the object that
      // spans these humongous regions to calculate their number from
      // the object's size. However, it's a good idea to calculate
      // this based on the metadata itself, and not the region
      // contents, so that this code is not aware of what goes into
      // the humongous regions (in case this changes in the future).
      G1CollectedHeap* g1h = G1CollectedHeap::heap();
      size_t end_index = index + 1;
1182 1183
      while (end_index < g1h->n_regions()) {
        HeapRegion* chr = g1h->region_at(end_index);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
        if (!chr->continuesHumongous()) {
          break;
        }
        end_index += 1;
      }
      _region_bm->par_at_put_range((BitMap::idx_t) index,
                                   (BitMap::idx_t) end_index, true);
    }
  }

1194 1195 1196 1197
  bool doHeapRegion(HeapRegion* hr) {
    if (!_final && _regions_done == 0)
      _start_vtime_sec = os::elapsedVTime();

I
iveresov 已提交
1198
    if (hr->continuesHumongous()) {
1199 1200 1201 1202 1203 1204 1205
      // We will ignore these here and process them when their
      // associated "starts humongous" region is processed (see
      // set_bit_for_heap_region()). Note that we cannot rely on their
      // associated "starts humongous" region to have their bit set to
      // 1 since, due to the region chunking in the parallel region
      // iteration, a "continues humongous" region might be visited
      // before its associated "starts humongous".
I
iveresov 已提交
1206 1207
      return false;
    }
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

    HeapWord* nextTop = hr->next_top_at_mark_start();
    HeapWord* start   = hr->top_at_conc_mark_count();
    assert(hr->bottom() <= start && start <= hr->end() &&
           hr->bottom() <= nextTop && nextTop <= hr->end() &&
           start <= nextTop,
           "Preconditions.");
    // Otherwise, record the number of word's we'll examine.
    size_t words_done = (nextTop - start);
    // Find the first marked object at or after "start".
    start = _bm->getNextMarkedWordAddress(start, nextTop);
    size_t marked_bytes = 0;

    // Below, the term "card num" means the result of shifting an address
    // by the card shift -- address 0 corresponds to card number 0.  One
    // must subtract the card num of the bottom of the heap to obtain a
    // card table index.
    // The first card num of the sequence of live cards currently being
    // constructed.  -1 ==> no sequence.
    intptr_t start_card_num = -1;
    // The last card num of the sequence of live cards currently being
    // constructed.  -1 ==> no sequence.
    intptr_t last_card_num = -1;

    while (start < nextTop) {
      if (_yield && _cm->do_yield_check()) {
        // We yielded.  It might be for a full collection, in which case
        // all bets are off; terminate the traversal.
        if (_cm->has_aborted()) {
          _changed = false;
          return true;
        } else {
          // Otherwise, it might be a collection pause, and the region
          // we're looking at might be in the collection set.  We'll
          // abandon this region.
          return false;
        }
      }
      oop obj = oop(start);
      int obj_sz = obj->size();
      // The card num of the start of the current object.
      intptr_t obj_card_num =
        intptr_t(uintptr_t(start) >> CardTableModRefBS::card_shift);

      HeapWord* obj_last = start + obj_sz - 1;
      intptr_t obj_last_card_num =
        intptr_t(uintptr_t(obj_last) >> CardTableModRefBS::card_shift);

      if (obj_card_num != last_card_num) {
        if (start_card_num == -1) {
          assert(last_card_num == -1, "Both or neither.");
          start_card_num = obj_card_num;
        } else {
          assert(last_card_num != -1, "Both or neither.");
          assert(obj_card_num >= last_card_num, "Inv");
          if ((obj_card_num - last_card_num) > 1) {
            // Mark the last run, and start a new one.
            mark_card_num_range(start_card_num, last_card_num);
            start_card_num = obj_card_num;
          }
        }
#if CARD_BM_TEST_MODE
        /*
        gclog_or_tty->print_cr("Setting bits from %d/%d.",
                               obj_card_num - _bottom_card_num,
                               obj_last_card_num - _bottom_card_num);
        */
        for (intptr_t j = obj_card_num; j <= obj_last_card_num; j++) {
          _card_bm->par_at_put(j - _bottom_card_num, 1);
        }
#endif
      }
      // In any case, we set the last card num.
      last_card_num = obj_last_card_num;

1283
      marked_bytes += (size_t)obj_sz * HeapWordSize;
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
      // Find the next marked object after this one.
      start = _bm->getNextMarkedWordAddress(start + 1, nextTop);
      _changed = true;
    }
    // Handle the last range, if any.
    if (start_card_num != -1)
      mark_card_num_range(start_card_num, last_card_num);
    if (_final) {
      // Mark the allocated-since-marking portion...
      HeapWord* tp = hr->top();
      if (nextTop < tp) {
        start_card_num =
          intptr_t(uintptr_t(nextTop) >> CardTableModRefBS::card_shift);
        last_card_num =
          intptr_t(uintptr_t(tp) >> CardTableModRefBS::card_shift);
        mark_card_num_range(start_card_num, last_card_num);
        // This definitely means the region has live objects.
1301
        set_bit_for_region(hr);
1302 1303 1304 1305 1306 1307
      }
    }

    hr->add_to_marked_bytes(marked_bytes);
    // Update the live region bitmap.
    if (marked_bytes > 0) {
1308
      set_bit_for_region(hr);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
    }
    hr->set_top_at_conc_mark_count(nextTop);
    _tot_live += hr->next_live_bytes();
    _tot_used += hr->used();
    _words_done = words_done;

    if (!_final) {
      ++_regions_done;
      if (_regions_done % 10 == 0) {
        double end_vtime_sec = os::elapsedVTime();
        double elapsed_vtime_sec = end_vtime_sec - _start_vtime_sec;
        if (elapsed_vtime_sec > (10.0 / 1000.0)) {
          jlong sleep_time_ms =
            (jlong) (elapsed_vtime_sec * _cm->cleanup_sleep_factor() * 1000.0);
          os::sleep(Thread::current(), sleep_time_ms, false);
          _start_vtime_sec = end_vtime_sec;
        }
      }
    }

    return false;
  }

  bool changed() { return _changed;  }
  void reset()   { _changed = false; _words_done = 0; }
  void no_yield() { _yield = false; }
  size_t words_done() { return _words_done; }
  size_t tot_live() { return _tot_live; }
  size_t tot_used() { return _tot_used; }
};


void ConcurrentMark::calcDesiredRegions() {
  _region_bm.clear();
  _card_bm.clear();
  CalcLiveObjectsClosure calccl(false /*final*/,
                                nextMarkBitMap(), this,
1346
                                &_region_bm, &_card_bm);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
  G1CollectedHeap *g1h = G1CollectedHeap::heap();
  g1h->heap_region_iterate(&calccl);

  do {
    calccl.reset();
    g1h->heap_region_iterate(&calccl);
  } while (calccl.changed());
}

class G1ParFinalCountTask: public AbstractGangTask {
protected:
  G1CollectedHeap* _g1h;
  CMBitMap* _bm;
  size_t _n_workers;
  size_t *_live_bytes;
  size_t *_used_bytes;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParFinalCountTask(G1CollectedHeap* g1h, CMBitMap* bm,
                      BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 final counting"), _g1h(g1h),
    _bm(bm), _region_bm(region_bm), _card_bm(card_bm)
  {
    if (ParallelGCThreads > 0)
      _n_workers = _g1h->workers()->total_workers();
    else
      _n_workers = 1;
    _live_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
    _used_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
  }

  ~G1ParFinalCountTask() {
    FREE_C_HEAP_ARRAY(size_t, _live_bytes);
    FREE_C_HEAP_ARRAY(size_t, _used_bytes);
  }

  void work(int i) {
    CalcLiveObjectsClosure calccl(true /*final*/,
                                  _bm, _g1h->concurrent_mark(),
1387
                                  _region_bm, _card_bm);
1388 1389
    calccl.no_yield();
    if (ParallelGCThreads > 0) {
1390 1391
      _g1h->heap_region_par_iterate_chunked(&calccl, i,
                                            HeapRegion::FinalCountClaimValue);
1392 1393 1394 1395 1396
    } else {
      _g1h->heap_region_iterate(&calccl);
    }
    assert(calccl.complete(), "Shouldn't have yielded!");

1397
    assert((size_t) i < _n_workers, "invariant");
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
    _live_bytes[i] = calccl.tot_live();
    _used_bytes[i] = calccl.tot_used();
  }
  size_t live_bytes()  {
    size_t live_bytes = 0;
    for (size_t i = 0; i < _n_workers; ++i)
      live_bytes += _live_bytes[i];
    return live_bytes;
  }
  size_t used_bytes()  {
    size_t used_bytes = 0;
    for (size_t i = 0; i < _n_workers; ++i)
      used_bytes += _used_bytes[i];
    return used_bytes;
  }
};

class G1ParNoteEndTask;

class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _worker_num;
  size_t _max_live_bytes;
  size_t _regions_claimed;
  size_t _freed_bytes;
  size_t _cleared_h_regions;
  size_t _freed_regions;
  UncleanRegionList* _unclean_region_list;
  double _claimed_region_time;
  double _max_region_time;

public:
  G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
                             UncleanRegionList* list,
                             int worker_num);
  size_t freed_bytes() { return _freed_bytes; }
  size_t cleared_h_regions() { return _cleared_h_regions; }
  size_t freed_regions() { return  _freed_regions; }
  UncleanRegionList* unclean_region_list() {
    return _unclean_region_list;
  }

  bool doHeapRegion(HeapRegion *r);

  size_t max_live_bytes() { return _max_live_bytes; }
  size_t regions_claimed() { return _regions_claimed; }
  double claimed_region_time_sec() { return _claimed_region_time; }
  double max_region_time_sec() { return _max_region_time; }
};

class G1ParNoteEndTask: public AbstractGangTask {
  friend class G1NoteEndOfConcMarkClosure;
protected:
  G1CollectedHeap* _g1h;
  size_t _max_live_bytes;
  size_t _freed_bytes;
  ConcurrentMark::ParCleanupThreadState** _par_cleanup_thread_state;
public:
  G1ParNoteEndTask(G1CollectedHeap* g1h,
                   ConcurrentMark::ParCleanupThreadState**
                   par_cleanup_thread_state) :
    AbstractGangTask("G1 note end"), _g1h(g1h),
    _max_live_bytes(0), _freed_bytes(0),
    _par_cleanup_thread_state(par_cleanup_thread_state)
  {}

  void work(int i) {
    double start = os::elapsedTime();
    G1NoteEndOfConcMarkClosure g1_note_end(_g1h,
                                           &_par_cleanup_thread_state[i]->list,
                                           i);
    if (ParallelGCThreads > 0) {
1470 1471
      _g1h->heap_region_par_iterate_chunked(&g1_note_end, i,
                                            HeapRegion::NoteEndClaimValue);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
    } else {
      _g1h->heap_region_iterate(&g1_note_end);
    }
    assert(g1_note_end.complete(), "Shouldn't have yielded!");

    // Now finish up freeing the current thread's regions.
    _g1h->finish_free_region_work(g1_note_end.freed_bytes(),
                                  g1_note_end.cleared_h_regions(),
                                  0, NULL);
    {
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      _max_live_bytes += g1_note_end.max_live_bytes();
      _freed_bytes += g1_note_end.freed_bytes();
    }
    double end = os::elapsedTime();
    if (G1PrintParCleanupStats) {
      gclog_or_tty->print("     Worker thread %d [%8.3f..%8.3f = %8.3f ms] "
                          "claimed %d regions (tot = %8.3f ms, max = %8.3f ms).\n",
                          i, start, end, (end-start)*1000.0,
                          g1_note_end.regions_claimed(),
                          g1_note_end.claimed_region_time_sec()*1000.0,
                          g1_note_end.max_region_time_sec()*1000.0);
    }
  }
  size_t max_live_bytes() { return _max_live_bytes; }
  size_t freed_bytes() { return _freed_bytes; }
};

class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
  G1RemSet* _g1rs;
  BitMap* _region_bm;
  BitMap* _card_bm;
public:
  G1ParScrubRemSetTask(G1CollectedHeap* g1h,
                       BitMap* region_bm, BitMap* card_bm) :
    AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
    _region_bm(region_bm), _card_bm(card_bm)
  {}

  void work(int i) {
    if (ParallelGCThreads > 0) {
1514 1515
      _g1rs->scrub_par(_region_bm, _card_bm, i,
                       HeapRegion::ScrubRemSetClaimValue);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
    } else {
      _g1rs->scrub(_region_bm, _card_bm);
    }
  }

};

G1NoteEndOfConcMarkClosure::
G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
                           UncleanRegionList* list,
                           int worker_num)
  : _g1(g1), _worker_num(worker_num),
    _max_live_bytes(0), _regions_claimed(0),
    _freed_bytes(0), _cleared_h_regions(0), _freed_regions(0),
    _claimed_region_time(0.0), _max_region_time(0.0),
    _unclean_region_list(list)
{}

bool G1NoteEndOfConcMarkClosure::doHeapRegion(HeapRegion *r) {
  // We use a claim value of zero here because all regions
  // were claimed with value 1 in the FinalCount task.
  r->reset_gc_time_stamp();
  if (!r->continuesHumongous()) {
    double start = os::elapsedTime();
    _regions_claimed++;
    r->note_end_of_marking();
    _max_live_bytes += r->max_live_bytes();
    _g1->free_region_if_totally_empty_work(r,
                                           _freed_bytes,
                                           _cleared_h_regions,
                                           _freed_regions,
                                           _unclean_region_list,
                                           true /*par*/);
    double region_time = (os::elapsedTime() - start);
    _claimed_region_time += region_time;
    if (region_time > _max_region_time) _max_region_time = region_time;
  }
  return false;
}

void ConcurrentMark::cleanup() {
  // world is stopped at this checkpoint
  assert(SafepointSynchronize::is_at_safepoint(),
         "world should be stopped");
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If a full collection has happened, we shouldn't do this.
  if (has_aborted()) {
    g1h->set_marking_complete(); // So bitmap clearing isn't confused
    return;
  }

1568 1569 1570 1571 1572 1573 1574 1575 1576
  if (VerifyDuringGC) {
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(before)");
    Universe::heap()->prepare_for_verify();
    Universe::verify(/* allow dirty  */ true,
                     /* silent       */ false,
                     /* prev marking */ true);
  }

1577 1578 1579 1580 1581 1582 1583 1584 1585
  G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
  g1p->record_concurrent_mark_cleanup_start();

  double start = os::elapsedTime();

  // Do counting once more with the world stopped for good measure.
  G1ParFinalCountTask g1_par_count_task(g1h, nextMarkBitMap(),
                                        &_region_bm, &_card_bm);
  if (ParallelGCThreads > 0) {
1586 1587 1588 1589
    assert(g1h->check_heap_region_claim_values(
                                               HeapRegion::InitialClaimValue),
           "sanity check");

1590 1591 1592 1593
    int n_workers = g1h->workers()->total_workers();
    g1h->set_par_threads(n_workers);
    g1h->workers()->run_task(&g1_par_count_task);
    g1h->set_par_threads(0);
1594 1595 1596 1597

    assert(g1h->check_heap_region_claim_values(
                                             HeapRegion::FinalCountClaimValue),
           "sanity check");
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
  } else {
    g1_par_count_task.work(0);
  }

  size_t known_garbage_bytes =
    g1_par_count_task.used_bytes() - g1_par_count_task.live_bytes();
#if 0
  gclog_or_tty->print_cr("used %1.2lf, live %1.2lf, garbage %1.2lf",
                         (double) g1_par_count_task.used_bytes() / (double) (1024 * 1024),
                         (double) g1_par_count_task.live_bytes() / (double) (1024 * 1024),
                         (double) known_garbage_bytes / (double) (1024 * 1024));
#endif // 0
  g1p->set_known_garbage_bytes(known_garbage_bytes);

  size_t start_used_bytes = g1h->used();
  _at_least_one_mark_complete = true;
  g1h->set_marking_complete();

  double count_end = os::elapsedTime();
  double this_final_counting_time = (count_end - start);
  if (G1PrintParCleanupStats) {
    gclog_or_tty->print_cr("Cleanup:");
    gclog_or_tty->print_cr("  Finalize counting: %8.3f ms",
                           this_final_counting_time*1000.0);
  }
  _total_counting_time += this_final_counting_time;

  // Install newly created mark bitMap as "prev".
  swapMarkBitMaps();

  g1h->reset_gc_time_stamp();

  // Note end of marking in all heap regions.
  double note_end_start = os::elapsedTime();
  G1ParNoteEndTask g1_par_note_end_task(g1h, _par_cleanup_thread_state);
  if (ParallelGCThreads > 0) {
    int n_workers = g1h->workers()->total_workers();
    g1h->set_par_threads(n_workers);
    g1h->workers()->run_task(&g1_par_note_end_task);
    g1h->set_par_threads(0);
1638 1639 1640

    assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
           "sanity check");
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
  } else {
    g1_par_note_end_task.work(0);
  }
  g1h->set_unclean_regions_coming(true);
  double note_end_end = os::elapsedTime();
  // Tell the mutators that there might be unclean regions coming...
  if (G1PrintParCleanupStats) {
    gclog_or_tty->print_cr("  note end of marking: %8.3f ms.",
                           (note_end_end - note_end_start)*1000.0);
  }

1652

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
  // call below, since it affects the metric by which we sort the heap
  // regions.
  if (G1ScrubRemSets) {
    double rs_scrub_start = os::elapsedTime();
    G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
    if (ParallelGCThreads > 0) {
      int n_workers = g1h->workers()->total_workers();
      g1h->set_par_threads(n_workers);
      g1h->workers()->run_task(&g1_par_scrub_rs_task);
      g1h->set_par_threads(0);
1663 1664 1665 1666

      assert(g1h->check_heap_region_claim_values(
                                            HeapRegion::ScrubRemSetClaimValue),
             "sanity check");
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
    } else {
      g1_par_scrub_rs_task.work(0);
    }

    double rs_scrub_end = os::elapsedTime();
    double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
    _total_rs_scrub_time += this_rs_scrub_time;
  }

  // this will also free any regions totally full of garbage objects,
  // and sort the regions.
  g1h->g1_policy()->record_concurrent_mark_cleanup_end(
                        g1_par_note_end_task.freed_bytes(),
                        g1_par_note_end_task.max_live_bytes());

  // Statistics.
  double end = os::elapsedTime();
  _cleanup_times.add((end - start) * 1000.0);

  // G1CollectedHeap::heap()->print();
  // gclog_or_tty->print_cr("HEAP GC TIME STAMP : %d",
  // G1CollectedHeap::heap()->get_gc_time_stamp());

  if (PrintGC || PrintGCDetails) {
    g1h->print_size_transition(gclog_or_tty,
                               start_used_bytes,
                               g1h->used(),
                               g1h->capacity());
  }

  size_t cleaned_up_bytes = start_used_bytes - g1h->used();
  g1p->decrease_known_garbage_bytes(cleaned_up_bytes);

  // We need to make this be a "collection" so any collection pause that
  // races with it goes around and waits for completeCleanup to finish.
  g1h->increment_total_collections();

J
johnc 已提交
1704
  if (VerifyDuringGC) {
1705 1706 1707 1708 1709 1710
    HandleMark hm;  // handle scope
    gclog_or_tty->print(" VerifyDuringGC:(after)");
    Universe::heap()->prepare_for_verify();
    Universe::verify(/* allow dirty  */ true,
                     /* silent       */ false,
                     /* prev marking */ true);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
  }
}

void ConcurrentMark::completeCleanup() {
  // A full collection intervened.
  if (has_aborted()) return;

  int first = 0;
  int last = (int)MAX2(ParallelGCThreads, (size_t)1);
  for (int t = 0; t < last; t++) {
    UncleanRegionList* list = &_par_cleanup_thread_state[t]->list;
    assert(list->well_formed(), "Inv");
    HeapRegion* hd = list->hd();
    while (hd != NULL) {
      // Now finish up the other stuff.
      hd->rem_set()->clear();
      HeapRegion* next_hd = hd->next_from_unclean_list();
      (void)list->pop();
1729
      assert(list->hd() == next_hd, "how not?");
1730 1731 1732 1733 1734 1735
      _g1h->put_region_on_unclean_list(hd);
      if (!hd->isHumongous()) {
        // Add this to the _free_regions count by 1.
        _g1h->finish_free_region_work(0, 0, 1, NULL);
      }
      hd = list->hd();
1736
      assert(hd == next_hd, "how not?");
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
    }
  }
}


class G1CMIsAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
 public:
  G1CMIsAliveClosure(G1CollectedHeap* g1) :
    _g1(g1)
  {}

  void do_object(oop obj) {
    assert(false, "not to be invoked");
  }
  bool do_object_b(oop obj) {
    HeapWord* addr = (HeapWord*)obj;
    return addr != NULL &&
           (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
  }
};

class G1CMKeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
  ConcurrentMark*  _cm;
  CMBitMap*        _bitMap;
 public:
  G1CMKeepAliveClosure(G1CollectedHeap* g1, ConcurrentMark* cm,
                       CMBitMap* bitMap) :
    _g1(g1), _cm(cm),
    _bitMap(bitMap) {}

1769 1770
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
1771

1772 1773
  template <class T> void do_oop_work(T* p) {
    oop thisOop = oopDesc::load_decode_heap_oop(p);
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
    HeapWord* addr = (HeapWord*)thisOop;
    if (_g1->is_in_g1_reserved(addr) && _g1->is_obj_ill(thisOop)) {
      _bitMap->mark(addr);
      _cm->mark_stack_push(thisOop);
    }
  }
};

class G1CMDrainMarkingStackClosure: public VoidClosure {
  CMMarkStack*                  _markStack;
  CMBitMap*                     _bitMap;
  G1CMKeepAliveClosure*         _oopClosure;
 public:
  G1CMDrainMarkingStackClosure(CMBitMap* bitMap, CMMarkStack* markStack,
                               G1CMKeepAliveClosure* oopClosure) :
    _bitMap(bitMap),
    _markStack(markStack),
    _oopClosure(oopClosure)
  {}

  void do_void() {
    _markStack->drain((OopClosure*)_oopClosure, _bitMap, false);
  }
};

void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
  ResourceMark rm;
  HandleMark   hm;
1802 1803
  G1CollectedHeap* g1h   = G1CollectedHeap::heap();
  ReferenceProcessor* rp = g1h->ref_processor();
1804 1805

  // Process weak references.
1806
  rp->setup_policy(clear_all_soft_refs);
1807 1808
  assert(_markStack.isEmpty(), "mark stack should be empty");

1809 1810
  G1CMIsAliveClosure   g1IsAliveClosure  (g1h);
  G1CMKeepAliveClosure g1KeepAliveClosure(g1h, this, nextMarkBitMap());
1811 1812 1813 1814 1815
  G1CMDrainMarkingStackClosure
    g1DrainMarkingStackClosure(nextMarkBitMap(), &_markStack,
                               &g1KeepAliveClosure);

  // XXXYYY  Also: copy the parallel ref processing code from CMS.
1816
  rp->process_discovered_references(&g1IsAliveClosure,
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
                                    &g1KeepAliveClosure,
                                    &g1DrainMarkingStackClosure,
                                    NULL);
  assert(_markStack.overflow() || _markStack.isEmpty(),
         "mark stack should be empty (unless it overflowed)");
  if (_markStack.overflow()) {
    set_has_overflown();
  }

  rp->enqueue_discovered_references();
  rp->verify_no_references_recorded();
  assert(!rp->discovery_enabled(), "should have been disabled");

  // Now clean up stale oops in SymbolTable and StringTable
  SymbolTable::unlink(&g1IsAliveClosure);
  StringTable::unlink(&g1IsAliveClosure);
}

void ConcurrentMark::swapMarkBitMaps() {
  CMBitMapRO* temp = _prevMarkBitMap;
  _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
  _nextMarkBitMap  = (CMBitMap*)  temp;
}

class CMRemarkTask: public AbstractGangTask {
private:
  ConcurrentMark *_cm;

public:
  void work(int worker_i) {
    // Since all available tasks are actually started, we should
    // only proceed if we're supposed to be actived.
    if ((size_t)worker_i < _cm->active_tasks()) {
      CMTask* task = _cm->task(worker_i);
      task->record_start_time();
      do {
        task->do_marking_step(1000000000.0 /* something very large */);
      } while (task->has_aborted() && !_cm->has_overflown());
      // If we overflow, then we do not want to restart. We instead
      // want to abort remark and do concurrent marking again.
      task->record_end_time();
    }
  }

  CMRemarkTask(ConcurrentMark* cm) :
    AbstractGangTask("Par Remark"), _cm(cm) { }
};

void ConcurrentMark::checkpointRootsFinalWork() {
  ResourceMark rm;
  HandleMark   hm;
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  g1h->ensure_parsability(false);

  if (ParallelGCThreads > 0) {
1873
    G1CollectedHeap::StrongRootsScope srs(g1h);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
    // this is remark, so we'll use up all available threads
    int active_workers = ParallelGCThreads;
    set_phase(active_workers, false);

    CMRemarkTask remarkTask(this);
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
    int n_workers = g1h->workers()->total_workers();
    g1h->set_par_threads(n_workers);
    g1h->workers()->run_task(&remarkTask);
    g1h->set_par_threads(0);
  } else {
1887
    G1CollectedHeap::StrongRootsScope srs(g1h);
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
    // this is remark, so we'll use up all available threads
    int active_workers = 1;
    set_phase(active_workers, false);

    CMRemarkTask remarkTask(this);
    // We will start all available threads, even if we decide that the
    // active_workers will be fewer. The extra ones will just bail out
    // immediately.
    remarkTask.work(0);
  }
1898 1899
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  guarantee(satb_mq_set.completed_buffers_num() == 0, "invariant");
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

  print_stats();

  if (!restart_for_overflow())
    set_non_marking_state();

#if VERIFY_OBJS_PROCESSED
  if (_scan_obj_cl.objs_processed != ThreadLocalObjQueue::objs_enqueued) {
    gclog_or_tty->print_cr("Processed = %d, enqueued = %d.",
                           _scan_obj_cl.objs_processed,
                           ThreadLocalObjQueue::objs_enqueued);
    guarantee(_scan_obj_cl.objs_processed ==
              ThreadLocalObjQueue::objs_enqueued,
              "Different number of objs processed and enqueued.");
  }
#endif
}

1918 1919
#ifndef PRODUCT

1920 1921 1922 1923 1924
class ReachablePrinterOopClosure: public OopClosure {
private:
  G1CollectedHeap* _g1h;
  CMBitMapRO*      _bitmap;
  outputStream*    _out;
1925
  bool             _use_prev_marking;
1926 1927

public:
1928 1929 1930 1931 1932
  ReachablePrinterOopClosure(CMBitMapRO*   bitmap,
                             outputStream* out,
                             bool          use_prev_marking) :
    _g1h(G1CollectedHeap::heap()),
    _bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking) { }
1933

1934 1935
  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(      oop* p) { do_oop_work(p); }
1936

1937 1938
  template <class T> void do_oop_work(T* p) {
    oop         obj = oopDesc::load_decode_heap_oop(p);
1939 1940 1941 1942 1943 1944 1945
    const char* str = NULL;
    const char* str2 = "";

    if (!_g1h->is_in_g1_reserved(obj))
      str = "outside G1 reserved";
    else {
      HeapRegion* hr  = _g1h->heap_region_containing(obj);
1946
      guarantee(hr != NULL, "invariant");
1947 1948 1949 1950 1951 1952 1953 1954
      bool over_tams = false;
      if (_use_prev_marking) {
        over_tams = hr->obj_allocated_since_prev_marking(obj);
      } else {
        over_tams = hr->obj_allocated_since_next_marking(obj);
      }

      if (over_tams) {
1955
        str = "over TAMS";
1956
        if (_bitmap->isMarked((HeapWord*) obj)) {
1957
          str2 = " AND MARKED";
1958 1959
        }
      } else if (_bitmap->isMarked((HeapWord*) obj)) {
1960
        str = "marked";
1961
      } else {
1962
        str = "#### NOT MARKED ####";
1963
      }
1964 1965 1966 1967 1968 1969 1970 1971 1972
    }

    _out->print_cr("    "PTR_FORMAT" contains "PTR_FORMAT" %s%s",
                   p, (void*) obj, str, str2);
  }
};

class ReachablePrinterClosure: public BitMapClosure {
private:
1973
  CMBitMapRO*   _bitmap;
1974
  outputStream* _out;
1975
  bool          _use_prev_marking;
1976 1977

public:
1978 1979 1980 1981
  ReachablePrinterClosure(CMBitMapRO*   bitmap,
                          outputStream* out,
                          bool          use_prev_marking) :
    _bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking) { }
1982 1983 1984

  bool do_bit(size_t offset) {
    HeapWord* addr = _bitmap->offsetToHeapWord(offset);
1985
    ReachablePrinterOopClosure oopCl(_bitmap, _out, _use_prev_marking);
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

    _out->print_cr("  obj "PTR_FORMAT", offset %10d (marked)", addr, offset);
    oop(addr)->oop_iterate(&oopCl);
    _out->print_cr("");

    return true;
  }
};

class ObjInRegionReachablePrinterClosure : public ObjectClosure {
private:
1997
  CMBitMapRO*   _bitmap;
1998
  outputStream* _out;
1999
  bool          _use_prev_marking;
2000 2001

public:
2002 2003 2004 2005 2006
  ObjInRegionReachablePrinterClosure(CMBitMapRO*   bitmap,
                                     outputStream* out,
                                     bool          use_prev_marking) :
    _bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking) { }

2007
  void do_object(oop o) {
2008
    ReachablePrinterOopClosure oopCl(_bitmap, _out, _use_prev_marking);
2009 2010 2011 2012 2013 2014 2015 2016 2017

    _out->print_cr("  obj "PTR_FORMAT" (over TAMS)", (void*) o);
    o->oop_iterate(&oopCl);
    _out->print_cr("");
  }
};

class RegionReachablePrinterClosure : public HeapRegionClosure {
private:
2018
  CMBitMapRO*   _bitmap;
2019
  outputStream* _out;
2020
  bool          _use_prev_marking;
2021 2022 2023 2024 2025 2026

public:
  bool doHeapRegion(HeapRegion* hr) {
    HeapWord* b = hr->bottom();
    HeapWord* e = hr->end();
    HeapWord* t = hr->top();
2027 2028 2029 2030 2031 2032
    HeapWord* p = NULL;
    if (_use_prev_marking) {
      p = hr->prev_top_at_mark_start();
    } else {
      p = hr->next_top_at_mark_start();
    }
2033
    _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2034
                   "TAMS: "PTR_FORMAT, b, e, t, p);
2035 2036
    _out->print_cr("");

2037
    ObjInRegionReachablePrinterClosure ocl(_bitmap, _out, _use_prev_marking);
2038 2039 2040 2041 2042
    hr->object_iterate_mem_careful(MemRegion(p, t), &ocl);

    return false;
  }

2043 2044 2045 2046
  RegionReachablePrinterClosure(CMBitMapRO*   bitmap,
                                outputStream* out,
                                bool          use_prev_marking) :
    _bitmap(bitmap), _out(out), _use_prev_marking(use_prev_marking) { }
2047 2048
};

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
void ConcurrentMark::print_reachable(bool use_prev_marking, const char* str) {
  gclog_or_tty->print_cr("== Doing reachable object dump... ");

  if (G1PrintReachableBaseFile == NULL) {
    gclog_or_tty->print_cr("  #### error: no base file defined");
    return;
  }

  if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
      (JVM_MAXPATHLEN - 1)) {
    gclog_or_tty->print_cr("  #### error: file name too long");
    return;
  }

  char file_name[JVM_MAXPATHLEN];
  sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
  gclog_or_tty->print_cr("  dumping to file %s", file_name);

  fileStream fout(file_name);
  if (!fout.is_open()) {
    gclog_or_tty->print_cr("  #### error: could not open file");
    return;
  }

  outputStream* out = &fout;
2074

2075 2076 2077 2078 2079 2080
  CMBitMapRO* bitmap = NULL;
  if (use_prev_marking) {
    bitmap = _prevMarkBitMap;
  } else {
    bitmap = _nextMarkBitMap;
  }
2081

2082 2083 2084 2085 2086 2087
  out->print_cr("-- USING %s", (use_prev_marking) ? "PTAMS" : "NTAMS");
  out->cr();

  RegionReachablePrinterClosure rcl(bitmap, out, use_prev_marking);
  out->print_cr("--- ITERATING OVER REGIONS WITH TAMS < TOP");
  out->cr();
2088
  _g1h->heap_region_iterate(&rcl);
2089
  out->cr();
2090

2091 2092 2093 2094 2095
  ReachablePrinterClosure cl(bitmap, out, use_prev_marking);
  out->print_cr("--- ITERATING OVER MARKED OBJECTS ON THE BITMAP");
  out->cr();
  bitmap->iterate(&cl);
  out->cr();
2096

2097
  gclog_or_tty->print_cr("  done");
2098 2099
}

2100 2101
#endif // PRODUCT

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
// This note is for drainAllSATBBuffers and the code in between.
// In the future we could reuse a task to do this work during an
// evacuation pause (since now tasks are not active and can be claimed
// during an evacuation pause). This was a late change to the code and
// is currently not being taken advantage of.

class CMGlobalObjectClosure : public ObjectClosure {
private:
  ConcurrentMark* _cm;

public:
  void do_object(oop obj) {
    _cm->deal_with_reference(obj);
  }

  CMGlobalObjectClosure(ConcurrentMark* cm) : _cm(cm) { }
};

void ConcurrentMark::deal_with_reference(oop obj) {
  if (verbose_high())
    gclog_or_tty->print_cr("[global] we're dealing with reference "PTR_FORMAT,
                           (void*) obj);


  HeapWord* objAddr = (HeapWord*) obj;
2127
  assert(obj->is_oop_or_null(true /* ignore mark word */), "Error");
2128
  if (_g1h->is_in_g1_reserved(objAddr)) {
2129
    assert(obj != NULL, "is_in_g1_reserved should ensure this");
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
    HeapRegion* hr = _g1h->heap_region_containing(obj);
    if (_g1h->is_obj_ill(obj, hr)) {
      if (verbose_high())
        gclog_or_tty->print_cr("[global] "PTR_FORMAT" is not considered "
                               "marked", (void*) obj);

      // we need to mark it first
      if (_nextMarkBitMap->parMark(objAddr)) {
        // No OrderAccess:store_load() is needed. It is implicit in the
        // CAS done in parMark(objAddr) above
        HeapWord* finger = _finger;
        if (objAddr < finger) {
          if (verbose_high())
            gclog_or_tty->print_cr("[global] below the global finger "
                                   "("PTR_FORMAT"), pushing it", finger);
          if (!mark_stack_push(obj)) {
            if (verbose_low())
              gclog_or_tty->print_cr("[global] global stack overflow during "
                                     "deal_with_reference");
          }
        }
      }
    }
  }
}

void ConcurrentMark::drainAllSATBBuffers() {
  CMGlobalObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.set_closure(&oc);

  while (satb_mq_set.apply_closure_to_completed_buffer()) {
    if (verbose_medium())
      gclog_or_tty->print_cr("[global] processed an SATB buffer");
  }

  // no need to check whether we should do this, as this is only
  // called during an evacuation pause
  satb_mq_set.iterate_closure_all_threads();

  satb_mq_set.set_closure(NULL);
2171
  assert(satb_mq_set.completed_buffers_num() == 0, "invariant");
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
}

void ConcurrentMark::markPrev(oop p) {
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->mark((HeapWord*)p);
}

void ConcurrentMark::clear(oop p) {
  assert(p != NULL && p->is_oop(), "expected an oop");
  HeapWord* addr = (HeapWord*)p;
  assert(addr >= _nextMarkBitMap->startWord() ||
         addr < _nextMarkBitMap->endWord(), "in a region");

  _nextMarkBitMap->clear(addr);
}

void ConcurrentMark::clearRangeBothMaps(MemRegion mr) {
  // Note we are overriding the read-only view of the prev map here, via
  // the cast.
  ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
  _nextMarkBitMap->clearRange(mr);
}

HeapRegion*
ConcurrentMark::claim_region(int task_num) {
  // "checkpoint" the finger
  HeapWord* finger = _finger;

  // _heap_end will not change underneath our feet; it only changes at
  // yield points.
  while (finger < _heap_end) {
2204
    assert(_g1h->is_in_g1_reserved(finger), "invariant");
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225

    // is the gap between reading the finger and doing the CAS too long?

    HeapRegion* curr_region   = _g1h->heap_region_containing(finger);
    HeapWord*   bottom        = curr_region->bottom();
    HeapWord*   end           = curr_region->end();
    HeapWord*   limit         = curr_region->next_top_at_mark_start();

    if (verbose_low())
      gclog_or_tty->print_cr("[%d] curr_region = "PTR_FORMAT" "
                             "["PTR_FORMAT", "PTR_FORMAT"), "
                             "limit = "PTR_FORMAT,
                             task_num, curr_region, bottom, end, limit);

    HeapWord* res =
      (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
    if (res == finger) {
      // we succeeded

      // notice that _finger == end cannot be guaranteed here since,
      // someone else might have moved the finger even further
2226
      assert(_finger >= end, "the finger should have moved forward");
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237

      if (verbose_low())
        gclog_or_tty->print_cr("[%d] we were successful with region = "
                               PTR_FORMAT, task_num, curr_region);

      if (limit > bottom) {
        if (verbose_low())
          gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is not empty, "
                                 "returning it ", task_num, curr_region);
        return curr_region;
      } else {
2238 2239
        assert(limit == bottom,
               "the region limit should be at bottom");
2240 2241 2242 2243 2244 2245 2246 2247
        if (verbose_low())
          gclog_or_tty->print_cr("[%d] region "PTR_FORMAT" is empty, "
                                 "returning NULL", task_num, curr_region);
        // we return NULL and the caller should try calling
        // claim_region() again.
        return NULL;
      }
    } else {
2248
      assert(_finger > finger, "the finger should have moved forward");
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
      if (verbose_low())
        gclog_or_tty->print_cr("[%d] somebody else moved the finger, "
                               "global finger = "PTR_FORMAT", "
                               "our finger = "PTR_FORMAT,
                               task_num, _finger, finger);

      // read it again
      finger = _finger;
    }
  }

  return NULL;
}

void ConcurrentMark::oops_do(OopClosure* cl) {
  if (_markStack.size() > 0 && verbose_low())
    gclog_or_tty->print_cr("[global] scanning the global marking stack, "
                           "size = %d", _markStack.size());
  // we first iterate over the contents of the mark stack...
  _markStack.oops_do(cl);

  for (int i = 0; i < (int)_max_task_num; ++i) {
    OopTaskQueue* queue = _task_queues->queue((int)i);

    if (queue->size() > 0 && verbose_low())
      gclog_or_tty->print_cr("[global] scanning task queue of task %d, "
                             "size = %d", i, queue->size());

    // ...then over the contents of the all the task queues.
    queue->oops_do(cl);
  }

  // finally, invalidate any entries that in the region stack that
  // point into the collection set
  if (_regionStack.invalidate_entries_into_cset()) {
    // otherwise, any gray objects copied during the evacuation pause
    // might not be visited.
2286
    assert(_should_gray_objects, "invariant");
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
  }
}

void ConcurrentMark::clear_marking_state() {
  _markStack.setEmpty();
  _markStack.clear_overflow();
  _regionStack.setEmpty();
  _regionStack.clear_overflow();
  clear_has_overflown();
  _finger = _heap_start;

  for (int i = 0; i < (int)_max_task_num; ++i) {
    OopTaskQueue* queue = _task_queues->queue(i);
    queue->set_empty();
  }
}

void ConcurrentMark::print_stats() {
  if (verbose_stats()) {
    gclog_or_tty->print_cr("---------------------------------------------------------------------");
    for (size_t i = 0; i < _active_tasks; ++i) {
      _tasks[i]->print_stats();
      gclog_or_tty->print_cr("---------------------------------------------------------------------");
    }
  }
}

class CSMarkOopClosure: public OopClosure {
  friend class CSMarkBitMapClosure;

  G1CollectedHeap* _g1h;
  CMBitMap*        _bm;
  ConcurrentMark*  _cm;
  oop*             _ms;
  jint*            _array_ind_stack;
  int              _ms_size;
  int              _ms_ind;
  int              _array_increment;

  bool push(oop obj, int arr_ind = 0) {
    if (_ms_ind == _ms_size) {
      gclog_or_tty->print_cr("Mark stack is full.");
      return false;
    }
    _ms[_ms_ind] = obj;
    if (obj->is_objArray()) _array_ind_stack[_ms_ind] = arr_ind;
    _ms_ind++;
    return true;
  }

  oop pop() {
    if (_ms_ind == 0) return NULL;
    else {
      _ms_ind--;
      return _ms[_ms_ind];
    }
  }

2345
  template <class T> bool drain() {
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
    while (_ms_ind > 0) {
      oop obj = pop();
      assert(obj != NULL, "Since index was non-zero.");
      if (obj->is_objArray()) {
        jint arr_ind = _array_ind_stack[_ms_ind];
        objArrayOop aobj = objArrayOop(obj);
        jint len = aobj->length();
        jint next_arr_ind = arr_ind + _array_increment;
        if (next_arr_ind < len) {
          push(obj, next_arr_ind);
        }
        // Now process this portion of this one.
        int lim = MIN2(next_arr_ind, len);
        for (int j = arr_ind; j < lim; j++) {
2360
          do_oop(aobj->objArrayOopDesc::obj_at_addr<T>(j));
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
        }

      } else {
        obj->oop_iterate(this);
      }
      if (abort()) return false;
    }
    return true;
  }

public:
  CSMarkOopClosure(ConcurrentMark* cm, int ms_size) :
    _g1h(G1CollectedHeap::heap()),
    _cm(cm),
    _bm(cm->nextMarkBitMap()),
    _ms_size(ms_size), _ms_ind(0),
    _ms(NEW_C_HEAP_ARRAY(oop, ms_size)),
    _array_ind_stack(NEW_C_HEAP_ARRAY(jint, ms_size)),
    _array_increment(MAX2(ms_size/8, 16))
  {}

  ~CSMarkOopClosure() {
    FREE_C_HEAP_ARRAY(oop, _ms);
    FREE_C_HEAP_ARRAY(jint, _array_ind_stack);
  }

2387 2388
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
2389

2390 2391 2392 2393
  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (oopDesc::is_null(heap_oop)) return;
    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
    if (obj->is_forwarded()) {
      // If the object has already been forwarded, we have to make sure
      // that it's marked.  So follow the forwarding pointer.  Note that
      // this does the right thing for self-forwarding pointers in the
      // evacuation failure case.
      obj = obj->forwardee();
    }
    HeapRegion* hr = _g1h->heap_region_containing(obj);
    if (hr != NULL) {
      if (hr->in_collection_set()) {
        if (_g1h->is_obj_ill(obj)) {
          _bm->mark((HeapWord*)obj);
          if (!push(obj)) {
            gclog_or_tty->print_cr("Setting abort in CSMarkOopClosure because push failed.");
            set_abort();
          }
        }
      } else {
        // Outside the collection set; we need to gray it
        _cm->deal_with_reference(obj);
      }
    }
  }
};

class CSMarkBitMapClosure: public BitMapClosure {
  G1CollectedHeap* _g1h;
  CMBitMap*        _bitMap;
  ConcurrentMark*  _cm;
  CSMarkOopClosure _oop_cl;
public:
  CSMarkBitMapClosure(ConcurrentMark* cm, int ms_size) :
    _g1h(G1CollectedHeap::heap()),
    _bitMap(cm->nextMarkBitMap()),
    _oop_cl(cm, ms_size)
  {}

  ~CSMarkBitMapClosure() {}

  bool do_bit(size_t offset) {
    // convert offset into a HeapWord*
    HeapWord* addr = _bitMap->offsetToHeapWord(offset);
    assert(_bitMap->endWord() && addr < _bitMap->endWord(),
           "address out of range");
    assert(_bitMap->isMarked(addr), "tautology");
    oop obj = oop(addr);
    if (!obj->is_forwarded()) {
      if (!_oop_cl.push(obj)) return false;
2442 2443 2444 2445 2446
      if (UseCompressedOops) {
        if (!_oop_cl.drain<narrowOop>()) return false;
      } else {
        if (!_oop_cl.drain<oop>()) return false;
      }
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
    }
    // Otherwise...
    return true;
  }
};


class CompleteMarkingInCSHRClosure: public HeapRegionClosure {
  CMBitMap* _bm;
  CSMarkBitMapClosure _bit_cl;
  enum SomePrivateConstants {
    MSSize = 1000
  };
  bool _completed;
public:
  CompleteMarkingInCSHRClosure(ConcurrentMark* cm) :
    _bm(cm->nextMarkBitMap()),
    _bit_cl(cm, MSSize),
    _completed(true)
  {}

  ~CompleteMarkingInCSHRClosure() {}

  bool doHeapRegion(HeapRegion* r) {
    if (!r->evacuation_failed()) {
      MemRegion mr = MemRegion(r->bottom(), r->next_top_at_mark_start());
      if (!mr.is_empty()) {
        if (!_bm->iterate(&_bit_cl, mr)) {
          _completed = false;
          return true;
        }
      }
    }
    return false;
  }

  bool completed() { return _completed; }
};

class ClearMarksInHRClosure: public HeapRegionClosure {
  CMBitMap* _bm;
public:
  ClearMarksInHRClosure(CMBitMap* bm): _bm(bm) { }

  bool doHeapRegion(HeapRegion* r) {
    if (!r->used_region().is_empty() && !r->evacuation_failed()) {
      MemRegion usedMR = r->used_region();
      _bm->clearRange(r->used_region());
    }
    return false;
  }
};

void ConcurrentMark::complete_marking_in_collection_set() {
  G1CollectedHeap* g1h =  G1CollectedHeap::heap();

  if (!g1h->mark_in_progress()) {
    g1h->g1_policy()->record_mark_closure_time(0.0);
    return;
  }

  int i = 1;
  double start = os::elapsedTime();
  while (true) {
    i++;
    CompleteMarkingInCSHRClosure cmplt(this);
    g1h->collection_set_iterate(&cmplt);
    if (cmplt.completed()) break;
  }
  double end_time = os::elapsedTime();
  double elapsed_time_ms = (end_time - start) * 1000.0;
  g1h->g1_policy()->record_mark_closure_time(elapsed_time_ms);
  if (PrintGCDetails) {
    gclog_or_tty->print_cr("Mark closure took %5.2f ms.", elapsed_time_ms);
  }

  ClearMarksInHRClosure clr(nextMarkBitMap());
  g1h->collection_set_iterate(&clr);
}

// The next two methods deal with the following optimisation. Some
// objects are gray by being marked and located above the finger. If
// they are copied, during an evacuation pause, below the finger then
// the need to be pushed on the stack. The observation is that, if
// there are no regions in the collection set located above the
// finger, then the above cannot happen, hence we do not need to
// explicitly gray any objects when copying them to below the
// finger. The global stack will be scanned to ensure that, if it
// points to objects being copied, it will update their
// location. There is a tricky situation with the gray objects in
// region stack that are being coped, however. See the comment in
// newCSet().

void ConcurrentMark::newCSet() {
  if (!concurrent_marking_in_progress())
    // nothing to do if marking is not in progress
    return;

  // find what the lowest finger is among the global and local fingers
  _min_finger = _finger;
  for (int i = 0; i < (int)_max_task_num; ++i) {
    CMTask* task = _tasks[i];
    HeapWord* task_finger = task->finger();
    if (task_finger != NULL && task_finger < _min_finger)
      _min_finger = task_finger;
  }

  _should_gray_objects = false;

  // This fixes a very subtle and fustrating bug. It might be the case
  // that, during en evacuation pause, heap regions that contain
  // objects that are gray (by being in regions contained in the
  // region stack) are included in the collection set. Since such gray
  // objects will be moved, and because it's not easy to redirect
  // region stack entries to point to a new location (because objects
  // in one region might be scattered to multiple regions after they
  // are copied), one option is to ensure that all marked objects
  // copied during a pause are pushed on the stack. Notice, however,
  // that this problem can only happen when the region stack is not
  // empty during an evacuation pause. So, we make the fix a bit less
  // conservative and ensure that regions are pushed on the stack,
  // irrespective whether all collection set regions are below the
  // finger, if the region stack is not empty. This is expected to be
  // a rare case, so I don't think it's necessary to be smarted about it.
  if (!region_stack_empty())
    _should_gray_objects = true;
}

void ConcurrentMark::registerCSetRegion(HeapRegion* hr) {
  if (!concurrent_marking_in_progress())
    return;

  HeapWord* region_end = hr->end();
  if (region_end > _min_finger)
    _should_gray_objects = true;
}

// abandon current marking iteration due to a Full GC
void ConcurrentMark::abort() {
  // Clear all marks to force marking thread to do nothing
  _nextMarkBitMap->clearAll();
  // Empty mark stack
  clear_marking_state();
  for (int i = 0; i < (int)_max_task_num; ++i)
    _tasks[i]->clear_region_fields();
  _has_aborted = true;

  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  satb_mq_set.abandon_partial_marking();
2596 2597 2598 2599 2600
  // This can be called either during or outside marking, we'll read
  // the expected_active value from the SATB queue set.
  satb_mq_set.set_active_all_threads(
                                 false, /* new active value */
                                 satb_mq_set.is_active() /* expected_active */);
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
}

static void print_ms_time_info(const char* prefix, const char* name,
                               NumberSeq& ns) {
  gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
                         prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
  if (ns.num() > 0) {
    gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
                           prefix, ns.sd(), ns.maximum());
  }
}

void ConcurrentMark::print_summary_info() {
  gclog_or_tty->print_cr(" Concurrent marking:");
  print_ms_time_info("  ", "init marks", _init_times);
  print_ms_time_info("  ", "remarks", _remark_times);
  {
    print_ms_time_info("     ", "final marks", _remark_mark_times);
    print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);

  }
  print_ms_time_info("  ", "cleanups", _cleanup_times);
  gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
                         _total_counting_time,
                         (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
                          (double)_cleanup_times.num()
                         : 0.0));
  if (G1ScrubRemSets) {
    gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
                           _total_rs_scrub_time,
                           (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
                            (double)_cleanup_times.num()
                           : 0.0));
  }
  gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
                         (_init_times.sum() + _remark_times.sum() +
                          _cleanup_times.sum())/1000.0);
  gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
                "(%8.2f s marking, %8.2f s counting).",
                cmThread()->vtime_accum(),
                cmThread()->vtime_mark_accum(),
                cmThread()->vtime_count_accum());
}

T
tonyp 已提交
2645 2646 2647 2648
void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
  _parallel_workers->print_worker_threads_on(st);
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
// Closures
// XXX: there seems to be a lot of code  duplication here;
// should refactor and consolidate the shared code.

// This closure is used to mark refs into the CMS generation in
// the CMS bit map. Called at the first checkpoint.

// We take a break if someone is trying to stop the world.
bool ConcurrentMark::do_yield_check(int worker_i) {
  if (should_yield()) {
    if (worker_i == 0)
      _g1h->g1_policy()->record_concurrent_pause();
    cmThread()->yield();
    if (worker_i == 0)
      _g1h->g1_policy()->record_concurrent_pause_end();
    return true;
  } else {
    return false;
  }
}

bool ConcurrentMark::should_yield() {
  return cmThread()->should_yield();
}

bool ConcurrentMark::containing_card_is_marked(void* p) {
  size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
  return _card_bm.at(offset >> CardTableModRefBS::card_shift);
}

bool ConcurrentMark::containing_cards_are_marked(void* start,
                                                 void* last) {
  return
    containing_card_is_marked(start) &&
    containing_card_is_marked(last);
}

#ifndef PRODUCT
// for debugging purposes
void ConcurrentMark::print_finger() {
  gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
                         _heap_start, _heap_end, _finger);
  for (int i = 0; i < (int) _max_task_num; ++i) {
    gclog_or_tty->print("   %d: "PTR_FORMAT, i, _tasks[i]->finger());
  }
  gclog_or_tty->print_cr("");
}
#endif

// Closure for iteration over bitmaps
class CMBitMapClosure : public BitMapClosure {
private:
  // the bitmap that is being iterated over
  CMBitMap*                   _nextMarkBitMap;
  ConcurrentMark*             _cm;
  CMTask*                     _task;
  // true if we're scanning a heap region claimed by the task (so that
  // we move the finger along), false if we're not, i.e. currently when
  // scanning a heap region popped from the region stack (so that we
  // do not move the task finger along; it'd be a mistake if we did so).
  bool                        _scanning_heap_region;

public:
  CMBitMapClosure(CMTask *task,
                  ConcurrentMark* cm,
                  CMBitMap* nextMarkBitMap)
    :  _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }

  void set_scanning_heap_region(bool scanning_heap_region) {
    _scanning_heap_region = scanning_heap_region;
  }

  bool do_bit(size_t offset) {
    HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2723 2724
    assert(_nextMarkBitMap->isMarked(addr), "invariant");
    assert( addr < _cm->finger(), "invariant");
2725 2726 2727

    if (_scanning_heap_region) {
      statsOnly( _task->increase_objs_found_on_bitmap() );
2728
      assert(addr >= _task->finger(), "invariant");
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
      // We move that task's local finger along.
      _task->move_finger_to(addr);
    } else {
      // We move the task's region finger along.
      _task->move_region_finger_to(addr);
    }

    _task->scan_object(oop(addr));
    // we only partially drain the local queue and global stack
    _task->drain_local_queue(true);
    _task->drain_global_stack(true);

    // if the has_aborted flag has been raised, we need to bail out of
    // the iteration
    return !_task->has_aborted();
  }
};

// Closure for iterating over objects, currently only used for
// processing SATB buffers.
class CMObjectClosure : public ObjectClosure {
private:
  CMTask* _task;

public:
  void do_object(oop obj) {
    _task->deal_with_reference(obj);
  }

  CMObjectClosure(CMTask* task) : _task(task) { }
};

// Closure for iterating over object fields
class CMOopClosure : public OopClosure {
private:
  G1CollectedHeap*   _g1h;
  ConcurrentMark*    _cm;
  CMTask*            _task;

public:
2769 2770
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
2771

2772
  template <class T> void do_oop_work(T* p) {
2773 2774 2775
    assert(_g1h->is_in_g1_reserved((HeapWord*) p), "invariant");
    assert(!_g1h->heap_region_containing((HeapWord*) p)->is_on_free_list(),
           "invariant");
2776

2777
    oop obj = oopDesc::load_decode_heap_oop(p);
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
    if (_cm->verbose_high())
      gclog_or_tty->print_cr("[%d] we're looking at location "
                             "*"PTR_FORMAT" = "PTR_FORMAT,
                             _task->task_id(), p, (void*) obj);
    _task->deal_with_reference(obj);
  }

  CMOopClosure(G1CollectedHeap* g1h,
               ConcurrentMark* cm,
               CMTask* task)
    : _g1h(g1h), _cm(cm), _task(task) { }
};

void CMTask::setup_for_region(HeapRegion* hr) {
2792 2793 2794 2795 2796
  // Separated the asserts so that we know which one fires.
  assert(hr != NULL,
        "claim_region() should have filtered out continues humongous regions");
  assert(!hr->continuesHumongous(),
        "claim_region() should have filtered out continues humongous regions");
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823

  if (_cm->verbose_low())
    gclog_or_tty->print_cr("[%d] setting up for region "PTR_FORMAT,
                           _task_id, hr);

  _curr_region  = hr;
  _finger       = hr->bottom();
  update_region_limit();
}

void CMTask::update_region_limit() {
  HeapRegion* hr            = _curr_region;
  HeapWord* bottom          = hr->bottom();
  HeapWord* limit           = hr->next_top_at_mark_start();

  if (limit == bottom) {
    if (_cm->verbose_low())
      gclog_or_tty->print_cr("[%d] found an empty region "
                             "["PTR_FORMAT", "PTR_FORMAT")",
                             _task_id, bottom, limit);
    // The region was collected underneath our feet.
    // We set the finger to bottom to ensure that the bitmap
    // iteration that will follow this will not do anything.
    // (this is not a condition that holds when we set the region up,
    // as the region is not supposed to be empty in the first place)
    _finger = bottom;
  } else if (limit >= _region_limit) {
2824
    assert(limit >= _finger, "peace of mind");
2825
  } else {
2826
    assert(limit < _region_limit, "only way to get here");
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
    // This can happen under some pretty unusual circumstances.  An
    // evacuation pause empties the region underneath our feet (NTAMS
    // at bottom). We then do some allocation in the region (NTAMS
    // stays at bottom), followed by the region being used as a GC
    // alloc region (NTAMS will move to top() and the objects
    // originally below it will be grayed). All objects now marked in
    // the region are explicitly grayed, if below the global finger,
    // and we do not need in fact to scan anything else. So, we simply
    // set _finger to be limit to ensure that the bitmap iteration
    // doesn't do anything.
    _finger = limit;
  }

  _region_limit = limit;
}

void CMTask::giveup_current_region() {
2844
  assert(_curr_region != NULL, "invariant");
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
  if (_cm->verbose_low())
    gclog_or_tty->print_cr("[%d] giving up region "PTR_FORMAT,
                           _task_id, _curr_region);
  clear_region_fields();
}

void CMTask::clear_region_fields() {
  // Values for these three fields that indicate that we're not
  // holding on to a region.
  _curr_region   = NULL;
  _finger        = NULL;
  _region_limit  = NULL;

  _region_finger = NULL;
}

void CMTask::reset(CMBitMap* nextMarkBitMap) {
2862
  guarantee(nextMarkBitMap != NULL, "invariant");
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925

  if (_cm->verbose_low())
    gclog_or_tty->print_cr("[%d] resetting", _task_id);

  _nextMarkBitMap                = nextMarkBitMap;
  clear_region_fields();

  _calls                         = 0;
  _elapsed_time_ms               = 0.0;
  _termination_time_ms           = 0.0;
  _termination_start_time_ms     = 0.0;

#if _MARKING_STATS_
  _local_pushes                  = 0;
  _local_pops                    = 0;
  _local_max_size                = 0;
  _objs_scanned                  = 0;
  _global_pushes                 = 0;
  _global_pops                   = 0;
  _global_max_size               = 0;
  _global_transfers_to           = 0;
  _global_transfers_from         = 0;
  _region_stack_pops             = 0;
  _regions_claimed               = 0;
  _objs_found_on_bitmap          = 0;
  _satb_buffers_processed        = 0;
  _steal_attempts                = 0;
  _steals                        = 0;
  _aborted                       = 0;
  _aborted_overflow              = 0;
  _aborted_cm_aborted            = 0;
  _aborted_yield                 = 0;
  _aborted_timed_out             = 0;
  _aborted_satb                  = 0;
  _aborted_termination           = 0;
#endif // _MARKING_STATS_
}

bool CMTask::should_exit_termination() {
  regular_clock_call();
  // This is called when we are in the termination protocol. We should
  // quit if, for some reason, this task wants to abort or the global
  // stack is not empty (this means that we can get work from it).
  return !_cm->mark_stack_empty() || has_aborted();
}

// This determines whether the method below will check both the local
// and global fingers when determining whether to push on the stack a
// gray object (value 1) or whether it will only check the global one
// (value 0). The tradeoffs are that the former will be a bit more
// accurate and possibly push less on the stack, but it might also be
// a little bit slower.

#define _CHECK_BOTH_FINGERS_      1

void CMTask::deal_with_reference(oop obj) {
  if (_cm->verbose_high())
    gclog_or_tty->print_cr("[%d] we're dealing with reference = "PTR_FORMAT,
                           _task_id, (void*) obj);

  ++_refs_reached;

  HeapWord* objAddr = (HeapWord*) obj;
2926
  assert(obj->is_oop_or_null(true /* ignore mark word */), "Error");
2927
  if (_g1h->is_in_g1_reserved(objAddr)) {
2928
    assert(obj != NULL, "is_in_g1_reserved should ensure this");
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
    HeapRegion* hr =  _g1h->heap_region_containing(obj);
    if (_g1h->is_obj_ill(obj, hr)) {
      if (_cm->verbose_high())
        gclog_or_tty->print_cr("[%d] "PTR_FORMAT" is not considered marked",
                               _task_id, (void*) obj);

      // we need to mark it first
      if (_nextMarkBitMap->parMark(objAddr)) {
        // No OrderAccess:store_load() is needed. It is implicit in the
        // CAS done in parMark(objAddr) above
        HeapWord* global_finger = _cm->finger();

#if _CHECK_BOTH_FINGERS_
        // we will check both the local and global fingers

        if (_finger != NULL && objAddr < _finger) {
          if (_cm->verbose_high())
            gclog_or_tty->print_cr("[%d] below the local finger ("PTR_FORMAT"), "
                                   "pushing it", _task_id, _finger);
          push(obj);
        } else if (_curr_region != NULL && objAddr < _region_limit) {
          // do nothing
        } else if (objAddr < global_finger) {
          // Notice that the global finger might be moving forward
          // concurrently. This is not a problem. In the worst case, we
          // mark the object while it is above the global finger and, by
          // the time we read the global finger, it has moved forward
          // passed this object. In this case, the object will probably
          // be visited when a task is scanning the region and will also
          // be pushed on the stack. So, some duplicate work, but no
          // correctness problems.

          if (_cm->verbose_high())
            gclog_or_tty->print_cr("[%d] below the global finger "
                                   "("PTR_FORMAT"), pushing it",
                                   _task_id, global_finger);
          push(obj);
        } else {
          // do nothing
        }
#else // _CHECK_BOTH_FINGERS_
      // we will only check the global finger

        if (objAddr < global_finger) {
          // see long comment above

          if (_cm->verbose_high())
            gclog_or_tty->print_cr("[%d] below the global finger "
                                   "("PTR_FORMAT"), pushing it",
                                   _task_id, global_finger);
          push(obj);
        }
#endif // _CHECK_BOTH_FINGERS_
      }
    }
  }
}

void CMTask::push(oop obj) {
  HeapWord* objAddr = (HeapWord*) obj;
2989 2990 2991 2992 2993
  assert(_g1h->is_in_g1_reserved(objAddr), "invariant");
  assert(!_g1h->heap_region_containing(objAddr)->is_on_free_list(),
         "invariant");
  assert(!_g1h->is_obj_ill(obj), "invariant");
  assert(_nextMarkBitMap->isMarked(objAddr), "invariant");
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011

  if (_cm->verbose_high())
    gclog_or_tty->print_cr("[%d] pushing "PTR_FORMAT, _task_id, (void*) obj);

  if (!_task_queue->push(obj)) {
    // The local task queue looks full. We need to push some entries
    // to the global stack.

    if (_cm->verbose_medium())
      gclog_or_tty->print_cr("[%d] task queue overflow, "
                             "moving entries to the global stack",
                             _task_id);
    move_entries_to_global_stack();

    // this should succeed since, even if we overflow the global
    // stack, we should have definitely removed some entries from the
    // local queue. So, there must be space on it.
    bool success = _task_queue->push(obj);
3012
    assert(success, "invariant");
3013 3014 3015 3016 3017 3018 3019 3020 3021
  }

  statsOnly( int tmp_size = _task_queue->size();
             if (tmp_size > _local_max_size)
               _local_max_size = tmp_size;
             ++_local_pushes );
}

void CMTask::reached_limit() {
3022 3023 3024
  assert(_words_scanned >= _words_scanned_limit ||
         _refs_reached >= _refs_reached_limit ,
         "shouldn't have been called otherwise");
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
  regular_clock_call();
}

void CMTask::regular_clock_call() {
  if (has_aborted())
    return;

  // First, we need to recalculate the words scanned and refs reached
  // limits for the next clock call.
  recalculate_limits();

  // During the regular clock call we do the following

  // (1) If an overflow has been flagged, then we abort.
  if (_cm->has_overflown()) {
    set_has_aborted();
    return;
  }

  // If we are not concurrent (i.e. we're doing remark) we don't need
  // to check anything else. The other steps are only needed during
  // the concurrent marking phase.
  if (!concurrent())
    return;

  // (2) If marking has been aborted for Full GC, then we also abort.
  if (_cm->has_aborted()) {
    set_has_aborted();
    statsOnly( ++_aborted_cm_aborted );
    return;
  }

  double curr_time_ms = os::elapsedVTime() * 1000.0;

  // (3) If marking stats are enabled, then we update the step history.
#if _MARKING_STATS_
  if (_words_scanned >= _words_scanned_limit)
    ++_clock_due_to_scanning;
  if (_refs_reached >= _refs_reached_limit)
    ++_clock_due_to_marking;

  double last_interval_ms = curr_time_ms - _interval_start_time_ms;
  _interval_start_time_ms = curr_time_ms;
  _all_clock_intervals_ms.add(last_interval_ms);

  if (_cm->verbose_medium()) {
    gclog_or_tty->print_cr("[%d] regular clock, interval = %1.2lfms, "
                           "scanned = %d%s, refs reached = %d%s",
                           _task_id, last_interval_ms,
                           _words_scanned,
                           (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
                           _refs_reached,
                           (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
  }
#endif // _MARKING_STATS_

  // (4) We check whether we should yield. If we have to, then we abort.
  if (_cm->should_yield()) {
    // We should yield. To do this we abort the task. The caller is
    // responsible for yielding.
    set_has_aborted();
    statsOnly( ++_aborted_yield );
    return;
  }

  // (5) We check whether we've reached our time quota. If we have,
  // then we abort.
  double elapsed_time_ms = curr_time_ms - _start_time_ms;
  if (elapsed_time_ms > _time_target_ms) {
    set_has_aborted();
    _has_aborted_timed_out = true;
    statsOnly( ++_aborted_timed_out );
    return;
  }

  // (6) Finally, we check whether there are enough completed STAB
  // buffers available for processing. If there are, we abort.
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
    if (_cm->verbose_low())
      gclog_or_tty->print_cr("[%d] aborting to deal with pending SATB buffers",
                             _task_id);
    // we do need to process SATB buffers, we'll abort and restart
    // the marking task to do so
    set_has_aborted();
    statsOnly( ++_aborted_satb );
    return;
  }
}

void CMTask::recalculate_limits() {
  _real_words_scanned_limit = _words_scanned + words_scanned_period;
  _words_scanned_limit      = _real_words_scanned_limit;

  _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
  _refs_reached_limit       = _real_refs_reached_limit;
}

void CMTask::decrease_limits() {
  // This is called when we believe that we're going to do an infrequent
  // operation which will increase the per byte scanned cost (i.e. move
  // entries to/from the global stack). It basically tries to decrease the
  // scanning limit so that the clock is called earlier.

  if (_cm->verbose_medium())
    gclog_or_tty->print_cr("[%d] decreasing limits", _task_id);

  _words_scanned_limit = _real_words_scanned_limit -
    3 * words_scanned_period / 4;
  _refs_reached_limit  = _real_refs_reached_limit -
    3 * refs_reached_period / 4;
}

void CMTask::move_entries_to_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the local queue
  oop buffer[global_stack_transfer_size];

  int n = 0;
  oop obj;
  while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
    buffer[n] = obj;
    ++n;
  }

  if (n > 0) {
    // we popped at least one entry from the local queue

    statsOnly( ++_global_transfers_to; _local_pops += n );

    if (!_cm->mark_stack_push(buffer, n)) {
      if (_cm->verbose_low())
        gclog_or_tty->print_cr("[%d] aborting due to global stack overflow", _task_id);
      set_has_aborted();
    } else {
      // the transfer was successful

      if (_cm->verbose_medium())
        gclog_or_tty->print_cr("[%d] pushed %d entries to the global stack",
                               _task_id, n);
      statsOnly( int tmp_size = _cm->mark_stack_size();
                 if (tmp_size > _global_max_size)
                   _global_max_size = tmp_size;
                 _global_pushes += n );
    }
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::get_entries_from_global_stack() {
  // local array where we'll store the entries that will be popped
  // from the global stack.
  oop buffer[global_stack_transfer_size];
  int n;
  _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3182 3183
  assert(n <= global_stack_transfer_size,
         "we should not pop more than the given limit");
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
  if (n > 0) {
    // yes, we did actually pop at least one entry

    statsOnly( ++_global_transfers_from; _global_pops += n );
    if (_cm->verbose_medium())
      gclog_or_tty->print_cr("[%d] popped %d entries from the global stack",
                             _task_id, n);
    for (int i = 0; i < n; ++i) {
      bool success = _task_queue->push(buffer[i]);
      // We only call this when the local queue is empty or under a
      // given target limit. So, we do not expect this push to fail.
3195
      assert(success, "invariant");
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
    }

    statsOnly( int tmp_size = _task_queue->size();
               if (tmp_size > _local_max_size)
                 _local_max_size = tmp_size;
               _local_pushes += n );
  }

  // this operation was quite expensive, so decrease the limits
  decrease_limits();
}

void CMTask::drain_local_queue(bool partially) {
  if (has_aborted())
    return;

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).
  size_t target_size;
  if (partially)
    target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
  else
    target_size = 0;

  if (_task_queue->size() > target_size) {
    if (_cm->verbose_high())
      gclog_or_tty->print_cr("[%d] draining local queue, target size = %d",
                             _task_id, target_size);

    oop obj;
    bool ret = _task_queue->pop_local(obj);
    while (ret) {
      statsOnly( ++_local_pops );

      if (_cm->verbose_high())
        gclog_or_tty->print_cr("[%d] popped "PTR_FORMAT, _task_id,
                               (void*) obj);

3235 3236 3237
      assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
      assert(!_g1h->heap_region_containing(obj)->is_on_free_list(),
             "invariant");
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

      scan_object(obj);

      if (_task_queue->size() <= target_size || has_aborted())
        ret = false;
      else
        ret = _task_queue->pop_local(obj);
    }

    if (_cm->verbose_high())
      gclog_or_tty->print_cr("[%d] drained local queue, size = %d",
                             _task_id, _task_queue->size());
  }
}

void CMTask::drain_global_stack(bool partially) {
  if (has_aborted())
    return;

  // We have a policy to drain the local queue before we attempt to
  // drain the global stack.
3259
  assert(partially || _task_queue->size() == 0, "invariant");
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339

  // Decide what the target size is, depending whether we're going to
  // drain it partially (so that other tasks can steal if they run out
  // of things to do) or totally (at the very end).  Notice that,
  // because we move entries from the global stack in chunks or
  // because another task might be doing the same, we might in fact
  // drop below the target. But, this is not a problem.
  size_t target_size;
  if (partially)
    target_size = _cm->partial_mark_stack_size_target();
  else
    target_size = 0;

  if (_cm->mark_stack_size() > target_size) {
    if (_cm->verbose_low())
      gclog_or_tty->print_cr("[%d] draining global_stack, target size %d",
                             _task_id, target_size);

    while (!has_aborted() && _cm->mark_stack_size() > target_size) {
      get_entries_from_global_stack();
      drain_local_queue(partially);
    }

    if (_cm->verbose_low())
      gclog_or_tty->print_cr("[%d] drained global stack, size = %d",
                             _task_id, _cm->mark_stack_size());
  }
}

// SATB Queue has several assumptions on whether to call the par or
// non-par versions of the methods. this is why some of the code is
// replicated. We should really get rid of the single-threaded version
// of the code to simplify things.
void CMTask::drain_satb_buffers() {
  if (has_aborted())
    return;

  // We set this so that the regular clock knows that we're in the
  // middle of draining buffers and doesn't set the abort flag when it
  // notices that SATB buffers are available for draining. It'd be
  // very counter productive if it did that. :-)
  _draining_satb_buffers = true;

  CMObjectClosure oc(this);
  SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
  if (ParallelGCThreads > 0)
    satb_mq_set.set_par_closure(_task_id, &oc);
  else
    satb_mq_set.set_closure(&oc);

  // This keeps claiming and applying the closure to completed buffers
  // until we run out of buffers or we need to abort.
  if (ParallelGCThreads > 0) {
    while (!has_aborted() &&
           satb_mq_set.par_apply_closure_to_completed_buffer(_task_id)) {
      if (_cm->verbose_medium())
        gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  } else {
    while (!has_aborted() &&
           satb_mq_set.apply_closure_to_completed_buffer()) {
      if (_cm->verbose_medium())
        gclog_or_tty->print_cr("[%d] processed an SATB buffer", _task_id);
      statsOnly( ++_satb_buffers_processed );
      regular_clock_call();
    }
  }

  if (!concurrent() && !has_aborted()) {
    // We should only do this during remark.
    if (ParallelGCThreads > 0)
      satb_mq_set.par_iterate_closure_all_threads(_task_id);
    else
      satb_mq_set.iterate_closure_all_threads();
  }

  _draining_satb_buffers = false;

3340 3341 3342
  assert(has_aborted() ||
         concurrent() ||
         satb_mq_set.completed_buffers_num() == 0, "invariant");
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357

  if (ParallelGCThreads > 0)
    satb_mq_set.set_par_closure(_task_id, NULL);
  else
    satb_mq_set.set_closure(NULL);

  // again, this was a potentially expensive operation, decrease the
  // limits to get the regular clock call early
  decrease_limits();
}

void CMTask::drain_region_stack(BitMapClosure* bc) {
  if (has_aborted())
    return;

3358 3359
  assert(_region_finger == NULL,
         "it should be NULL when we're not scanning a region");
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374

  if (!_cm->region_stack_empty()) {
    if (_cm->verbose_low())
      gclog_or_tty->print_cr("[%d] draining region stack, size = %d",
                             _task_id, _cm->region_stack_size());

    MemRegion mr = _cm->region_stack_pop();
    // it returns MemRegion() if the pop fails
    statsOnly(if (mr.start() != NULL) ++_region_stack_pops );

    while (mr.start() != NULL) {
      if (_cm->verbose_medium())
        gclog_or_tty->print_cr("[%d] we are scanning region "
                               "["PTR_FORMAT", "PTR_FORMAT")",
                               _task_id, mr.start(), mr.end());
3375 3376
      assert(mr.end() <= _cm->finger(),
             "otherwise the region shouldn't be on the stack");
3377 3378
      assert(!mr.is_empty(), "Only non-empty regions live on the region stack");
      if (_nextMarkBitMap->iterate(bc, mr)) {
3379 3380
        assert(!has_aborted(),
               "cannot abort the task without aborting the bitmap iteration");
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

        // We finished iterating over the region without aborting.
        regular_clock_call();
        if (has_aborted())
          mr = MemRegion();
        else {
          mr = _cm->region_stack_pop();
          // it returns MemRegion() if the pop fails
          statsOnly(if (mr.start() != NULL) ++_region_stack_pops );
        }
      } else {
3392
        assert(has_aborted(), "currently the only way to do so");
3393 3394 3395 3396 3397 3398

        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _region_finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _region_finger to something non-null.
3399
        assert(_region_finger != NULL, "invariant");
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584

        // The iteration was actually aborted. So now _region_finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
        MemRegion newRegion =
          MemRegion(_nextMarkBitMap->nextWord(_region_finger), mr.end());

        if (!newRegion.is_empty()) {
          if (_cm->verbose_low()) {
            gclog_or_tty->print_cr("[%d] pushing unscanned region"
                                   "[" PTR_FORMAT "," PTR_FORMAT ") on region stack",
                                   _task_id,
                                   newRegion.start(), newRegion.end());
          }
          // Now push the part of the region we didn't scan on the
          // region stack to make sure a task scans it later.
          _cm->region_stack_push(newRegion);
        }
        // break from while
        mr = MemRegion();
      }
      _region_finger = NULL;
    }

    if (_cm->verbose_low())
      gclog_or_tty->print_cr("[%d] drained region stack, size = %d",
                             _task_id, _cm->region_stack_size());
  }
}

void CMTask::print_stats() {
  gclog_or_tty->print_cr("Marking Stats, task = %d, calls = %d",
                         _task_id, _calls);
  gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
                         _elapsed_time_ms, _termination_time_ms);
  gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _step_times_ms.num(), _step_times_ms.avg(),
                         _step_times_ms.sd());
  gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
                         _step_times_ms.maximum(), _step_times_ms.sum());

#if _MARKING_STATS_
  gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
                         _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
                         _all_clock_intervals_ms.sd());
  gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
                         _all_clock_intervals_ms.maximum(),
                         _all_clock_intervals_ms.sum());
  gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
                         _clock_due_to_scanning, _clock_due_to_marking);
  gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
                         _objs_scanned, _objs_found_on_bitmap);
  gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
                         _local_pushes, _local_pops, _local_max_size);
  gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
                         _global_pushes, _global_pops, _global_max_size);
  gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
                         _global_transfers_to,_global_transfers_from);
  gclog_or_tty->print_cr("  Regions: claimed = %d, Region Stack: pops = %d",
                         _regions_claimed, _region_stack_pops);
  gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
  gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
                         _steal_attempts, _steals);
  gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
  gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
                         _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
  gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
                         _aborted_timed_out, _aborted_satb, _aborted_termination);
#endif // _MARKING_STATS_
}

/*****************************************************************************

    The do_marking_step(time_target_ms) method is the building block
    of the parallel marking framework. It can be called in parallel
    with other invocations of do_marking_step() on different tasks
    (but only one per task, obviously) and concurrently with the
    mutator threads, or during remark, hence it eliminates the need
    for two versions of the code. When called during remark, it will
    pick up from where the task left off during the concurrent marking
    phase. Interestingly, tasks are also claimable during evacuation
    pauses too, since do_marking_step() ensures that it aborts before
    it needs to yield.

    The data structures that is uses to do marking work are the
    following:

      (1) Marking Bitmap. If there are gray objects that appear only
      on the bitmap (this happens either when dealing with an overflow
      or when the initial marking phase has simply marked the roots
      and didn't push them on the stack), then tasks claim heap
      regions whose bitmap they then scan to find gray objects. A
      global finger indicates where the end of the last claimed region
      is. A local finger indicates how far into the region a task has
      scanned. The two fingers are used to determine how to gray an
      object (i.e. whether simply marking it is OK, as it will be
      visited by a task in the future, or whether it needs to be also
      pushed on a stack).

      (2) Local Queue. The local queue of the task which is accessed
      reasonably efficiently by the task. Other tasks can steal from
      it when they run out of work. Throughout the marking phase, a
      task attempts to keep its local queue short but not totally
      empty, so that entries are available for stealing by other
      tasks. Only when there is no more work, a task will totally
      drain its local queue.

      (3) Global Mark Stack. This handles local queue overflow. During
      marking only sets of entries are moved between it and the local
      queues, as access to it requires a mutex and more fine-grain
      interaction with it which might cause contention. If it
      overflows, then the marking phase should restart and iterate
      over the bitmap to identify gray objects. Throughout the marking
      phase, tasks attempt to keep the global mark stack at a small
      length but not totally empty, so that entries are available for
      popping by other tasks. Only when there is no more work, tasks
      will totally drain the global mark stack.

      (4) Global Region Stack. Entries on it correspond to areas of
      the bitmap that need to be scanned since they contain gray
      objects. Pushes on the region stack only happen during
      evacuation pauses and typically correspond to areas covered by
      GC LABS. If it overflows, then the marking phase should restart
      and iterate over the bitmap to identify gray objects. Tasks will
      try to totally drain the region stack as soon as possible.

      (5) SATB Buffer Queue. This is where completed SATB buffers are
      made available. Buffers are regularly removed from this queue
      and scanned for roots, so that the queue doesn't get too
      long. During remark, all completed buffers are processed, as
      well as the filled in parts of any uncompleted buffers.

    The do_marking_step() method tries to abort when the time target
    has been reached. There are a few other cases when the
    do_marking_step() method also aborts:

      (1) When the marking phase has been aborted (after a Full GC).

      (2) When a global overflow (either on the global stack or the
      region stack) has been triggered. Before the task aborts, it
      will actually sync up with the other tasks to ensure that all
      the marking data structures (local queues, stacks, fingers etc.)
      are re-initialised so that when do_marking_step() completes,
      the marking phase can immediately restart.

      (3) When enough completed SATB buffers are available. The
      do_marking_step() method only tries to drain SATB buffers right
      at the beginning. So, if enough buffers are available, the
      marking step aborts and the SATB buffers are processed at
      the beginning of the next invocation.

      (4) To yield. when we have to yield then we abort and yield
      right at the end of do_marking_step(). This saves us from a lot
      of hassle as, by yielding we might allow a Full GC. If this
      happens then objects will be compacted underneath our feet, the
      heap might shrink, etc. We save checking for this by just
      aborting and doing the yield right at the end.

    From the above it follows that the do_marking_step() method should
    be called in a loop (or, otherwise, regularly) until it completes.

    If a marking step completes without its has_aborted() flag being
    true, it means it has completed the current marking phase (and
    also all other marking tasks have done so and have all synced up).

    A method called regular_clock_call() is invoked "regularly" (in
    sub ms intervals) throughout marking. It is this clock method that
    checks all the abort conditions which were mentioned above and
    decides when the task should abort. A work-based scheme is used to
    trigger this clock method: when the number of object words the
    marking phase has scanned or the number of references the marking
    phase has visited reach a given limit. Additional invocations to
    the method clock have been planted in a few other strategic places
    too. The initial reason for the clock method was to avoid calling
    vtime too regularly, as it is quite expensive. So, once it was in
    place, it was natural to piggy-back all the other conditions on it
    too and not constantly check them throughout the code.

 *****************************************************************************/

void CMTask::do_marking_step(double time_target_ms) {
3585 3586
  assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
  assert(concurrent() == _cm->concurrent(), "they should be the same");
3587

3588 3589 3590 3591
  assert(concurrent() || _cm->region_stack_empty(),
         "the region stack should have been cleared before remark");
  assert(_region_finger == NULL,
         "this should be non-null only when a region is being scanned");
3592 3593

  G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3594 3595 3596
  assert(_task_queues != NULL, "invariant");
  assert(_task_queue != NULL, "invariant");
  assert(_task_queues->queue(_task_id) == _task_queue, "invariant");
3597

3598 3599
  assert(!_claimed,
         "only one thread should claim this task at any one time");
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

  // OK, this doesn't safeguard again all possible scenarios, as it is
  // possible for two threads to set the _claimed flag at the same
  // time. But it is only for debugging purposes anyway and it will
  // catch most problems.
  _claimed = true;

  _start_time_ms = os::elapsedVTime() * 1000.0;
  statsOnly( _interval_start_time_ms = _start_time_ms );

  double diff_prediction_ms =
    g1_policy->get_new_prediction(&_marking_step_diffs_ms);
  _time_target_ms = time_target_ms - diff_prediction_ms;

  // set up the variables that are used in the work-based scheme to
  // call the regular clock method
  _words_scanned = 0;
  _refs_reached  = 0;
  recalculate_limits();

  // clear all flags
  clear_has_aborted();
  _has_aborted_timed_out = false;
  _draining_satb_buffers = false;

  ++_calls;

  if (_cm->verbose_low())
    gclog_or_tty->print_cr("[%d] >>>>>>>>>> START, call = %d, "
                           "target = %1.2lfms >>>>>>>>>>",
                           _task_id, _calls, _time_target_ms);

  // Set up the bitmap and oop closures. Anything that uses them is
  // eventually called from this method, so it is OK to allocate these
  // statically.
  CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
  CMOopClosure    oop_closure(_g1h, _cm, this);
  set_oop_closure(&oop_closure);

  if (_cm->has_overflown()) {
    // This can happen if the region stack or the mark stack overflows
    // during a GC pause and this task, after a yield point,
    // restarts. We have to abort as we need to get into the overflow
    // protocol which happens right at the end of this task.
    set_has_aborted();
  }

  // First drain any available SATB buffers. After this, we will not
  // look at SATB buffers before the next invocation of this method.
  // If enough completed SATB buffers are queued up, the regular clock
  // will abort this task so that it restarts.
  drain_satb_buffers();
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  // Then totally drain the region stack.  We will not look at
  // it again before the next invocation of this method. Entries on
  // the region stack are only added during evacuation pauses, for
  // which we have to yield. When we do, we abort the task anyway so
  // it will look at the region stack again when it restarts.
  bitmap_closure.set_scanning_heap_region(false);
  drain_region_stack(&bitmap_closure);
  // ...then partially drain the local queue and the global stack
  drain_local_queue(true);
  drain_global_stack(true);

  do {
    if (!has_aborted() && _curr_region != NULL) {
      // This means that we're already holding on to a region.
3670 3671
      assert(_finger != NULL, "if region is not NULL, then the finger "
             "should not be NULL either");
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702

      // We might have restarted this task after an evacuation pause
      // which might have evacuated the region we're holding on to
      // underneath our feet. Let's read its limit again to make sure
      // that we do not iterate over a region of the heap that
      // contains garbage (update_region_limit() will also move
      // _finger to the start of the region if it is found empty).
      update_region_limit();
      // We will start from _finger not from the start of the region,
      // as we might be restarting this task after aborting half-way
      // through scanning this region. In this case, _finger points to
      // the address where we last found a marked object. If this is a
      // fresh region, _finger points to start().
      MemRegion mr = MemRegion(_finger, _region_limit);

      if (_cm->verbose_low())
        gclog_or_tty->print_cr("[%d] we're scanning part "
                               "["PTR_FORMAT", "PTR_FORMAT") "
                               "of region "PTR_FORMAT,
                               _task_id, _finger, _region_limit, _curr_region);

      // Let's iterate over the bitmap of the part of the
      // region that is left.
      bitmap_closure.set_scanning_heap_region(true);
      if (mr.is_empty() ||
          _nextMarkBitMap->iterate(&bitmap_closure, mr)) {
        // We successfully completed iterating over the region. Now,
        // let's give up the region.
        giveup_current_region();
        regular_clock_call();
      } else {
3703
        assert(has_aborted(), "currently the only way to do so");
3704 3705 3706 3707 3708
        // The only way to abort the bitmap iteration is to return
        // false from the do_bit() method. However, inside the
        // do_bit() method we move the _finger to point to the
        // object currently being looked at. So, if we bail out, we
        // have definitely set _finger to something non-null.
3709
        assert(_finger != NULL, "invariant");
3710 3711 3712 3713 3714 3715 3716 3717

        // Region iteration was actually aborted. So now _finger
        // points to the address of the object we last scanned. If we
        // leave it there, when we restart this task, we will rescan
        // the object. It is easy to avoid this. We move the finger by
        // enough to point to the next possible object header (the
        // bitmap knows by how much we need to move it as it knows its
        // granularity).
3718 3719 3720 3721 3722 3723 3724 3725
        assert(_finger < _region_limit, "invariant");
        HeapWord* new_finger = _nextMarkBitMap->nextWord(_finger);
        // Check if bitmap iteration was aborted while scanning the last object
        if (new_finger >= _region_limit) {
            giveup_current_region();
        } else {
            move_finger_to(new_finger);
        }
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
      }
    }
    // At this point we have either completed iterating over the
    // region we were holding on to, or we have aborted.

    // We then partially drain the local queue and the global stack.
    // (Do we really need this?)
    drain_local_queue(true);
    drain_global_stack(true);

    // Read the note on the claim_region() method on why it might
    // return NULL with potentially more regions available for
    // claiming and why we have to check out_of_regions() to determine
    // whether we're done or not.
    while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
      // We are going to try to claim a new region. We should have
      // given up on the previous one.
3743 3744 3745 3746
      // Separated the asserts so that we know which one fires.
      assert(_curr_region  == NULL, "invariant");
      assert(_finger       == NULL, "invariant");
      assert(_region_limit == NULL, "invariant");
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
      if (_cm->verbose_low())
        gclog_or_tty->print_cr("[%d] trying to claim a new region", _task_id);
      HeapRegion* claimed_region = _cm->claim_region(_task_id);
      if (claimed_region != NULL) {
        // Yes, we managed to claim one
        statsOnly( ++_regions_claimed );

        if (_cm->verbose_low())
          gclog_or_tty->print_cr("[%d] we successfully claimed "
                                 "region "PTR_FORMAT,
                                 _task_id, claimed_region);

        setup_for_region(claimed_region);
3760
        assert(_curr_region == claimed_region, "invariant");
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
      }
      // It is important to call the regular clock here. It might take
      // a while to claim a region if, for example, we hit a large
      // block of empty regions. So we need to call the regular clock
      // method once round the loop to make sure it's called
      // frequently enough.
      regular_clock_call();
    }

    if (!has_aborted() && _curr_region == NULL) {
3771 3772
      assert(_cm->out_of_regions(),
             "at this point we should be out of regions");
3773 3774 3775 3776 3777
    }
  } while ( _curr_region != NULL && !has_aborted());

  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
3778 3779 3780
    // tasks might be pushing objects to it concurrently. We also cannot
    // check if the region stack is empty because if a thread is aborting
    // it can push a partially done region back.
3781 3782
    assert(_cm->out_of_regions(),
           "at this point we should be out of regions");
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802

    if (_cm->verbose_low())
      gclog_or_tty->print_cr("[%d] all regions claimed", _task_id);

    // Try to reduce the number of available SATB buffers so that
    // remark has less work to do.
    drain_satb_buffers();
  }

  // Since we've done everything else, we can now totally drain the
  // local queue and global stack.
  drain_local_queue(false);
  drain_global_stack(false);

  // Attempt at work stealing from other task's queues.
  if (!has_aborted()) {
    // We have not aborted. This means that we have finished all that
    // we could. Let's try to do some stealing...

    // We cannot check whether the global stack is empty, since other
3803 3804 3805
    // tasks might be pushing objects to it concurrently. We also cannot
    // check if the region stack is empty because if a thread is aborting
    // it can push a partially done region back.
3806 3807
    assert(_cm->out_of_regions() && _task_queue->size() == 0,
           "only way to reach here");
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822

    if (_cm->verbose_low())
      gclog_or_tty->print_cr("[%d] starting to steal", _task_id);

    while (!has_aborted()) {
      oop obj;
      statsOnly( ++_steal_attempts );

      if (_cm->try_stealing(_task_id, &_hash_seed, obj)) {
        if (_cm->verbose_medium())
          gclog_or_tty->print_cr("[%d] stolen "PTR_FORMAT" successfully",
                                 _task_id, (void*) obj);

        statsOnly( ++_steals );

3823 3824
        assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
               "any stolen object should be marked");
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
        scan_object(obj);

        // And since we're towards the end, let's totally drain the
        // local queue and global stack.
        drain_local_queue(false);
        drain_global_stack(false);
      } else {
        break;
      }
    }
  }

  // We still haven't aborted. Now, let's try to get into the
  // termination protocol.
  if (!has_aborted()) {
    // We cannot check whether the global stack is empty, since other
3841 3842 3843
    // tasks might be concurrently pushing objects on it. We also cannot
    // check if the region stack is empty because if a thread is aborting
    // it can push a partially done region back.
3844 3845 3846
    // Separated the asserts so that we know which one fires.
    assert(_cm->out_of_regions(), "only way to reach here");
    assert(_task_queue->size() == 0, "only way to reach here");
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865

    if (_cm->verbose_low())
      gclog_or_tty->print_cr("[%d] starting termination protocol", _task_id);

    _termination_start_time_ms = os::elapsedVTime() * 1000.0;
    // The CMTask class also extends the TerminatorTerminator class,
    // hence its should_exit_termination() method will also decide
    // whether to exit the termination protocol or not.
    bool finished = _cm->terminator()->offer_termination(this);
    double termination_end_time_ms = os::elapsedVTime() * 1000.0;
    _termination_time_ms +=
      termination_end_time_ms - _termination_start_time_ms;

    if (finished) {
      // We're all done.

      if (_task_id == 0) {
        // let's allow task 0 to do this
        if (concurrent()) {
3866
          assert(_cm->concurrent_marking_in_progress(), "invariant");
3867 3868 3869 3870 3871 3872 3873 3874
          // we need to set this to false before the next
          // safepoint. This way we ensure that the marking phase
          // doesn't observe any more heap expansions.
          _cm->clear_concurrent_marking_in_progress();
        }
      }

      // We can now guarantee that the global stack is empty, since
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
      // all other tasks have finished. We separated the guarantees so
      // that, if a condition is false, we can immediately find out
      // which one.
      guarantee(_cm->out_of_regions(), "only way to reach here");
      guarantee(_cm->region_stack_empty(), "only way to reach here");
      guarantee(_cm->mark_stack_empty(), "only way to reach here");
      guarantee(_task_queue->size() == 0, "only way to reach here");
      guarantee(!_cm->has_overflown(), "only way to reach here");
      guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
      guarantee(!_cm->region_stack_overflow(), "only way to reach here");
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978

      if (_cm->verbose_low())
        gclog_or_tty->print_cr("[%d] all tasks terminated", _task_id);
    } else {
      // Apparently there's more work to do. Let's abort this task. It
      // will restart it and we can hopefully find more things to do.

      if (_cm->verbose_low())
        gclog_or_tty->print_cr("[%d] apparently there is more work to do", _task_id);

      set_has_aborted();
      statsOnly( ++_aborted_termination );
    }
  }

  // Mainly for debugging purposes to make sure that a pointer to the
  // closure which was statically allocated in this frame doesn't
  // escape it by accident.
  set_oop_closure(NULL);
  double end_time_ms = os::elapsedVTime() * 1000.0;
  double elapsed_time_ms = end_time_ms - _start_time_ms;
  // Update the step history.
  _step_times_ms.add(elapsed_time_ms);

  if (has_aborted()) {
    // The task was aborted for some reason.

    statsOnly( ++_aborted );

    if (_has_aborted_timed_out) {
      double diff_ms = elapsed_time_ms - _time_target_ms;
      // Keep statistics of how well we did with respect to hitting
      // our target only if we actually timed out (if we aborted for
      // other reasons, then the results might get skewed).
      _marking_step_diffs_ms.add(diff_ms);
    }

    if (_cm->has_overflown()) {
      // This is the interesting one. We aborted because a global
      // overflow was raised. This means we have to restart the
      // marking phase and start iterating over regions. However, in
      // order to do this we have to make sure that all tasks stop
      // what they are doing and re-initialise in a safe manner. We
      // will achieve this with the use of two barrier sync points.

      if (_cm->verbose_low())
        gclog_or_tty->print_cr("[%d] detected overflow", _task_id);

      _cm->enter_first_sync_barrier(_task_id);
      // When we exit this sync barrier we know that all tasks have
      // stopped doing marking work. So, it's now safe to
      // re-initialise our data structures. At the end of this method,
      // task 0 will clear the global data structures.

      statsOnly( ++_aborted_overflow );

      // We clear the local state of this task...
      clear_region_fields();

      // ...and enter the second barrier.
      _cm->enter_second_sync_barrier(_task_id);
      // At this point everything has bee re-initialised and we're
      // ready to restart.
    }

    if (_cm->verbose_low()) {
      gclog_or_tty->print_cr("[%d] <<<<<<<<<< ABORTING, target = %1.2lfms, "
                             "elapsed = %1.2lfms <<<<<<<<<<",
                             _task_id, _time_target_ms, elapsed_time_ms);
      if (_cm->has_aborted())
        gclog_or_tty->print_cr("[%d] ========== MARKING ABORTED ==========",
                               _task_id);
    }
  } else {
    if (_cm->verbose_low())
      gclog_or_tty->print_cr("[%d] <<<<<<<<<< FINISHED, target = %1.2lfms, "
                             "elapsed = %1.2lfms <<<<<<<<<<",
                             _task_id, _time_target_ms, elapsed_time_ms);
  }

  _claimed = false;
}

CMTask::CMTask(int task_id,
               ConcurrentMark* cm,
               CMTaskQueue* task_queue,
               CMTaskQueueSet* task_queues)
  : _g1h(G1CollectedHeap::heap()),
    _task_id(task_id), _cm(cm),
    _claimed(false),
    _nextMarkBitMap(NULL), _hash_seed(17),
    _task_queue(task_queue),
    _task_queues(task_queues),
    _oop_closure(NULL) {
3979 3980
  guarantee(task_queue != NULL, "invariant");
  guarantee(task_queues != NULL, "invariant");
3981 3982 3983 3984 3985 3986

  statsOnly( _clock_due_to_scanning = 0;
             _clock_due_to_marking  = 0 );

  _marking_step_diffs_ms.add(0.5);
}