sharedRuntime_x86_64.cpp 122.7 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright 2003-2010 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_sharedRuntime_x86_64.cpp.incl"

DeoptimizationBlob *SharedRuntime::_deopt_blob;
#ifdef COMPILER2
UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
ExceptionBlob      *OptoRuntime::_exception_blob;
#endif // COMPILER2

SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
RuntimeStub*       SharedRuntime::_wrong_method_blob;
RuntimeStub*       SharedRuntime::_ic_miss_blob;
RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
RuntimeStub*       SharedRuntime::_resolve_static_call_blob;

42 43
const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;

D
duke 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
#define __ masm->

class SimpleRuntimeFrame {

  public:

  // Most of the runtime stubs have this simple frame layout.
  // This class exists to make the layout shared in one place.
  // Offsets are for compiler stack slots, which are jints.
  enum layout {
    // The frame sender code expects that rbp will be in the "natural" place and
    // will override any oopMap setting for it. We must therefore force the layout
    // so that it agrees with the frame sender code.
    rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
    rbp_off2,
    return_off, return_off2,
    framesize
  };
};

class RegisterSaver {
  // Capture info about frame layout.  Layout offsets are in jint
  // units because compiler frame slots are jints.
#define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  enum layout {
    fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
    xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
    DEF_XMM_OFFS(0),
    DEF_XMM_OFFS(1),
    DEF_XMM_OFFS(2),
    DEF_XMM_OFFS(3),
    DEF_XMM_OFFS(4),
    DEF_XMM_OFFS(5),
    DEF_XMM_OFFS(6),
    DEF_XMM_OFFS(7),
    DEF_XMM_OFFS(8),
    DEF_XMM_OFFS(9),
    DEF_XMM_OFFS(10),
    DEF_XMM_OFFS(11),
    DEF_XMM_OFFS(12),
    DEF_XMM_OFFS(13),
    DEF_XMM_OFFS(14),
    DEF_XMM_OFFS(15),
    fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
    fpu_stateH_end,
    r15_off, r15H_off,
    r14_off, r14H_off,
    r13_off, r13H_off,
    r12_off, r12H_off,
    r11_off, r11H_off,
    r10_off, r10H_off,
    r9_off,  r9H_off,
    r8_off,  r8H_off,
    rdi_off, rdiH_off,
    rsi_off, rsiH_off,
    ignore_off, ignoreH_off,  // extra copy of rbp
    rsp_off, rspH_off,
    rbx_off, rbxH_off,
    rdx_off, rdxH_off,
    rcx_off, rcxH_off,
    rax_off, raxH_off,
    // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
    align_off, alignH_off,
    flags_off, flagsH_off,
    // The frame sender code expects that rbp will be in the "natural" place and
    // will override any oopMap setting for it. We must therefore force the layout
    // so that it agrees with the frame sender code.
    rbp_off, rbpH_off,        // copy of rbp we will restore
    return_off, returnH_off,  // slot for return address
    reg_save_size             // size in compiler stack slots
  };

 public:
  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
  static void restore_live_registers(MacroAssembler* masm);

  // Offsets into the register save area
  // Used by deoptimization when it is managing result register
  // values on its own

  static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
125
  static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
D
duke 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
  static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
  static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
  static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }

  // During deoptimization only the result registers need to be restored,
  // all the other values have already been extracted.
  static void restore_result_registers(MacroAssembler* masm);
};

OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {

  // Always make the frame size 16-byte aligned
  int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
                                     reg_save_size*BytesPerInt, 16);
  // OopMap frame size is in compiler stack slots (jint's) not bytes or words
  int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
  // The caller will allocate additional_frame_words
  int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
  // CodeBlob frame size is in words.
  int frame_size_in_words = frame_size_in_bytes / wordSize;
  *total_frame_words = frame_size_in_words;

  // Save registers, fpu state, and flags.
  // We assume caller has already pushed the return address onto the
  // stack, so rsp is 8-byte aligned here.
  // We push rpb twice in this sequence because we want the real rbp
  // to be under the return like a normal enter.

  __ enter();          // rsp becomes 16-byte aligned here
  __ push_CPU_state(); // Push a multiple of 16 bytes
  if (frame::arg_reg_save_area_bytes != 0) {
    // Allocate argument register save area
158
    __ subptr(rsp, frame::arg_reg_save_area_bytes);
D
duke 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  }

  // Set an oopmap for the call site.  This oopmap will map all
  // oop-registers and debug-info registers as callee-saved.  This
  // will allow deoptimization at this safepoint to find all possible
  // debug-info recordings, as well as let GC find all oops.

  OopMapSet *oop_maps = new OopMapSet();
  OopMap* map = new OopMap(frame_size_in_slots, 0);
  map->set_callee_saved(VMRegImpl::stack2reg( rax_off  + additional_frame_slots), rax->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg( rcx_off  + additional_frame_slots), rcx->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg( rdx_off  + additional_frame_slots), rdx->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg( rbx_off  + additional_frame_slots), rbx->as_VMReg());
  // rbp location is known implicitly by the frame sender code, needs no oopmap
  // and the location where rbp was saved by is ignored
  map->set_callee_saved(VMRegImpl::stack2reg( rsi_off  + additional_frame_slots), rsi->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg( rdi_off  + additional_frame_slots), rdi->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg( r8_off   + additional_frame_slots), r8->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg( r9_off   + additional_frame_slots), r9->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg( r10_off  + additional_frame_slots), r10->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg( r11_off  + additional_frame_slots), r11->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg( r12_off  + additional_frame_slots), r12->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg( r13_off  + additional_frame_slots), r13->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg( r14_off  + additional_frame_slots), r14->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg( r15_off  + additional_frame_slots), r15->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm0_off  + additional_frame_slots), xmm0->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm1_off  + additional_frame_slots), xmm1->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm2_off  + additional_frame_slots), xmm2->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm3_off  + additional_frame_slots), xmm3->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm4_off  + additional_frame_slots), xmm4->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm5_off  + additional_frame_slots), xmm5->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm6_off  + additional_frame_slots), xmm6->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm7_off  + additional_frame_slots), xmm7->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm8_off  + additional_frame_slots), xmm8->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm9_off  + additional_frame_slots), xmm9->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm10_off + additional_frame_slots), xmm10->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm11_off + additional_frame_slots), xmm11->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm12_off + additional_frame_slots), xmm12->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm13_off + additional_frame_slots), xmm13->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm14_off + additional_frame_slots), xmm14->as_VMReg());
  map->set_callee_saved(VMRegImpl::stack2reg(xmm15_off + additional_frame_slots), xmm15->as_VMReg());

  // %%% These should all be a waste but we'll keep things as they were for now
  if (true) {
    map->set_callee_saved(VMRegImpl::stack2reg( raxH_off  + additional_frame_slots),
                          rax->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg( rcxH_off  + additional_frame_slots),
                          rcx->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg( rdxH_off  + additional_frame_slots),
                          rdx->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg( rbxH_off  + additional_frame_slots),
                          rbx->as_VMReg()->next());
    // rbp location is known implicitly by the frame sender code, needs no oopmap
    map->set_callee_saved(VMRegImpl::stack2reg( rsiH_off  + additional_frame_slots),
                          rsi->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg( rdiH_off  + additional_frame_slots),
                          rdi->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg( r8H_off   + additional_frame_slots),
                          r8->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg( r9H_off   + additional_frame_slots),
                          r9->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg( r10H_off  + additional_frame_slots),
                          r10->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg( r11H_off  + additional_frame_slots),
                          r11->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg( r12H_off  + additional_frame_slots),
                          r12->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg( r13H_off  + additional_frame_slots),
                          r13->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg( r14H_off  + additional_frame_slots),
                          r14->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg( r15H_off  + additional_frame_slots),
                          r15->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm0H_off  + additional_frame_slots),
                          xmm0->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm1H_off  + additional_frame_slots),
                          xmm1->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm2H_off  + additional_frame_slots),
                          xmm2->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm3H_off  + additional_frame_slots),
                          xmm3->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm4H_off  + additional_frame_slots),
                          xmm4->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm5H_off  + additional_frame_slots),
                          xmm5->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm6H_off  + additional_frame_slots),
                          xmm6->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm7H_off  + additional_frame_slots),
                          xmm7->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm8H_off  + additional_frame_slots),
                          xmm8->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm9H_off  + additional_frame_slots),
                          xmm9->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm10H_off + additional_frame_slots),
                          xmm10->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm11H_off + additional_frame_slots),
                          xmm11->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm12H_off + additional_frame_slots),
                          xmm12->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm13H_off + additional_frame_slots),
                          xmm13->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm14H_off + additional_frame_slots),
                          xmm14->as_VMReg()->next());
    map->set_callee_saved(VMRegImpl::stack2reg(xmm15H_off + additional_frame_slots),
                          xmm15->as_VMReg()->next());
  }

  return map;
}

void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
  if (frame::arg_reg_save_area_bytes != 0) {
    // Pop arg register save area
272
    __ addptr(rsp, frame::arg_reg_save_area_bytes);
D
duke 已提交
273 274 275 276
  }
  // Recover CPU state
  __ pop_CPU_state();
  // Get the rbp described implicitly by the calling convention (no oopMap)
277
  __ pop(rbp);
D
duke 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290
}

void RegisterSaver::restore_result_registers(MacroAssembler* masm) {

  // Just restore result register. Only used by deoptimization. By
  // now any callee save register that needs to be restored to a c2
  // caller of the deoptee has been extracted into the vframeArray
  // and will be stuffed into the c2i adapter we create for later
  // restoration so only result registers need to be restored here.

  // Restore fp result register
  __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
  // Restore integer result register
291 292 293
  __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
  __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));

D
duke 已提交
294
  // Pop all of the register save are off the stack except the return address
295
  __ addptr(rsp, return_offset_in_bytes());
D
duke 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
}

// The java_calling_convention describes stack locations as ideal slots on
// a frame with no abi restrictions. Since we must observe abi restrictions
// (like the placement of the register window) the slots must be biased by
// the following value.
static int reg2offset_in(VMReg r) {
  // Account for saved rbp and return address
  // This should really be in_preserve_stack_slots
  return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
}

static int reg2offset_out(VMReg r) {
  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
}

// ---------------------------------------------------------------------------
// Read the array of BasicTypes from a signature, and compute where the
// arguments should go.  Values in the VMRegPair regs array refer to 4-byte
// quantities.  Values less than VMRegImpl::stack0 are registers, those above
// refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
// as framesizes are fixed.
// VMRegImpl::stack0 refers to the first slot 0(sp).
// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
// up to RegisterImpl::number_of_registers) are the 64-bit
// integer registers.

// Note: the INPUTS in sig_bt are in units of Java argument words, which are
// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
// units regardless of build. Of course for i486 there is no 64 bit build

// The Java calling convention is a "shifted" version of the C ABI.
// By skipping the first C ABI register we can call non-static jni methods
// with small numbers of arguments without having to shuffle the arguments
// at all. Since we control the java ABI we ought to at least get some
// advantage out of it.

int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
                                           VMRegPair *regs,
                                           int total_args_passed,
                                           int is_outgoing) {

  // Create the mapping between argument positions and
  // registers.
  static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
    j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
  };
  static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
    j_farg0, j_farg1, j_farg2, j_farg3,
    j_farg4, j_farg5, j_farg6, j_farg7
  };


  uint int_args = 0;
  uint fp_args = 0;
  uint stk_args = 0; // inc by 2 each time

  for (int i = 0; i < total_args_passed; i++) {
    switch (sig_bt[i]) {
    case T_BOOLEAN:
    case T_CHAR:
    case T_BYTE:
    case T_SHORT:
    case T_INT:
      if (int_args < Argument::n_int_register_parameters_j) {
        regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
      } else {
        regs[i].set1(VMRegImpl::stack2reg(stk_args));
        stk_args += 2;
      }
      break;
    case T_VOID:
      // halves of T_LONG or T_DOUBLE
      assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
      regs[i].set_bad();
      break;
    case T_LONG:
      assert(sig_bt[i + 1] == T_VOID, "expecting half");
      // fall through
    case T_OBJECT:
    case T_ARRAY:
    case T_ADDRESS:
      if (int_args < Argument::n_int_register_parameters_j) {
        regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
      } else {
        regs[i].set2(VMRegImpl::stack2reg(stk_args));
        stk_args += 2;
      }
      break;
    case T_FLOAT:
      if (fp_args < Argument::n_float_register_parameters_j) {
        regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
      } else {
        regs[i].set1(VMRegImpl::stack2reg(stk_args));
        stk_args += 2;
      }
      break;
    case T_DOUBLE:
      assert(sig_bt[i + 1] == T_VOID, "expecting half");
      if (fp_args < Argument::n_float_register_parameters_j) {
        regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
      } else {
        regs[i].set2(VMRegImpl::stack2reg(stk_args));
        stk_args += 2;
      }
      break;
    default:
      ShouldNotReachHere();
      break;
    }
  }

  return round_to(stk_args, 2);
}

// Patch the callers callsite with entry to compiled code if it exists.
static void patch_callers_callsite(MacroAssembler *masm) {
  Label L;
  __ verify_oop(rbx);
415
  __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
D
duke 已提交
416 417 418
  __ jcc(Assembler::equal, L);

  // Save the current stack pointer
419
  __ mov(r13, rsp);
D
duke 已提交
420 421 422
  // Schedule the branch target address early.
  // Call into the VM to patch the caller, then jump to compiled callee
  // rax isn't live so capture return address while we easily can
423
  __ movptr(rax, Address(rsp, 0));
D
duke 已提交
424 425

  // align stack so push_CPU_state doesn't fault
426
  __ andptr(rsp, -(StackAlignmentInBytes));
D
duke 已提交
427 428 429 430 431 432 433 434 435 436 437
  __ push_CPU_state();


  __ verify_oop(rbx);
  // VM needs caller's callsite
  // VM needs target method
  // This needs to be a long call since we will relocate this adapter to
  // the codeBuffer and it may not reach

  // Allocate argument register save area
  if (frame::arg_reg_save_area_bytes != 0) {
438
    __ subptr(rsp, frame::arg_reg_save_area_bytes);
D
duke 已提交
439
  }
440 441
  __ mov(c_rarg0, rbx);
  __ mov(c_rarg1, rax);
D
duke 已提交
442 443 444 445
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));

  // De-allocate argument register save area
  if (frame::arg_reg_save_area_bytes != 0) {
446
    __ addptr(rsp, frame::arg_reg_save_area_bytes);
D
duke 已提交
447 448 449 450
  }

  __ pop_CPU_state();
  // restore sp
451
  __ mov(rsp, r13);
D
duke 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
  __ bind(L);
}


static void gen_c2i_adapter(MacroAssembler *masm,
                            int total_args_passed,
                            int comp_args_on_stack,
                            const BasicType *sig_bt,
                            const VMRegPair *regs,
                            Label& skip_fixup) {
  // Before we get into the guts of the C2I adapter, see if we should be here
  // at all.  We've come from compiled code and are attempting to jump to the
  // interpreter, which means the caller made a static call to get here
  // (vcalls always get a compiled target if there is one).  Check for a
  // compiled target.  If there is one, we need to patch the caller's call.
  patch_callers_callsite(masm);

  __ bind(skip_fixup);

  // Since all args are passed on the stack, total_args_passed *
  // Interpreter::stackElementSize is the space we need. Plus 1 because
  // we also account for the return address location since
  // we store it first rather than hold it in rax across all the shuffling

476
  int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
D
duke 已提交
477 478 479 480 481

  // stack is aligned, keep it that way
  extraspace = round_to(extraspace, 2*wordSize);

  // Get return address
482
  __ pop(rax);
D
duke 已提交
483 484

  // set senderSP value
485
  __ mov(r13, rsp);
D
duke 已提交
486

487
  __ subptr(rsp, extraspace);
D
duke 已提交
488 489

  // Store the return address in the expected location
490
  __ movptr(Address(rsp, 0), rax);
D
duke 已提交
491 492 493 494 495 496 497 498 499

  // Now write the args into the outgoing interpreter space
  for (int i = 0; i < total_args_passed; i++) {
    if (sig_bt[i] == T_VOID) {
      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
      continue;
    }

    // offset to start parameters
500 501
    int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
    int next_off = st_off - Interpreter::stackElementSize;
D
duke 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527

    // Say 4 args:
    // i   st_off
    // 0   32 T_LONG
    // 1   24 T_VOID
    // 2   16 T_OBJECT
    // 3    8 T_BOOL
    // -    0 return address
    //
    // However to make thing extra confusing. Because we can fit a long/double in
    // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
    // leaves one slot empty and only stores to a single slot. In this case the
    // slot that is occupied is the T_VOID slot. See I said it was confusing.

    VMReg r_1 = regs[i].first();
    VMReg r_2 = regs[i].second();
    if (!r_1->is_valid()) {
      assert(!r_2->is_valid(), "");
      continue;
    }
    if (r_1->is_stack()) {
      // memory to memory use rax
      int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
      if (!r_2->is_valid()) {
        // sign extend??
        __ movl(rax, Address(rsp, ld_off));
528
        __ movptr(Address(rsp, st_off), rax);
D
duke 已提交
529 530 531 532 533 534 535 536 537 538 539 540 541 542

      } else {

        __ movq(rax, Address(rsp, ld_off));

        // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
        // T_DOUBLE and T_LONG use two slots in the interpreter
        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
          // ld_off == LSW, ld_off+wordSize == MSW
          // st_off == MSW, next_off == LSW
          __ movq(Address(rsp, next_off), rax);
#ifdef ASSERT
          // Overwrite the unused slot with known junk
          __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
543
          __ movptr(Address(rsp, st_off), rax);
D
duke 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
#endif /* ASSERT */
        } else {
          __ movq(Address(rsp, st_off), rax);
        }
      }
    } else if (r_1->is_Register()) {
      Register r = r_1->as_Register();
      if (!r_2->is_valid()) {
        // must be only an int (or less ) so move only 32bits to slot
        // why not sign extend??
        __ movl(Address(rsp, st_off), r);
      } else {
        // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
        // T_DOUBLE and T_LONG use two slots in the interpreter
        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
          // long/double in gpr
#ifdef ASSERT
          // Overwrite the unused slot with known junk
          __ mov64(rax, CONST64(0xdeadffffdeadaaab));
563
          __ movptr(Address(rsp, st_off), rax);
D
duke 已提交
564 565 566
#endif /* ASSERT */
          __ movq(Address(rsp, next_off), r);
        } else {
567
          __ movptr(Address(rsp, st_off), r);
D
duke 已提交
568 569 570 571 572 573 574 575 576 577 578
        }
      }
    } else {
      assert(r_1->is_XMMRegister(), "");
      if (!r_2->is_valid()) {
        // only a float use just part of the slot
        __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
      } else {
#ifdef ASSERT
        // Overwrite the unused slot with known junk
        __ mov64(rax, CONST64(0xdeadffffdeadaaac));
579
        __ movptr(Address(rsp, st_off), rax);
D
duke 已提交
580 581 582 583 584 585 586
#endif /* ASSERT */
        __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
      }
    }
  }

  // Schedule the branch target address early.
587
  __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
D
duke 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
  __ jmp(rcx);
}

static void gen_i2c_adapter(MacroAssembler *masm,
                            int total_args_passed,
                            int comp_args_on_stack,
                            const BasicType *sig_bt,
                            const VMRegPair *regs) {

  //
  // We will only enter here from an interpreted frame and never from after
  // passing thru a c2i. Azul allowed this but we do not. If we lose the
  // race and use a c2i we will remain interpreted for the race loser(s).
  // This removes all sorts of headaches on the x86 side and also eliminates
  // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.


  // Note: r13 contains the senderSP on entry. We must preserve it since
  // we may do a i2c -> c2i transition if we lose a race where compiled
  // code goes non-entrant while we get args ready.
  // In addition we use r13 to locate all the interpreter args as
  // we must align the stack to 16 bytes on an i2c entry else we
  // lose alignment we expect in all compiled code and register
  // save code can segv when fxsave instructions find improperly
  // aligned stack pointer.

614
  __ movptr(rax, Address(rsp, 0));
D
duke 已提交
615

616 617 618 619
  // Must preserve original SP for loading incoming arguments because
  // we need to align the outgoing SP for compiled code.
  __ movptr(r11, rsp);

D
duke 已提交
620 621 622 623 624 625 626 627 628 629 630 631
  // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
  // in registers, we will occasionally have no stack args.
  int comp_words_on_stack = 0;
  if (comp_args_on_stack) {
    // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
    // registers are below.  By subtracting stack0, we either get a negative
    // number (all values in registers) or the maximum stack slot accessed.

    // Convert 4-byte c2 stack slots to words.
    comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
    // Round up to miminum stack alignment, in wordSize
    comp_words_on_stack = round_to(comp_words_on_stack, 2);
632
    __ subptr(rsp, comp_words_on_stack * wordSize);
D
duke 已提交
633 634 635 636
  }


  // Ensure compiled code always sees stack at proper alignment
637
  __ andptr(rsp, -16);
D
duke 已提交
638 639 640

  // push the return address and misalign the stack that youngest frame always sees
  // as far as the placement of the call instruction
641
  __ push(rax);
D
duke 已提交
642

643 644 645 646
  // Put saved SP in another register
  const Register saved_sp = rax;
  __ movptr(saved_sp, r11);

D
duke 已提交
647 648
  // Will jump to the compiled code just as if compiled code was doing it.
  // Pre-load the register-jump target early, to schedule it better.
649
  __ movptr(r11, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
D
duke 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665

  // Now generate the shuffle code.  Pick up all register args and move the
  // rest through the floating point stack top.
  for (int i = 0; i < total_args_passed; i++) {
    if (sig_bt[i] == T_VOID) {
      // Longs and doubles are passed in native word order, but misaligned
      // in the 32-bit build.
      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
      continue;
    }

    // Pick up 0, 1 or 2 words from SP+offset.

    assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
            "scrambled load targets?");
    // Load in argument order going down.
666
    int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
D
duke 已提交
667
    // Point to interpreter value (vs. tag)
668
    int next_off = ld_off - Interpreter::stackElementSize;
D
duke 已提交
669 670 671 672 673 674 675 676 677 678 679 680
    //
    //
    //
    VMReg r_1 = regs[i].first();
    VMReg r_2 = regs[i].second();
    if (!r_1->is_valid()) {
      assert(!r_2->is_valid(), "");
      continue;
    }
    if (r_1->is_stack()) {
      // Convert stack slot to an SP offset (+ wordSize to account for return address )
      int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
681 682 683 684

      // We can use r13 as a temp here because compiled code doesn't need r13 as an input
      // and if we end up going thru a c2i because of a miss a reasonable value of r13
      // will be generated.
D
duke 已提交
685 686
      if (!r_2->is_valid()) {
        // sign extend???
687 688
        __ movl(r13, Address(saved_sp, ld_off));
        __ movptr(Address(rsp, st_off), r13);
D
duke 已提交
689 690 691 692 693 694 695 696 697 698 699 700
      } else {
        //
        // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
        // So we must adjust where to pick up the data to match the interpreter.
        //
        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
        // are accessed as negative so LSW is at LOW address

        // ld_off is MSW so get LSW
        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
                           next_off : ld_off;
701
        __ movq(r13, Address(saved_sp, offset));
D
duke 已提交
702
        // st_off is LSW (i.e. reg.first())
703
        __ movq(Address(rsp, st_off), r13);
D
duke 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717
      }
    } else if (r_1->is_Register()) {  // Register argument
      Register r = r_1->as_Register();
      assert(r != rax, "must be different");
      if (r_2->is_valid()) {
        //
        // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
        // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
        // So we must adjust where to pick up the data to match the interpreter.

        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
                           next_off : ld_off;

        // this can be a misaligned move
718
        __ movq(r, Address(saved_sp, offset));
D
duke 已提交
719 720
      } else {
        // sign extend and use a full word?
721
        __ movl(r, Address(saved_sp, ld_off));
D
duke 已提交
722 723 724
      }
    } else {
      if (!r_2->is_valid()) {
725
        __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
D
duke 已提交
726
      } else {
727
        __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
D
duke 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741
      }
    }
  }

  // 6243940 We might end up in handle_wrong_method if
  // the callee is deoptimized as we race thru here. If that
  // happens we don't want to take a safepoint because the
  // caller frame will look interpreted and arguments are now
  // "compiled" so it is much better to make this transition
  // invisible to the stack walking code. Unfortunately if
  // we try and find the callee by normal means a safepoint
  // is possible. So we stash the desired callee in the thread
  // and the vm will find there should this case occur.

742
  __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
D
duke 已提交
743 744 745 746

  // put methodOop where a c2i would expect should we end up there
  // only needed becaus eof c2 resolve stubs return methodOop as a result in
  // rax
747
  __ mov(rax, rbx);
D
duke 已提交
748 749 750 751 752 753 754 755
  __ jmp(r11);
}

// ---------------------------------------------------------------
AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
                                                            int total_args_passed,
                                                            int comp_args_on_stack,
                                                            const BasicType *sig_bt,
756 757
                                                            const VMRegPair *regs,
                                                            AdapterFingerPrint* fingerprint) {
D
duke 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
  address i2c_entry = __ pc();

  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);

  // -------------------------------------------------------------------------
  // Generate a C2I adapter.  On entry we know rbx holds the methodOop during calls
  // to the interpreter.  The args start out packed in the compiled layout.  They
  // need to be unpacked into the interpreter layout.  This will almost always
  // require some stack space.  We grow the current (compiled) stack, then repack
  // the args.  We  finally end in a jump to the generic interpreter entry point.
  // On exit from the interpreter, the interpreter will restore our SP (lest the
  // compiled code, which relys solely on SP and not RBP, get sick).

  address c2i_unverified_entry = __ pc();
  Label skip_fixup;
  Label ok;

  Register holder = rax;
  Register receiver = j_rarg0;
  Register temp = rbx;

  {
    __ verify_oop(holder);
781
    __ load_klass(temp, receiver);
D
duke 已提交
782 783
    __ verify_oop(temp);

784 785
    __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
    __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
D
duke 已提交
786 787 788 789 790 791 792
    __ jcc(Assembler::equal, ok);
    __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));

    __ bind(ok);
    // Method might have been compiled since the call site was patched to
    // interpreted if that is the case treat it as a miss so we can get
    // the call site corrected.
793
    __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
D
duke 已提交
794 795 796 797 798 799 800 801 802
    __ jcc(Assembler::equal, skip_fixup);
    __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  }

  address c2i_entry = __ pc();

  gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);

  __ flush();
803
  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
D
duke 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
}

int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
                                         VMRegPair *regs,
                                         int total_args_passed) {
// We return the amount of VMRegImpl stack slots we need to reserve for all
// the arguments NOT counting out_preserve_stack_slots.

// NOTE: These arrays will have to change when c1 is ported
#ifdef _WIN64
    static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
      c_rarg0, c_rarg1, c_rarg2, c_rarg3
    };
    static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
      c_farg0, c_farg1, c_farg2, c_farg3
    };
#else
    static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
    };
    static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
      c_farg0, c_farg1, c_farg2, c_farg3,
      c_farg4, c_farg5, c_farg6, c_farg7
    };
#endif // _WIN64


    uint int_args = 0;
    uint fp_args = 0;
    uint stk_args = 0; // inc by 2 each time

    for (int i = 0; i < total_args_passed; i++) {
      switch (sig_bt[i]) {
      case T_BOOLEAN:
      case T_CHAR:
      case T_BYTE:
      case T_SHORT:
      case T_INT:
        if (int_args < Argument::n_int_register_parameters_c) {
          regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
#ifdef _WIN64
          fp_args++;
          // Allocate slots for callee to stuff register args the stack.
          stk_args += 2;
#endif
        } else {
          regs[i].set1(VMRegImpl::stack2reg(stk_args));
          stk_args += 2;
        }
        break;
      case T_LONG:
        assert(sig_bt[i + 1] == T_VOID, "expecting half");
        // fall through
      case T_OBJECT:
      case T_ARRAY:
      case T_ADDRESS:
        if (int_args < Argument::n_int_register_parameters_c) {
          regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
#ifdef _WIN64
          fp_args++;
          stk_args += 2;
#endif
        } else {
          regs[i].set2(VMRegImpl::stack2reg(stk_args));
          stk_args += 2;
        }
        break;
      case T_FLOAT:
        if (fp_args < Argument::n_float_register_parameters_c) {
          regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
#ifdef _WIN64
          int_args++;
          // Allocate slots for callee to stuff register args the stack.
          stk_args += 2;
#endif
        } else {
          regs[i].set1(VMRegImpl::stack2reg(stk_args));
          stk_args += 2;
        }
        break;
      case T_DOUBLE:
        assert(sig_bt[i + 1] == T_VOID, "expecting half");
        if (fp_args < Argument::n_float_register_parameters_c) {
          regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
#ifdef _WIN64
          int_args++;
          // Allocate slots for callee to stuff register args the stack.
          stk_args += 2;
#endif
        } else {
          regs[i].set2(VMRegImpl::stack2reg(stk_args));
          stk_args += 2;
        }
        break;
      case T_VOID: // Halves of longs and doubles
        assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
        regs[i].set_bad();
        break;
      default:
        ShouldNotReachHere();
        break;
      }
    }
#ifdef _WIN64
  // windows abi requires that we always allocate enough stack space
  // for 4 64bit registers to be stored down.
  if (stk_args < 8) {
    stk_args = 8;
  }
#endif // _WIN64

  return stk_args;
}

// On 64 bit we will store integer like items to the stack as
// 64 bits items (sparc abi) even though java would only store
// 32bits for a parameter. On 32bit it will simply be 32 bits
// So this routine will do 32->32 on 32bit and 32->64 on 64bit
static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  if (src.first()->is_stack()) {
    if (dst.first()->is_stack()) {
      // stack to stack
      __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
      __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
    } else {
      // stack to reg
      __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
    }
  } else if (dst.first()->is_stack()) {
    // reg to stack
    // Do we really have to sign extend???
    // __ movslq(src.first()->as_Register(), src.first()->as_Register());
    __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
  } else {
    // Do we really have to sign extend???
    // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
    if (dst.first() != src.first()) {
      __ movq(dst.first()->as_Register(), src.first()->as_Register());
    }
  }
}


// An oop arg. Must pass a handle not the oop itself
static void object_move(MacroAssembler* masm,
                        OopMap* map,
                        int oop_handle_offset,
                        int framesize_in_slots,
                        VMRegPair src,
                        VMRegPair dst,
                        bool is_receiver,
                        int* receiver_offset) {

  // must pass a handle. First figure out the location we use as a handle

  Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();

  // See if oop is NULL if it is we need no handle

  if (src.first()->is_stack()) {

    // Oop is already on the stack as an argument
    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
    if (is_receiver) {
      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
    }

972 973
    __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
    __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
D
duke 已提交
974
    // conditionally move a NULL
975
    __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
D
duke 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
  } else {

    // Oop is in an a register we must store it to the space we reserve
    // on the stack for oop_handles and pass a handle if oop is non-NULL

    const Register rOop = src.first()->as_Register();
    int oop_slot;
    if (rOop == j_rarg0)
      oop_slot = 0;
    else if (rOop == j_rarg1)
      oop_slot = 1;
    else if (rOop == j_rarg2)
      oop_slot = 2;
    else if (rOop == j_rarg3)
      oop_slot = 3;
    else if (rOop == j_rarg4)
      oop_slot = 4;
    else {
      assert(rOop == j_rarg5, "wrong register");
      oop_slot = 5;
    }

    oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
    int offset = oop_slot*VMRegImpl::stack_slot_size;

    map->set_oop(VMRegImpl::stack2reg(oop_slot));
    // Store oop in handle area, may be NULL
1003
    __ movptr(Address(rsp, offset), rOop);
D
duke 已提交
1004 1005 1006 1007
    if (is_receiver) {
      *receiver_offset = offset;
    }

1008 1009
    __ cmpptr(rOop, (int32_t)NULL_WORD);
    __ lea(rHandle, Address(rsp, offset));
D
duke 已提交
1010
    // conditionally move a NULL from the handle area where it was just stored
1011
    __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
D
duke 已提交
1012 1013 1014 1015
  }

  // If arg is on the stack then place it otherwise it is already in correct reg.
  if (dst.first()->is_stack()) {
1016
    __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
D
duke 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
  }
}

// A float arg may have to do float reg int reg conversion
static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");

  // The calling conventions assures us that each VMregpair is either
  // all really one physical register or adjacent stack slots.
  // This greatly simplifies the cases here compared to sparc.

  if (src.first()->is_stack()) {
    if (dst.first()->is_stack()) {
      __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1031
      __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
D
duke 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
    } else {
      // stack to reg
      assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
      __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
    }
  } else if (dst.first()->is_stack()) {
    // reg to stack
    assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
    __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
  } else {
    // reg to reg
    // In theory these overlap but the ordering is such that this is likely a nop
    if ( src.first() != dst.first()) {
      __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
    }
  }
}

// A long move
static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {

  // The calling conventions assures us that each VMregpair is either
  // all really one physical register or adjacent stack slots.
  // This greatly simplifies the cases here compared to sparc.

  if (src.is_single_phys_reg() ) {
    if (dst.is_single_phys_reg()) {
      if (dst.first() != src.first()) {
1060
        __ mov(dst.first()->as_Register(), src.first()->as_Register());
D
duke 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
      }
    } else {
      assert(dst.is_single_reg(), "not a stack pair");
      __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
    }
  } else if (dst.is_single_phys_reg()) {
    assert(src.is_single_reg(),  "not a stack pair");
    __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
  } else {
    assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
    __ movq(rax, Address(rbp, reg2offset_in(src.first())));
    __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  }
}

// A double move
static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {

  // The calling conventions assures us that each VMregpair is either
  // all really one physical register or adjacent stack slots.
  // This greatly simplifies the cases here compared to sparc.

  if (src.is_single_phys_reg() ) {
    if (dst.is_single_phys_reg()) {
      // In theory these overlap but the ordering is such that this is likely a nop
      if ( src.first() != dst.first()) {
        __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
      }
    } else {
      assert(dst.is_single_reg(), "not a stack pair");
      __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
    }
  } else if (dst.is_single_phys_reg()) {
    assert(src.is_single_reg(),  "not a stack pair");
    __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
  } else {
    assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
    __ movq(rax, Address(rbp, reg2offset_in(src.first())));
    __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
  }
}


void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  // We always ignore the frame_slots arg and just use the space just below frame pointer
  // which by this time is free to use
  switch (ret_type) {
  case T_FLOAT:
    __ movflt(Address(rbp, -wordSize), xmm0);
    break;
  case T_DOUBLE:
    __ movdbl(Address(rbp, -wordSize), xmm0);
    break;
  case T_VOID:  break;
  default: {
1116
    __ movptr(Address(rbp, -wordSize), rax);
D
duke 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    }
  }
}

void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  // We always ignore the frame_slots arg and just use the space just below frame pointer
  // which by this time is free to use
  switch (ret_type) {
  case T_FLOAT:
    __ movflt(xmm0, Address(rbp, -wordSize));
    break;
  case T_DOUBLE:
    __ movdbl(xmm0, Address(rbp, -wordSize));
    break;
  case T_VOID:  break;
  default: {
1133
    __ movptr(rax, Address(rbp, -wordSize));
D
duke 已提交
1134 1135 1136 1137 1138 1139 1140
    }
  }
}

static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
    for ( int i = first_arg ; i < arg_count ; i++ ) {
      if (args[i].first()->is_Register()) {
1141
        __ push(args[i].first()->as_Register());
D
duke 已提交
1142
      } else if (args[i].first()->is_XMMRegister()) {
1143
        __ subptr(rsp, 2*wordSize);
D
duke 已提交
1144 1145 1146 1147 1148 1149 1150 1151
        __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
      }
    }
}

static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
    for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
      if (args[i].first()->is_Register()) {
1152
        __ pop(args[i].first()->as_Register());
D
duke 已提交
1153 1154
      } else if (args[i].first()->is_XMMRegister()) {
        __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1155
        __ addptr(rsp, 2*wordSize);
D
duke 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
      }
    }
}

// ---------------------------------------------------------------------------
// Generate a native wrapper for a given method.  The method takes arguments
// in the Java compiled code convention, marshals them to the native
// convention (handlizes oops, etc), transitions to native, makes the call,
// returns to java state (possibly blocking), unhandlizes any result and
// returns.
nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
                                                methodHandle method,
                                                int total_in_args,
                                                int comp_args_on_stack,
                                                BasicType *in_sig_bt,
                                                VMRegPair *in_regs,
                                                BasicType ret_type) {
  // Native nmethod wrappers never take possesion of the oop arguments.
  // So the caller will gc the arguments. The only thing we need an
  // oopMap for is if the call is static
  //
  // An OopMap for lock (and class if static)
  OopMapSet *oop_maps = new OopMapSet();
  intptr_t start = (intptr_t)__ pc();

  // We have received a description of where all the java arg are located
  // on entry to the wrapper. We need to convert these args to where
  // the jni function will expect them. To figure out where they go
  // we convert the java signature to a C signature by inserting
  // the hidden arguments as arg[0] and possibly arg[1] (static method)

  int total_c_args = total_in_args + 1;
  if (method->is_static()) {
    total_c_args++;
  }

  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);

  int argc = 0;
  out_sig_bt[argc++] = T_ADDRESS;
  if (method->is_static()) {
    out_sig_bt[argc++] = T_OBJECT;
  }

  for (int i = 0; i < total_in_args ; i++ ) {
    out_sig_bt[argc++] = in_sig_bt[i];
  }

  // Now figure out where the args must be stored and how much stack space
  // they require.
  //
  int out_arg_slots;
  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);

  // Compute framesize for the wrapper.  We need to handlize all oops in
  // incoming registers

  // Calculate the total number of stack slots we will need.

  // First count the abi requirement plus all of the outgoing args
  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;

  // Now the space for the inbound oop handle area

  int oop_handle_offset = stack_slots;
  stack_slots += 6*VMRegImpl::slots_per_word;

  // Now any space we need for handlizing a klass if static method

  int oop_temp_slot_offset = 0;
  int klass_slot_offset = 0;
  int klass_offset = -1;
  int lock_slot_offset = 0;
  bool is_static = false;

  if (method->is_static()) {
    klass_slot_offset = stack_slots;
    stack_slots += VMRegImpl::slots_per_word;
    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
    is_static = true;
  }

  // Plus a lock if needed

  if (method->is_synchronized()) {
    lock_slot_offset = stack_slots;
    stack_slots += VMRegImpl::slots_per_word;
  }

  // Now a place (+2) to save return values or temp during shuffling
  // + 4 for return address (which we own) and saved rbp
  stack_slots += 6;

  // Ok The space we have allocated will look like:
  //
  //
  // FP-> |                     |
  //      |---------------------|
  //      | 2 slots for moves   |
  //      |---------------------|
  //      | lock box (if sync)  |
  //      |---------------------| <- lock_slot_offset
  //      | klass (if static)   |
  //      |---------------------| <- klass_slot_offset
  //      | oopHandle area      |
  //      |---------------------| <- oop_handle_offset (6 java arg registers)
  //      | outbound memory     |
  //      | based arguments     |
  //      |                     |
  //      |---------------------|
  //      |                     |
  // SP-> | out_preserved_slots |
  //
  //


  // Now compute actual number of stack words we need rounding to make
  // stack properly aligned.
1275
  stack_slots = round_to(stack_slots, StackAlignmentInSlots);
D
duke 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

  int stack_size = stack_slots * VMRegImpl::stack_slot_size;


  // First thing make an ic check to see if we should even be here

  // We are free to use all registers as temps without saving them and
  // restoring them except rbp. rbp is the only callee save register
  // as far as the interpreter and the compiler(s) are concerned.


  const Register ic_reg = rax;
  const Register receiver = j_rarg0;

  Label ok;
  Label exception_pending;

1293
  assert_different_registers(ic_reg, receiver, rscratch1);
D
duke 已提交
1294
  __ verify_oop(receiver);
1295 1296
  __ load_klass(rscratch1, receiver);
  __ cmpq(ic_reg, rscratch1);
D
duke 已提交
1297 1298 1299 1300
  __ jcc(Assembler::equal, ok);

  __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));

1301 1302
  __ bind(ok);

D
duke 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
  // Verified entry point must be aligned
  __ align(8);

  int vep_offset = ((intptr_t)__ pc()) - start;

  // The instruction at the verified entry point must be 5 bytes or longer
  // because it can be patched on the fly by make_non_entrant. The stack bang
  // instruction fits that requirement.

  // Generate stack overflow check

  if (UseStackBanging) {
    __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
  } else {
    // need a 5 byte instruction to allow MT safe patching to non-entrant
    __ fat_nop();
  }

  // Generate a new frame for the wrapper.
  __ enter();
  // -2 because return address is already present and so is saved rbp
1324
  __ subptr(rsp, stack_size - 2*wordSize);
D
duke 已提交
1325 1326 1327 1328 1329 1330 1331 1332

    // Frame is now completed as far as size and linkage.

    int frame_complete = ((intptr_t)__ pc()) - start;

#ifdef ASSERT
    {
      Label L;
1333
      __ mov(rax, rsp);
T
twisti 已提交
1334
      __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
1335
      __ cmpptr(rax, rsp);
D
duke 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
      __ jcc(Assembler::equal, L);
      __ stop("improperly aligned stack");
      __ bind(L);
    }
#endif /* ASSERT */


  // We use r14 as the oop handle for the receiver/klass
  // It is callee save so it survives the call to native

  const Register oop_handle_reg = r14;



  //
  // We immediately shuffle the arguments so that any vm call we have to
  // make from here on out (sync slow path, jvmti, etc.) we will have
  // captured the oops from our caller and have a valid oopMap for
  // them.

  // -----------------
  // The Grand Shuffle

  // The Java calling convention is either equal (linux) or denser (win64) than the
  // c calling convention. However the because of the jni_env argument the c calling
  // convention always has at least one more (and two for static) arguments than Java.
  // Therefore if we move the args from java -> c backwards then we will never have
  // a register->register conflict and we don't have to build a dependency graph
  // and figure out how to break any cycles.
  //

  // Record esp-based slot for receiver on stack for non-static methods
  int receiver_offset = -1;

  // This is a trick. We double the stack slots so we can claim
  // the oops in the caller's frame. Since we are sure to have
  // more args than the caller doubling is enough to make
  // sure we can capture all the incoming oop args from the
  // caller.
  //
  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);

  // Mark location of rbp (someday)
  // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));

  // Use eax, ebx as temporaries during any memory-memory moves we have to do
  // All inbound args are referenced based on rbp and all outbound args via rsp.


#ifdef ASSERT
  bool reg_destroyed[RegisterImpl::number_of_registers];
  bool freg_destroyed[XMMRegisterImpl::number_of_registers];
  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
    reg_destroyed[r] = false;
  }
  for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
    freg_destroyed[f] = false;
  }

#endif /* ASSERT */


  int c_arg = total_c_args - 1;
  for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
#ifdef ASSERT
    if (in_regs[i].first()->is_Register()) {
      assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
    } else if (in_regs[i].first()->is_XMMRegister()) {
      assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
    }
    if (out_regs[c_arg].first()->is_Register()) {
      reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
    } else if (out_regs[c_arg].first()->is_XMMRegister()) {
      freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
    }
#endif /* ASSERT */
    switch (in_sig_bt[i]) {
      case T_ARRAY:
      case T_OBJECT:
        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
                    ((i == 0) && (!is_static)),
                    &receiver_offset);
        break;
      case T_VOID:
        break;

      case T_FLOAT:
        float_move(masm, in_regs[i], out_regs[c_arg]);
          break;

      case T_DOUBLE:
        assert( i + 1 < total_in_args &&
                in_sig_bt[i + 1] == T_VOID &&
                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
        double_move(masm, in_regs[i], out_regs[c_arg]);
        break;

      case T_LONG :
        long_move(masm, in_regs[i], out_regs[c_arg]);
        break;

      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");

      default:
        move32_64(masm, in_regs[i], out_regs[c_arg]);
    }
  }

  // point c_arg at the first arg that is already loaded in case we
  // need to spill before we call out
  c_arg++;

  // Pre-load a static method's oop into r14.  Used both by locking code and
  // the normal JNI call code.
  if (method->is_static()) {

    //  load oop into a register
    __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));

    // Now handlize the static class mirror it's known not-null.
1456
    __ movptr(Address(rsp, klass_offset), oop_handle_reg);
D
duke 已提交
1457 1458 1459
    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));

    // Now get the handle
1460
    __ lea(oop_handle_reg, Address(rsp, klass_offset));
D
duke 已提交
1461
    // store the klass handle as second argument
1462
    __ movptr(c_rarg1, oop_handle_reg);
D
duke 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
    // and protect the arg if we must spill
    c_arg--;
  }

  // Change state to native (we save the return address in the thread, since it might not
  // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
  // points into the right code segment. It does not have to be the correct return pc.
  // We use the same pc/oopMap repeatedly when we call out

  intptr_t the_pc = (intptr_t) __ pc();
  oop_maps->add_gc_map(the_pc - start, map);

  __ set_last_Java_frame(rsp, noreg, (address)the_pc);


  // We have all of the arguments setup at this point. We must not touch any register
  // argument registers at this point (what if we save/restore them there are no oop?

  {
    SkipIfEqual skip(masm, &DTraceMethodProbes, false);
    // protect the args we've loaded
    save_args(masm, total_c_args, c_arg, out_regs);
    __ movoop(c_rarg1, JNIHandles::make_local(method()));
    __ call_VM_leaf(
      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
      r15_thread, c_rarg1);
    restore_args(masm, total_c_args, c_arg, out_regs);
  }

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
  // RedefineClasses() tracing support for obsolete method entry
  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
    // protect the args we've loaded
    save_args(masm, total_c_args, c_arg, out_regs);
    __ movoop(c_rarg1, JNIHandles::make_local(method()));
    __ call_VM_leaf(
      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
      r15_thread, c_rarg1);
    restore_args(masm, total_c_args, c_arg, out_regs);
  }

D
duke 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
  // Lock a synchronized method

  // Register definitions used by locking and unlocking

  const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
  const Register obj_reg  = rbx;  // Will contain the oop
  const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
  const Register old_hdr  = r13;  // value of old header at unlock time

  Label slow_path_lock;
  Label lock_done;

  if (method->is_synchronized()) {


    const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();

    // Get the handle (the 2nd argument)
1521
    __ mov(oop_handle_reg, c_rarg1);
D
duke 已提交
1522 1523 1524

    // Get address of the box

1525
    __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
D
duke 已提交
1526 1527

    // Load the oop from the handle
1528
    __ movptr(obj_reg, Address(oop_handle_reg, 0));
D
duke 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537

    if (UseBiasedLocking) {
      __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
    }

    // Load immediate 1 into swap_reg %rax
    __ movl(swap_reg, 1);

    // Load (object->mark() | 1) into swap_reg %rax
1538
    __ orptr(swap_reg, Address(obj_reg, 0));
D
duke 已提交
1539 1540

    // Save (object->mark() | 1) into BasicLock's displaced header
1541
    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
D
duke 已提交
1542 1543 1544 1545 1546 1547

    if (os::is_MP()) {
      __ lock();
    }

    // src -> dest iff dest == rax else rax <- dest
1548
    __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
D
duke 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
    __ jcc(Assembler::equal, lock_done);

    // Hmm should this move to the slow path code area???

    // Test if the oopMark is an obvious stack pointer, i.e.,
    //  1) (mark & 3) == 0, and
    //  2) rsp <= mark < mark + os::pagesize()
    // These 3 tests can be done by evaluating the following
    // expression: ((mark - rsp) & (3 - os::vm_page_size())),
    // assuming both stack pointer and pagesize have their
    // least significant 2 bits clear.
    // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg

1562 1563
    __ subptr(swap_reg, rsp);
    __ andptr(swap_reg, 3 - os::vm_page_size());
D
duke 已提交
1564 1565

    // Save the test result, for recursive case, the result is zero
1566
    __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
D
duke 已提交
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
    __ jcc(Assembler::notEqual, slow_path_lock);

    // Slow path will re-enter here

    __ bind(lock_done);
  }


  // Finally just about ready to make the JNI call


  // get JNIEnv* which is first argument to native

1580
  __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
D
duke 已提交
1581 1582

  // Now set thread in native
1583
  __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
D
duke 已提交
1584 1585 1586 1587 1588 1589

  __ call(RuntimeAddress(method->native_function()));

    // Either restore the MXCSR register after returning from the JNI Call
    // or verify that it wasn't changed.
    if (RestoreMXCSROnJNICalls) {
1590
      __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
D
duke 已提交
1591 1592 1593

    }
    else if (CheckJNICalls ) {
1594
      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::verify_mxcsr_entry())));
D
duke 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
    }


  // Unpack native results.
  switch (ret_type) {
  case T_BOOLEAN: __ c2bool(rax);            break;
  case T_CHAR   : __ movzwl(rax, rax);      break;
  case T_BYTE   : __ sign_extend_byte (rax); break;
  case T_SHORT  : __ sign_extend_short(rax); break;
  case T_INT    : /* nothing to do */        break;
  case T_DOUBLE :
  case T_FLOAT  :
    // Result is in xmm0 we'll save as needed
    break;
  case T_ARRAY:                 // Really a handle
  case T_OBJECT:                // Really a handle
      break; // can't de-handlize until after safepoint check
  case T_VOID: break;
  case T_LONG: break;
  default       : ShouldNotReachHere();
  }

  // Switch thread to "native transition" state before reading the synchronization state.
  // This additional state is necessary because reading and testing the synchronization
  // state is not atomic w.r.t. GC, as this scenario demonstrates:
  //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  //     VM thread changes sync state to synchronizing and suspends threads for GC.
  //     Thread A is resumed to finish this native method, but doesn't block here since it
  //     didn't see any synchronization is progress, and escapes.
1624
  __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
D
duke 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

  if(os::is_MP()) {
    if (UseMembar) {
      // Force this write out before the read below
      __ membar(Assembler::Membar_mask_bits(
           Assembler::LoadLoad | Assembler::LoadStore |
           Assembler::StoreLoad | Assembler::StoreStore));
    } else {
      // Write serialization page so VM thread can do a pseudo remote membar.
      // We use the current thread pointer to calculate a thread specific
      // offset to write to within the page. This minimizes bus traffic
      // due to cache line collision.
      __ serialize_memory(r15_thread, rcx);
    }
  }


  // check for safepoint operation in progress and/or pending suspend requests
  {
    Label Continue;

    __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
             SafepointSynchronize::_not_synchronized);

    Label L;
    __ jcc(Assembler::notEqual, L);
    __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
    __ jcc(Assembler::equal, Continue);
    __ bind(L);

    // Don't use call_VM as it will see a possible pending exception and forward it
    // and never return here preventing us from clearing _last_native_pc down below.
    // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
    // preserved and correspond to the bcp/locals pointers. So we do a runtime call
    // by hand.
    //
    save_native_result(masm, ret_type, stack_slots);
1662 1663 1664 1665
    __ mov(c_rarg0, r15_thread);
    __ mov(r12, rsp); // remember sp
    __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
    __ andptr(rsp, -16); // align stack as required by ABI
D
duke 已提交
1666
    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
1667
    __ mov(rsp, r12); // restore sp
1668
    __ reinit_heapbase();
D
duke 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    // Restore any method result value
    restore_native_result(masm, ret_type, stack_slots);
    __ bind(Continue);
  }

  // change thread state
  __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);

  Label reguard;
  Label reguard_done;
  __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  __ jcc(Assembler::equal, reguard);
  __ bind(reguard_done);

  // native result if any is live

  // Unlock
  Label unlock_done;
  Label slow_path_unlock;
  if (method->is_synchronized()) {

    // Get locked oop from the handle we passed to jni
1691
    __ movptr(obj_reg, Address(oop_handle_reg, 0));
D
duke 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700

    Label done;

    if (UseBiasedLocking) {
      __ biased_locking_exit(obj_reg, old_hdr, done);
    }

    // Simple recursive lock?

1701
    __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
D
duke 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710
    __ jcc(Assembler::equal, done);

    // Must save rax if if it is live now because cmpxchg must use it
    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
      save_native_result(masm, ret_type, stack_slots);
    }


    // get address of the stack lock
1711
    __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
D
duke 已提交
1712
    //  get old displaced header
1713
    __ movptr(old_hdr, Address(rax, 0));
D
duke 已提交
1714 1715 1716 1717 1718

    // Atomic swap old header if oop still contains the stack lock
    if (os::is_MP()) {
      __ lock();
    }
1719
    __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
D
duke 已提交
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
    __ jcc(Assembler::notEqual, slow_path_unlock);

    // slow path re-enters here
    __ bind(unlock_done);
    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
      restore_native_result(masm, ret_type, stack_slots);
    }

    __ bind(done);

  }
  {
    SkipIfEqual skip(masm, &DTraceMethodProbes, false);
    save_native_result(masm, ret_type, stack_slots);
    __ movoop(c_rarg1, JNIHandles::make_local(method()));
    __ call_VM_leaf(
         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
         r15_thread, c_rarg1);
    restore_native_result(masm, ret_type, stack_slots);
  }

  __ reset_last_Java_frame(false, true);

  // Unpack oop result
  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
      Label L;
1746
      __ testptr(rax, rax);
D
duke 已提交
1747
      __ jcc(Assembler::zero, L);
1748
      __ movptr(rax, Address(rax, 0));
D
duke 已提交
1749 1750 1751 1752 1753
      __ bind(L);
      __ verify_oop(rax);
  }

  // reset handle block
1754 1755
  __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
  __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
D
duke 已提交
1756 1757 1758 1759 1760 1761

  // pop our frame

  __ leave();

  // Any exception pending?
1762
  __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
D
duke 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
  __ jcc(Assembler::notEqual, exception_pending);

  // Return

  __ ret(0);

  // Unexpected paths are out of line and go here

  // forward the exception
  __ bind(exception_pending);

  // and forward the exception
  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));


  // Slow path locking & unlocking
  if (method->is_synchronized()) {

    // BEGIN Slow path lock
    __ bind(slow_path_lock);

    // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
    // args are (oop obj, BasicLock* lock, JavaThread* thread)

    // protect the args we've loaded
    save_args(masm, total_c_args, c_arg, out_regs);

1790 1791 1792
    __ mov(c_rarg0, obj_reg);
    __ mov(c_rarg1, lock_reg);
    __ mov(c_rarg2, r15_thread);
D
duke 已提交
1793 1794 1795 1796 1797 1798 1799

    // Not a leaf but we have last_Java_frame setup as we want
    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
    restore_args(masm, total_c_args, c_arg, out_regs);

#ifdef ASSERT
    { Label L;
1800
    __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
D
duke 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
    __ jcc(Assembler::equal, L);
    __ stop("no pending exception allowed on exit from monitorenter");
    __ bind(L);
    }
#endif
    __ jmp(lock_done);

    // END Slow path lock

    // BEGIN Slow path unlock
    __ bind(slow_path_unlock);

    // If we haven't already saved the native result we must save it now as xmm registers
    // are still exposed.

    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
      save_native_result(masm, ret_type, stack_slots);
    }

1820
    __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
D
duke 已提交
1821

1822 1823 1824 1825
    __ mov(c_rarg0, obj_reg);
    __ mov(r12, rsp); // remember sp
    __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
    __ andptr(rsp, -16); // align stack as required by ABI
D
duke 已提交
1826 1827 1828

    // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
    // NOTE that obj_reg == rbx currently
1829 1830
    __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
    __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
D
duke 已提交
1831 1832

    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
1833
    __ mov(rsp, r12); // restore sp
1834
    __ reinit_heapbase();
D
duke 已提交
1835 1836 1837
#ifdef ASSERT
    {
      Label L;
1838
      __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
D
duke 已提交
1839 1840 1841 1842 1843 1844
      __ jcc(Assembler::equal, L);
      __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
      __ bind(L);
    }
#endif /* ASSERT */

1845
    __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
D
duke 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
      restore_native_result(masm, ret_type, stack_slots);
    }
    __ jmp(unlock_done);

    // END Slow path unlock

  } // synchronized

  // SLOW PATH Reguard the stack if needed

  __ bind(reguard);
  save_native_result(masm, ret_type, stack_slots);
1860 1861 1862
  __ mov(r12, rsp); // remember sp
  __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  __ andptr(rsp, -16); // align stack as required by ABI
D
duke 已提交
1863
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1864
  __ mov(rsp, r12); // restore sp
1865
  __ reinit_heapbase();
D
duke 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
  restore_native_result(masm, ret_type, stack_slots);
  // and continue
  __ jmp(reguard_done);



  __ flush();

  nmethod *nm = nmethod::new_native_nmethod(method,
                                            masm->code(),
                                            vep_offset,
                                            frame_complete,
                                            stack_slots / VMRegImpl::slots_per_word,
                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
                                            in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
                                            oop_maps);
  return nm;

}

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
#ifdef HAVE_DTRACE_H
// ---------------------------------------------------------------------------
// Generate a dtrace nmethod for a given signature.  The method takes arguments
// in the Java compiled code convention, marshals them to the native
// abi and then leaves nops at the position you would expect to call a native
// function. When the probe is enabled the nops are replaced with a trap
// instruction that dtrace inserts and the trace will cause a notification
// to dtrace.
//
// The probes are only able to take primitive types and java/lang/String as
// arguments.  No other java types are allowed. Strings are converted to utf8
// strings so that from dtrace point of view java strings are converted to C
// strings. There is an arbitrary fixed limit on the total space that a method
// can use for converting the strings. (256 chars per string in the signature).
// So any java string larger then this is truncated.

static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
static bool offsets_initialized = false;


nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
                                                methodHandle method) {


  // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  // be single threaded in this method.
  assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");

  if (!offsets_initialized) {
    fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
    fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
    fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
    fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
    fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
    fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;

    fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
    fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
    fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
    fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
    fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
    fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
    fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
    fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;

    offsets_initialized = true;
  }
  // Fill in the signature array, for the calling-convention call.
  int total_args_passed = method->size_of_parameters();

  BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);

  // The signature we are going to use for the trap that dtrace will see
  // java/lang/String is converted. We drop "this" and any other object
  // is converted to NULL.  (A one-slot java/lang/Long object reference
  // is converted to a two-slot long, which is why we double the allocation).
  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);

  int i=0;
  int total_strings = 0;
  int first_arg_to_pass = 0;
  int total_c_args = 0;

  // Skip the receiver as dtrace doesn't want to see it
  if( !method->is_static() ) {
    in_sig_bt[i++] = T_OBJECT;
    first_arg_to_pass = 1;
  }

  // We need to convert the java args to where a native (non-jni) function
  // would expect them. To figure out where they go we convert the java
  // signature to a C signature.

  SignatureStream ss(method->signature());
  for ( ; !ss.at_return_type(); ss.next()) {
    BasicType bt = ss.type();
    in_sig_bt[i++] = bt;  // Collect remaining bits of signature
    out_sig_bt[total_c_args++] = bt;
    if( bt == T_OBJECT) {
      symbolOop s = ss.as_symbol_or_null();
      if (s == vmSymbols::java_lang_String()) {
        total_strings++;
        out_sig_bt[total_c_args-1] = T_ADDRESS;
      } else if (s == vmSymbols::java_lang_Boolean() ||
                 s == vmSymbols::java_lang_Character() ||
                 s == vmSymbols::java_lang_Byte() ||
                 s == vmSymbols::java_lang_Short() ||
                 s == vmSymbols::java_lang_Integer() ||
                 s == vmSymbols::java_lang_Float()) {
        out_sig_bt[total_c_args-1] = T_INT;
      } else if (s == vmSymbols::java_lang_Long() ||
                 s == vmSymbols::java_lang_Double()) {
        out_sig_bt[total_c_args-1] = T_LONG;
        out_sig_bt[total_c_args++] = T_VOID;
      }
    } else if ( bt == T_LONG || bt == T_DOUBLE ) {
      in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
      // We convert double to long
      out_sig_bt[total_c_args-1] = T_LONG;
      out_sig_bt[total_c_args++] = T_VOID;
    } else if ( bt == T_FLOAT) {
      // We convert float to int
      out_sig_bt[total_c_args-1] = T_INT;
    }
  }

  assert(i==total_args_passed, "validly parsed signature");

  // Now get the compiled-Java layout as input arguments
  int comp_args_on_stack;
  comp_args_on_stack = SharedRuntime::java_calling_convention(
      in_sig_bt, in_regs, total_args_passed, false);

  // Now figure out where the args must be stored and how much stack space
  // they require (neglecting out_preserve_stack_slots but space for storing
  // the 1st six register arguments). It's weird see int_stk_helper.

  int out_arg_slots;
  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);

  // Calculate the total number of stack slots we will need.

  // First count the abi requirement plus all of the outgoing args
  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;

  // Now space for the string(s) we must convert
  int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
  for (i = 0; i < total_strings ; i++) {
    string_locs[i] = stack_slots;
    stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
  }

  // Plus the temps we might need to juggle register args
  // regs take two slots each
  stack_slots += (Argument::n_int_register_parameters_c +
                  Argument::n_float_register_parameters_c) * 2;


  // + 4 for return address (which we own) and saved rbp,

  stack_slots += 4;

  // Ok The space we have allocated will look like:
  //
  //
  // FP-> |                     |
  //      |---------------------|
  //      | string[n]           |
  //      |---------------------| <- string_locs[n]
  //      | string[n-1]         |
  //      |---------------------| <- string_locs[n-1]
  //      | ...                 |
  //      | ...                 |
  //      |---------------------| <- string_locs[1]
  //      | string[0]           |
  //      |---------------------| <- string_locs[0]
  //      | outbound memory     |
  //      | based arguments     |
  //      |                     |
  //      |---------------------|
  //      |                     |
  // SP-> | out_preserved_slots |
  //
  //

  // Now compute actual number of stack words we need rounding to make
  // stack properly aligned.
  stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);

  int stack_size = stack_slots * VMRegImpl::stack_slot_size;

  intptr_t start = (intptr_t)__ pc();

  // First thing make an ic check to see if we should even be here

  // We are free to use all registers as temps without saving them and
  // restoring them except rbp. rbp, is the only callee save register
  // as far as the interpreter and the compiler(s) are concerned.

  const Register ic_reg = rax;
  const Register receiver = rcx;
  Label hit;
  Label exception_pending;


  __ verify_oop(receiver);
  __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
  __ jcc(Assembler::equal, hit);

  __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));

  // verified entry must be aligned for code patching.
  // and the first 5 bytes must be in the same cache line
  // if we align at 8 then we will be sure 5 bytes are in the same line
  __ align(8);

  __ bind(hit);

  int vep_offset = ((intptr_t)__ pc()) - start;


  // The instruction at the verified entry point must be 5 bytes or longer
  // because it can be patched on the fly by make_non_entrant. The stack bang
  // instruction fits that requirement.

  // Generate stack overflow check

  if (UseStackBanging) {
    if (stack_size <= StackShadowPages*os::vm_page_size()) {
      __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
    } else {
      __ movl(rax, stack_size);
      __ bang_stack_size(rax, rbx);
    }
  } else {
    // need a 5 byte instruction to allow MT safe patching to non-entrant
    __ fat_nop();
  }

  assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
         "valid size for make_non_entrant");

  // Generate a new frame for the wrapper.
  __ enter();

  // -4 because return address is already present and so is saved rbp,
  if (stack_size - 2*wordSize != 0) {
    __ subq(rsp, stack_size - 2*wordSize);
  }

  // Frame is now completed as far a size and linkage.

  int frame_complete = ((intptr_t)__ pc()) - start;

  int c_arg, j_arg;

  // State of input register args

  bool  live[ConcreteRegisterImpl::number_of_registers];

  live[j_rarg0->as_VMReg()->value()] = false;
  live[j_rarg1->as_VMReg()->value()] = false;
  live[j_rarg2->as_VMReg()->value()] = false;
  live[j_rarg3->as_VMReg()->value()] = false;
  live[j_rarg4->as_VMReg()->value()] = false;
  live[j_rarg5->as_VMReg()->value()] = false;

  live[j_farg0->as_VMReg()->value()] = false;
  live[j_farg1->as_VMReg()->value()] = false;
  live[j_farg2->as_VMReg()->value()] = false;
  live[j_farg3->as_VMReg()->value()] = false;
  live[j_farg4->as_VMReg()->value()] = false;
  live[j_farg5->as_VMReg()->value()] = false;
  live[j_farg6->as_VMReg()->value()] = false;
  live[j_farg7->as_VMReg()->value()] = false;


  bool rax_is_zero = false;

  // All args (except strings) destined for the stack are moved first
  for (j_arg = first_arg_to_pass, c_arg = 0 ;
       j_arg < total_args_passed ; j_arg++, c_arg++ ) {
    VMRegPair src = in_regs[j_arg];
    VMRegPair dst = out_regs[c_arg];

    // Get the real reg value or a dummy (rsp)

    int src_reg = src.first()->is_reg() ?
                  src.first()->value() :
                  rsp->as_VMReg()->value();

    bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
                    (in_sig_bt[j_arg] == T_OBJECT &&
                     out_sig_bt[c_arg] != T_INT &&
                     out_sig_bt[c_arg] != T_ADDRESS &&
                     out_sig_bt[c_arg] != T_LONG);

    live[src_reg] = !useless;

    if (dst.first()->is_stack()) {

      // Even though a string arg in a register is still live after this loop
      // after the string conversion loop (next) it will be dead so we take
      // advantage of that now for simpler code to manage live.

      live[src_reg] = false;
      switch (in_sig_bt[j_arg]) {

        case T_ARRAY:
        case T_OBJECT:
          {
            Address stack_dst(rsp, reg2offset_out(dst.first()));

            if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
              // need to unbox a one-word value
              Register in_reg = rax;
              if ( src.first()->is_reg() ) {
                in_reg = src.first()->as_Register();
              } else {
                __ movq(rax, Address(rbp, reg2offset_in(src.first())));
                rax_is_zero = false;
              }
              Label skipUnbox;
              __ movptr(Address(rsp, reg2offset_out(dst.first())),
                        (int32_t)NULL_WORD);
              __ testq(in_reg, in_reg);
              __ jcc(Assembler::zero, skipUnbox);

2196 2197
              BasicType bt = out_sig_bt[c_arg];
              int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2198
              Address src1(in_reg, box_offset);
2199
              if ( bt == T_LONG ) {
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
                __ movq(in_reg,  src1);
                __ movq(stack_dst, in_reg);
                assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
                ++c_arg; // skip over T_VOID to keep the loop indices in sync
              } else {
                __ movl(in_reg,  src1);
                __ movl(stack_dst, in_reg);
              }

              __ bind(skipUnbox);
            } else if (out_sig_bt[c_arg] != T_ADDRESS) {
              // Convert the arg to NULL
              if (!rax_is_zero) {
                __ xorq(rax, rax);
                rax_is_zero = true;
              }
              __ movq(stack_dst, rax);
            }
          }
          break;

        case T_VOID:
          break;

        case T_FLOAT:
          // This does the right thing since we know it is destined for the
          // stack
          float_move(masm, src, dst);
          break;

        case T_DOUBLE:
          // This does the right thing since we know it is destined for the
          // stack
          double_move(masm, src, dst);
          break;

        case T_LONG :
          long_move(masm, src, dst);
          break;

        case T_ADDRESS: assert(false, "found T_ADDRESS in java args");

        default:
          move32_64(masm, src, dst);
      }
    }

  }

  // If we have any strings we must store any register based arg to the stack
  // This includes any still live xmm registers too.

  int sid = 0;

  if (total_strings > 0 ) {
    for (j_arg = first_arg_to_pass, c_arg = 0 ;
         j_arg < total_args_passed ; j_arg++, c_arg++ ) {
      VMRegPair src = in_regs[j_arg];
      VMRegPair dst = out_regs[c_arg];

      if (src.first()->is_reg()) {
        Address src_tmp(rbp, fp_offset[src.first()->value()]);

        // string oops were left untouched by the previous loop even if the
        // eventual (converted) arg is destined for the stack so park them
        // away now (except for first)

        if (out_sig_bt[c_arg] == T_ADDRESS) {
          Address utf8_addr = Address(
              rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
          if (sid != 1) {
            // The first string arg won't be killed until after the utf8
            // conversion
            __ movq(utf8_addr, src.first()->as_Register());
          }
        } else if (dst.first()->is_reg()) {
          if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {

            // Convert the xmm register to an int and store it in the reserved
            // location for the eventual c register arg
            XMMRegister f = src.first()->as_XMMRegister();
            if (in_sig_bt[j_arg] == T_FLOAT) {
              __ movflt(src_tmp, f);
            } else {
              __ movdbl(src_tmp, f);
            }
          } else {
            // If the arg is an oop type we don't support don't bother to store
            // it remember string was handled above.
            bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
                            (in_sig_bt[j_arg] == T_OBJECT &&
                             out_sig_bt[c_arg] != T_INT &&
                             out_sig_bt[c_arg] != T_LONG);

            if (!useless) {
              __ movq(src_tmp, src.first()->as_Register());
            }
          }
        }
      }
      if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
        assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
        ++c_arg; // skip over T_VOID to keep the loop indices in sync
      }
    }

    // Now that the volatile registers are safe, convert all the strings
    sid = 0;

    for (j_arg = first_arg_to_pass, c_arg = 0 ;
         j_arg < total_args_passed ; j_arg++, c_arg++ ) {
      if (out_sig_bt[c_arg] == T_ADDRESS) {
        // It's a string
        Address utf8_addr = Address(
            rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
        // The first string we find might still be in the original java arg
        // register

        VMReg src = in_regs[j_arg].first();

        // We will need to eventually save the final argument to the trap
        // in the von-volatile location dedicated to src. This is the offset
        // from fp we will use.
        int src_off = src->is_reg() ?
            fp_offset[src->value()] : reg2offset_in(src);

        // This is where the argument will eventually reside
        VMRegPair dst = out_regs[c_arg];

        if (src->is_reg()) {
          if (sid == 1) {
            __ movq(c_rarg0, src->as_Register());
          } else {
            __ movq(c_rarg0, utf8_addr);
          }
        } else {
          // arg is still in the original location
          __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
        }
        Label done, convert;

        // see if the oop is NULL
        __ testq(c_rarg0, c_rarg0);
        __ jcc(Assembler::notEqual, convert);

        if (dst.first()->is_reg()) {
          // Save the ptr to utf string in the origina src loc or the tmp
          // dedicated to it
          __ movq(Address(rbp, src_off), c_rarg0);
        } else {
          __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
        }
        __ jmp(done);

        __ bind(convert);

        __ lea(c_rarg1, utf8_addr);
        if (dst.first()->is_reg()) {
          __ movq(Address(rbp, src_off), c_rarg1);
        } else {
          __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
        }
        // And do the conversion
        __ call(RuntimeAddress(
                CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));

        __ bind(done);
      }
      if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
        assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
        ++c_arg; // skip over T_VOID to keep the loop indices in sync
      }
    }
    // The get_utf call killed all the c_arg registers
    live[c_rarg0->as_VMReg()->value()] = false;
    live[c_rarg1->as_VMReg()->value()] = false;
    live[c_rarg2->as_VMReg()->value()] = false;
    live[c_rarg3->as_VMReg()->value()] = false;
    live[c_rarg4->as_VMReg()->value()] = false;
    live[c_rarg5->as_VMReg()->value()] = false;

    live[c_farg0->as_VMReg()->value()] = false;
    live[c_farg1->as_VMReg()->value()] = false;
    live[c_farg2->as_VMReg()->value()] = false;
    live[c_farg3->as_VMReg()->value()] = false;
    live[c_farg4->as_VMReg()->value()] = false;
    live[c_farg5->as_VMReg()->value()] = false;
    live[c_farg6->as_VMReg()->value()] = false;
    live[c_farg7->as_VMReg()->value()] = false;
  }

  // Now we can finally move the register args to their desired locations

  rax_is_zero = false;

  for (j_arg = first_arg_to_pass, c_arg = 0 ;
       j_arg < total_args_passed ; j_arg++, c_arg++ ) {

    VMRegPair src = in_regs[j_arg];
    VMRegPair dst = out_regs[c_arg];

    // Only need to look for args destined for the interger registers (since we
    // convert float/double args to look like int/long outbound)
    if (dst.first()->is_reg()) {
      Register r =  dst.first()->as_Register();

      // Check if the java arg is unsupported and thereofre useless
      bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
                      (in_sig_bt[j_arg] == T_OBJECT &&
                       out_sig_bt[c_arg] != T_INT &&
                       out_sig_bt[c_arg] != T_ADDRESS &&
                       out_sig_bt[c_arg] != T_LONG);


      // If we're going to kill an existing arg save it first
      if (live[dst.first()->value()]) {
        // you can't kill yourself
        if (src.first() != dst.first()) {
          __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
        }
      }
      if (src.first()->is_reg()) {
        if (live[src.first()->value()] ) {
          if (in_sig_bt[j_arg] == T_FLOAT) {
            __ movdl(r, src.first()->as_XMMRegister());
          } else if (in_sig_bt[j_arg] == T_DOUBLE) {
            __ movdq(r, src.first()->as_XMMRegister());
          } else if (r != src.first()->as_Register()) {
            if (!useless) {
              __ movq(r, src.first()->as_Register());
            }
          }
        } else {
          // If the arg is an oop type we don't support don't bother to store
          // it
          if (!useless) {
            if (in_sig_bt[j_arg] == T_DOUBLE ||
                in_sig_bt[j_arg] == T_LONG  ||
                in_sig_bt[j_arg] == T_OBJECT ) {
              __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
            } else {
              __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
            }
          }
        }
        live[src.first()->value()] = false;
      } else if (!useless) {
        // full sized move even for int should be ok
        __ movq(r, Address(rbp, reg2offset_in(src.first())));
      }

      // At this point r has the original java arg in the final location
      // (assuming it wasn't useless). If the java arg was an oop
      // we have a bit more to do

      if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
        if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
          // need to unbox a one-word value
          Label skip;
          __ testq(r, r);
          __ jcc(Assembler::equal, skip);
2461 2462
          BasicType bt = out_sig_bt[c_arg];
          int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2463
          Address src1(r, box_offset);
2464
          if ( bt == T_LONG ) {
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
            __ movq(r, src1);
          } else {
            __ movl(r, src1);
          }
          __ bind(skip);

        } else if (out_sig_bt[c_arg] != T_ADDRESS) {
          // Convert the arg to NULL
          __ xorq(r, r);
        }
      }

      // dst can longer be holding an input value
      live[dst.first()->value()] = false;
    }
    if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
      assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
      ++c_arg; // skip over T_VOID to keep the loop indices in sync
    }
  }


  // Ok now we are done. Need to place the nop that dtrace wants in order to
  // patch in the trap
  int patch_offset = ((intptr_t)__ pc()) - start;

  __ nop();


  // Return

  __ leave();
  __ ret(0);

  __ flush();

  nmethod *nm = nmethod::new_dtrace_nmethod(
      method, masm->code(), vep_offset, patch_offset, frame_complete,
      stack_slots / VMRegImpl::slots_per_word);
  return nm;

}

#endif // HAVE_DTRACE_H

D
duke 已提交
2510 2511 2512
// this function returns the adjust size (in number of words) to a c2i adapter
// activation for use during deoptimization
int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2513
  return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
D
duke 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
}


uint SharedRuntime::out_preserve_stack_slots() {
  return 0;
}


//------------------------------generate_deopt_blob----------------------------
void SharedRuntime::generate_deopt_blob() {
  // Allocate space for the code
  ResourceMark rm;
  // Setup code generation tools
  CodeBuffer buffer("deopt_blob", 2048, 1024);
  MacroAssembler* masm = new MacroAssembler(&buffer);
  int frame_size_in_words;
  OopMap* map = NULL;
  OopMapSet *oop_maps = new OopMapSet();

  // -------------
  // This code enters when returning to a de-optimized nmethod.  A return
  // address has been pushed on the the stack, and return values are in
  // registers.
  // If we are doing a normal deopt then we were called from the patched
  // nmethod from the point we returned to the nmethod. So the return
  // address on the stack is wrong by NativeCall::instruction_size
  // We will adjust the value so it looks like we have the original return
  // address on the stack (like when we eagerly deoptimized).
  // In the case of an exception pending when deoptimizing, we enter
  // with a return address on the stack that points after the call we patched
  // into the exception handler. We have the following register state from,
  // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
  //    rax: exception oop
  //    rbx: exception handler
  //    rdx: throwing pc
  // So in this case we simply jam rdx into the useless return address and
  // the stack looks just like we want.
  //
  // At this point we need to de-opt.  We save the argument return
  // registers.  We call the first C routine, fetch_unroll_info().  This
  // routine captures the return values and returns a structure which
  // describes the current frame size and the sizes of all replacement frames.
  // The current frame is compiled code and may contain many inlined
  // functions, each with their own JVM state.  We pop the current frame, then
  // push all the new frames.  Then we call the C routine unpack_frames() to
  // populate these frames.  Finally unpack_frames() returns us the new target
  // address.  Notice that callee-save registers are BLOWN here; they have
  // already been captured in the vframeArray at the time the return PC was
  // patched.
  address start = __ pc();
  Label cont;

  // Prolog for non exception case!

  // Save everything in sight.
  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);

  // Normal deoptimization.  Save exec mode for unpack_frames.
2572
  __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
D
duke 已提交
2573
  __ jmp(cont);
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585

  int reexecute_offset = __ pc() - start;

  // Reexecute case
  // return address is the pc describes what bci to do re-execute at

  // No need to update map as each call to save_live_registers will produce identical oopmap
  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);

  __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
  __ jmp(cont);

D
duke 已提交
2586 2587 2588 2589
  int exception_offset = __ pc() - start;

  // Prolog for exception case

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
  // all registers are dead at this entry point, except for rax, and
  // rdx which contain the exception oop and exception pc
  // respectively.  Set them in TLS and fall thru to the
  // unpack_with_exception_in_tls entry point.

  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
  __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);

  int exception_in_tls_offset = __ pc() - start;

  // new implementation because exception oop is now passed in JavaThread

  // Prolog for exception case
  // All registers must be preserved because they might be used by LinearScan
  // Exceptiop oop and throwing PC are passed in JavaThread
  // tos: stack at point of call to method that threw the exception (i.e. only
  // args are on the stack, no return address)

  // make room on stack for the return address
  // It will be patched later with the throwing pc. The correct value is not
  // available now because loading it from memory would destroy registers.
  __ push(0);
D
duke 已提交
2612 2613 2614 2615

  // Save everything in sight.
  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);

2616 2617
  // Now it is safe to overwrite any register

D
duke 已提交
2618
  // Deopt during an exception.  Save exec mode for unpack_frames.
2619
  __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
D
duke 已提交
2620

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
  // load throwing pc from JavaThread and patch it as the return address
  // of the current frame. Then clear the field in JavaThread

  __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  __ movptr(Address(rbp, wordSize), rdx);
  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);

#ifdef ASSERT
  // verify that there is really an exception oop in JavaThread
  __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  __ verify_oop(rax);

  // verify that there is no pending exception
  Label no_pending_exception;
  __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
  __ testptr(rax, rax);
  __ jcc(Assembler::zero, no_pending_exception);
  __ stop("must not have pending exception here");
  __ bind(no_pending_exception);
#endif

D
duke 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
  __ bind(cont);

  // Call C code.  Need thread and this frame, but NOT official VM entry
  // crud.  We cannot block on this call, no GC can happen.
  //
  // UnrollBlock* fetch_unroll_info(JavaThread* thread)

  // fetch_unroll_info needs to call last_java_frame().

  __ set_last_Java_frame(noreg, noreg, NULL);
#ifdef ASSERT
  { Label L;
2654
    __ cmpptr(Address(r15_thread,
D
duke 已提交
2655
                    JavaThread::last_Java_fp_offset()),
2656
            (int32_t)0);
D
duke 已提交
2657 2658 2659 2660 2661
    __ jcc(Assembler::equal, L);
    __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
    __ bind(L);
  }
#endif // ASSERT
2662
  __ mov(c_rarg0, r15_thread);
D
duke 已提交
2663 2664 2665 2666 2667 2668 2669 2670 2671
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));

  // Need to have an oopmap that tells fetch_unroll_info where to
  // find any register it might need.
  oop_maps->add_gc_map(__ pc() - start, map);

  __ reset_last_Java_frame(false, false);

  // Load UnrollBlock* into rdi
2672 2673 2674
  __ mov(rdi, rax);

   Label noException;
2675
  __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
  __ jcc(Assembler::notEqual, noException);
  __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
  // QQQ this is useless it was NULL above
  __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
  __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);

  __ verify_oop(rax);

  // Overwrite the result registers with the exception results.
  __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
  // I think this is useless
  __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);

  __ bind(noException);
D
duke 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712

  // Only register save data is on the stack.
  // Now restore the result registers.  Everything else is either dead
  // or captured in the vframeArray.
  RegisterSaver::restore_result_registers(masm);

  // All of the register save area has been popped of the stack. Only the
  // return address remains.

  // Pop all the frames we must move/replace.
  //
  // Frame picture (youngest to oldest)
  // 1: self-frame (no frame link)
  // 2: deopting frame  (no frame link)
  // 3: caller of deopting frame (could be compiled/interpreted).
  //
  // Note: by leaving the return address of self-frame on the stack
  // and using the size of frame 2 to adjust the stack
  // when we are done the return to frame 3 will still be on the stack.

  // Pop deoptimized frame
  __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2713
  __ addptr(rsp, rcx);
D
duke 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723

  // rsp should be pointing at the return address to the caller (3)

  // Stack bang to make sure there's enough room for these interpreter frames.
  if (UseStackBanging) {
    __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
    __ bang_stack_size(rbx, rcx);
  }

  // Load address of array of frame pcs into rcx
2724
  __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
D
duke 已提交
2725 2726

  // Trash the old pc
2727
  __ addptr(rsp, wordSize);
D
duke 已提交
2728 2729

  // Load address of array of frame sizes into rsi
2730
  __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
D
duke 已提交
2731 2732 2733 2734 2735

  // Load counter into rdx
  __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));

  // Pick up the initial fp we should save
2736
  __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
D
duke 已提交
2737 2738 2739 2740 2741 2742 2743 2744

  // Now adjust the caller's stack to make up for the extra locals
  // but record the original sp so that we can save it in the skeletal interpreter
  // frame and the stack walking of interpreter_sender will get the unextended sp
  // value and not the "real" sp value.

  const Register sender_sp = r8;

2745
  __ mov(sender_sp, rsp);
D
duke 已提交
2746 2747 2748
  __ movl(rbx, Address(rdi,
                       Deoptimization::UnrollBlock::
                       caller_adjustment_offset_in_bytes()));
2749
  __ subptr(rsp, rbx);
D
duke 已提交
2750 2751 2752 2753

  // Push interpreter frames in a loop
  Label loop;
  __ bind(loop);
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
  __ movptr(rbx, Address(rsi, 0));      // Load frame size
#ifdef CC_INTERP
  __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
#ifdef ASSERT
  __ push(0xDEADDEAD);                  // Make a recognizable pattern
  __ push(0xDEADDEAD);
#else /* ASSERT */
  __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
#endif /* ASSERT */
#else
  __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
#endif // CC_INTERP
  __ pushptr(Address(rcx, 0));          // Save return address
D
duke 已提交
2767
  __ enter();                           // Save old & set new ebp
2768 2769 2770 2771 2772 2773
  __ subptr(rsp, rbx);                  // Prolog
#ifdef CC_INTERP
  __ movptr(Address(rbp,
                  -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
            sender_sp); // Make it walkable
#else /* CC_INTERP */
D
duke 已提交
2774
  // This value is corrected by layout_activation_impl
2775 2776 2777 2778 2779 2780
  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
#endif /* CC_INTERP */
  __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
  __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
  __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
D
duke 已提交
2781 2782
  __ decrementl(rdx);                   // Decrement counter
  __ jcc(Assembler::notZero, loop);
2783
  __ pushptr(Address(rcx, 0));          // Save final return address
D
duke 已提交
2784 2785 2786 2787 2788 2789

  // Re-push self-frame
  __ enter();                           // Save old & set new ebp

  // Allocate a full sized register save area.
  // Return address and rbp are in place, so we allocate two less words.
2790
  __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
D
duke 已提交
2791 2792 2793

  // Restore frame locals after moving the frame
  __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
2794
  __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
D
duke 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804

  // Call C code.  Need thread but NOT official VM entry
  // crud.  We cannot block on this call, no GC can happen.  Call should
  // restore return values to their stack-slots with the new SP.
  //
  // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)

  // Use rbp because the frames look interpreted now
  __ set_last_Java_frame(noreg, rbp, NULL);

2805
  __ mov(c_rarg0, r15_thread);
2806
  __ movl(c_rarg1, r14); // second arg: exec_mode
D
duke 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));

  // Set an oopmap for the call site
  oop_maps->add_gc_map(__ pc() - start,
                       new OopMap( frame_size_in_words, 0 ));

  __ reset_last_Java_frame(true, false);

  // Collect return values
  __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
2817 2818 2819
  __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
  // I think this is useless (throwing pc?)
  __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
D
duke 已提交
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829

  // Pop self-frame.
  __ leave();                           // Epilog

  // Jump to interpreter
  __ ret(0);

  // Make sure all code is generated
  masm->flush();

2830 2831
  _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
D
duke 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
}

#ifdef COMPILER2
//------------------------------generate_uncommon_trap_blob--------------------
void SharedRuntime::generate_uncommon_trap_blob() {
  // Allocate space for the code
  ResourceMark rm;
  // Setup code generation tools
  CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  MacroAssembler* masm = new MacroAssembler(&buffer);

  assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");

  address start = __ pc();

  // Push self-frame.  We get here with a return address on the
  // stack, so rsp is 8-byte aligned until we allocate our frame.
2849
  __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
D
duke 已提交
2850 2851

  // No callee saved registers. rbp is assumed implicitly saved
2852
  __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
D
duke 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866

  // compiler left unloaded_class_index in j_rarg0 move to where the
  // runtime expects it.
  __ movl(c_rarg1, j_rarg0);

  __ set_last_Java_frame(noreg, noreg, NULL);

  // Call C code.  Need thread but NOT official VM entry
  // crud.  We cannot block on this call, no GC can happen.  Call should
  // capture callee-saved registers as well as return values.
  // Thread is in rdi already.
  //
  // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);

2867
  __ mov(c_rarg0, r15_thread);
D
duke 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));

  // Set an oopmap for the call site
  OopMapSet* oop_maps = new OopMapSet();
  OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);

  // location of rbp is known implicitly by the frame sender code

  oop_maps->add_gc_map(__ pc() - start, map);

  __ reset_last_Java_frame(false, false);

  // Load UnrollBlock* into rdi
2881
  __ mov(rdi, rax);
D
duke 已提交
2882 2883 2884 2885 2886 2887 2888 2889 2890

  // Pop all the frames we must move/replace.
  //
  // Frame picture (youngest to oldest)
  // 1: self-frame (no frame link)
  // 2: deopting frame  (no frame link)
  // 3: caller of deopting frame (could be compiled/interpreted).

  // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
2891
  __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
D
duke 已提交
2892 2893 2894 2895 2896

  // Pop deoptimized frame (int)
  __ movl(rcx, Address(rdi,
                       Deoptimization::UnrollBlock::
                       size_of_deoptimized_frame_offset_in_bytes()));
2897
  __ addptr(rsp, rcx);
D
duke 已提交
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907

  // rsp should be pointing at the return address to the caller (3)

  // Stack bang to make sure there's enough room for these interpreter frames.
  if (UseStackBanging) {
    __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
    __ bang_stack_size(rbx, rcx);
  }

  // Load address of array of frame pcs into rcx (address*)
2908 2909 2910
  __ movptr(rcx,
            Address(rdi,
                    Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
D
duke 已提交
2911 2912

  // Trash the return pc
2913
  __ addptr(rsp, wordSize);
D
duke 已提交
2914 2915

  // Load address of array of frame sizes into rsi (intptr_t*)
2916 2917 2918
  __ movptr(rsi, Address(rdi,
                         Deoptimization::UnrollBlock::
                         frame_sizes_offset_in_bytes()));
D
duke 已提交
2919 2920 2921 2922 2923 2924 2925

  // Counter
  __ movl(rdx, Address(rdi,
                       Deoptimization::UnrollBlock::
                       number_of_frames_offset_in_bytes())); // (int)

  // Pick up the initial fp we should save
2926 2927 2928
  __ movptr(rbp,
            Address(rdi,
                    Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
D
duke 已提交
2929 2930 2931 2932 2933 2934 2935 2936

  // Now adjust the caller's stack to make up for the extra locals but
  // record the original sp so that we can save it in the skeletal
  // interpreter frame and the stack walking of interpreter_sender
  // will get the unextended sp value and not the "real" sp value.

  const Register sender_sp = r8;

2937
  __ mov(sender_sp, rsp);
D
duke 已提交
2938 2939 2940
  __ movl(rbx, Address(rdi,
                       Deoptimization::UnrollBlock::
                       caller_adjustment_offset_in_bytes())); // (int)
2941
  __ subptr(rsp, rbx);
D
duke 已提交
2942 2943 2944 2945

  // Push interpreter frames in a loop
  Label loop;
  __ bind(loop);
2946 2947 2948 2949 2950
  __ movptr(rbx, Address(rsi, 0)); // Load frame size
  __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
  __ pushptr(Address(rcx, 0));     // Save return address
  __ enter();                      // Save old & set new rbp
  __ subptr(rsp, rbx);             // Prolog
2951 2952 2953 2954 2955
#ifdef CC_INTERP
  __ movptr(Address(rbp,
                  -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
            sender_sp); // Make it walkable
#else // CC_INTERP
2956 2957
  __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
            sender_sp);            // Make it walkable
D
duke 已提交
2958
  // This value is corrected by layout_activation_impl
2959
  __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
2960
#endif // CC_INTERP
2961 2962 2963 2964
  __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
  __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
  __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
  __ decrementl(rdx);              // Decrement counter
D
duke 已提交
2965
  __ jcc(Assembler::notZero, loop);
2966
  __ pushptr(Address(rcx, 0));     // Save final return address
D
duke 已提交
2967 2968 2969

  // Re-push self-frame
  __ enter();                 // Save old & set new rbp
2970
  __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
D
duke 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
                              // Prolog

  // Use rbp because the frames look interpreted now
  __ set_last_Java_frame(noreg, rbp, NULL);

  // Call C code.  Need thread but NOT official VM entry
  // crud.  We cannot block on this call, no GC can happen.  Call should
  // restore return values to their stack-slots with the new SP.
  // Thread is in rdi already.
  //
  // BasicType unpack_frames(JavaThread* thread, int exec_mode);

2983
  __ mov(c_rarg0, r15_thread);
D
duke 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
  __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));

  // Set an oopmap for the call site
  oop_maps->add_gc_map(__ pc() - start, new OopMap(SimpleRuntimeFrame::framesize, 0));

  __ reset_last_Java_frame(true, false);

  // Pop self-frame.
  __ leave();                 // Epilog

  // Jump to interpreter
  __ ret(0);

  // Make sure all code is generated
  masm->flush();

  _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
                                                 SimpleRuntimeFrame::framesize >> 1);
}
#endif // COMPILER2


//------------------------------generate_handler_blob------
//
// Generate a special Compile2Runtime blob that saves all registers,
// and setup oopmap.
//
static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
  assert(StubRoutines::forward_exception_entry() != NULL,
         "must be generated before");

  ResourceMark rm;
  OopMapSet *oop_maps = new OopMapSet();
  OopMap* map;

  // Allocate space for the code.  Setup code generation tools.
  CodeBuffer buffer("handler_blob", 2048, 1024);
  MacroAssembler* masm = new MacroAssembler(&buffer);

  address start   = __ pc();
  address call_pc = NULL;
  int frame_size_in_words;

  // Make room for return address (or push it again)
  if (!cause_return) {
3030
    __ push(rbx);
D
duke 已提交
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
  }

  // Save registers, fpu state, and flags
  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);

  // The following is basically a call_VM.  However, we need the precise
  // address of the call in order to generate an oopmap. Hence, we do all the
  // work outselves.

  __ set_last_Java_frame(noreg, noreg, NULL);

  // The return address must always be correct so that frame constructor never
  // sees an invalid pc.

  if (!cause_return) {
    // overwrite the dummy value we pushed on entry
3047 3048
    __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
    __ movptr(Address(rbp, wordSize), c_rarg0);
D
duke 已提交
3049 3050 3051
  }

  // Do the call
3052
  __ mov(c_rarg0, r15_thread);
D
duke 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
  __ call(RuntimeAddress(call_ptr));

  // Set an oopmap for the call site.  This oopmap will map all
  // oop-registers and debug-info registers as callee-saved.  This
  // will allow deoptimization at this safepoint to find all possible
  // debug-info recordings, as well as let GC find all oops.

  oop_maps->add_gc_map( __ pc() - start, map);

  Label noException;

  __ reset_last_Java_frame(false, false);

3066
  __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
D
duke 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
  __ jcc(Assembler::equal, noException);

  // Exception pending

  RegisterSaver::restore_live_registers(masm);

  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));

  // No exception case
  __ bind(noException);

  // Normal exit, restore registers and exit.
  RegisterSaver::restore_live_registers(masm);

  __ ret(0);

  // Make sure all code is generated
  masm->flush();

  // Fill-out other meta info
  return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
}

//
// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
//
// Generate a stub that calls into vm to find out the proper destination
// of a java call. All the argument registers are live at this point
// but since this is generic code we don't know what they are and the caller
// must do any gc of the args.
//
static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");

  // allocate space for the code
  ResourceMark rm;

  CodeBuffer buffer(name, 1000, 512);
  MacroAssembler* masm                = new MacroAssembler(&buffer);

  int frame_size_in_words;

  OopMapSet *oop_maps = new OopMapSet();
  OopMap* map = NULL;

  int start = __ offset();

  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);

  int frame_complete = __ offset();

  __ set_last_Java_frame(noreg, noreg, NULL);

3120
  __ mov(c_rarg0, r15_thread);
D
duke 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136

  __ call(RuntimeAddress(destination));


  // Set an oopmap for the call site.
  // We need this not only for callee-saved registers, but also for volatile
  // registers that the compiler might be keeping live across a safepoint.

  oop_maps->add_gc_map( __ offset() - start, map);

  // rax contains the address we are going to jump to assuming no exception got installed

  // clear last_Java_sp
  __ reset_last_Java_frame(false, false);
  // check for pending exceptions
  Label pending;
3137
  __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
D
duke 已提交
3138 3139 3140
  __ jcc(Assembler::notEqual, pending);

  // get the returned methodOop
3141 3142
  __ movptr(rbx, Address(r15_thread, JavaThread::vm_result_offset()));
  __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
D
duke 已提交
3143

3144
  __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
D
duke 已提交
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161

  RegisterSaver::restore_live_registers(masm);

  // We are back the the original state on entry and ready to go.

  __ jmp(rax);

  // Pending exception after the safepoint

  __ bind(pending);

  RegisterSaver::restore_live_registers(masm);

  // exception pending => remove activation and forward to exception handler

  __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);

3162
  __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
D
duke 已提交
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
  __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));

  // -------------
  // make sure all code is generated
  masm->flush();

  // return the  blob
  // frame_size_words or bytes??
  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
}


void SharedRuntime::generate_stubs() {

  _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
                                        "wrong_method_stub");
  _ic_miss_blob =      generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
                                        "ic_miss_stub");
  _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
                                        "resolve_opt_virtual_call");

  _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
                                        "resolve_virtual_call");

  _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
                                        "resolve_static_call");
  _polling_page_safepoint_handler_blob =
    generate_handler_blob(CAST_FROM_FN_PTR(address,
                   SafepointSynchronize::handle_polling_page_exception), false);

  _polling_page_return_handler_blob =
    generate_handler_blob(CAST_FROM_FN_PTR(address,
                   SafepointSynchronize::handle_polling_page_exception), true);

  generate_deopt_blob();

#ifdef COMPILER2
  generate_uncommon_trap_blob();
#endif // COMPILER2
}


#ifdef COMPILER2
// This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
//
//------------------------------generate_exception_blob---------------------------
// creates exception blob at the end
// Using exception blob, this code is jumped from a compiled method.
// (see emit_exception_handler in x86_64.ad file)
//
// Given an exception pc at a call we call into the runtime for the
// handler in this method. This handler might merely restore state
// (i.e. callee save registers) unwind the frame and jump to the
// exception handler for the nmethod if there is no Java level handler
// for the nmethod.
//
// This code is entered with a jmp.
//
// Arguments:
//   rax: exception oop
//   rdx: exception pc
//
// Results:
//   rax: exception oop
//   rdx: exception pc in caller or ???
//   destination: exception handler of caller
//
// Note: the exception pc MUST be at a call (precise debug information)
//       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
//

void OptoRuntime::generate_exception_blob() {
  assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
  assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
  assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");

  assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");

  // Allocate space for the code
  ResourceMark rm;
  // Setup code generation tools
  CodeBuffer buffer("exception_blob", 2048, 1024);
  MacroAssembler* masm = new MacroAssembler(&buffer);


  address start = __ pc();

  // Exception pc is 'return address' for stack walker
3251 3252
  __ push(rdx);
  __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
D
duke 已提交
3253 3254 3255 3256 3257 3258 3259

  // Save callee-saved registers.  See x86_64.ad.

  // rbp is an implicitly saved callee saved register (i.e. the calling
  // convention will save restore it in prolog/epilog) Other than that
  // there are no callee save registers now that adapter frames are gone.

3260
  __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
D
duke 已提交
3261 3262 3263 3264 3265

  // Store exception in Thread object. We cannot pass any arguments to the
  // handle_exception call, since we do not want to make any assumption
  // about the size of the frame where the exception happened in.
  // c_rarg0 is either rdi (Linux) or rcx (Windows).
3266 3267
  __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
D
duke 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277

  // This call does all the hard work.  It checks if an exception handler
  // exists in the method.
  // If so, it returns the handler address.
  // If not, it prepares for stack-unwinding, restoring the callee-save
  // registers of the frame being removed.
  //
  // address OptoRuntime::handle_exception_C(JavaThread* thread)

  __ set_last_Java_frame(noreg, noreg, NULL);
3278
  __ mov(c_rarg0, r15_thread);
D
duke 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
  __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));

  // Set an oopmap for the call site.  This oopmap will only be used if we
  // are unwinding the stack.  Hence, all locations will be dead.
  // Callee-saved registers will be the same as the frame above (i.e.,
  // handle_exception_stub), since they were restored when we got the
  // exception.

  OopMapSet* oop_maps = new OopMapSet();

  oop_maps->add_gc_map( __ pc()-start, new OopMap(SimpleRuntimeFrame::framesize, 0));

  __ reset_last_Java_frame(false, false);

  // Restore callee-saved registers

  // rbp is an implicitly saved callee saved register (i.e. the calling
  // convention will save restore it in prolog/epilog) Other than that
  // there are no callee save registers no that adapter frames are gone.

3299
  __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
D
duke 已提交
3300

3301 3302
  __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
  __ pop(rdx);                  // No need for exception pc anymore
D
duke 已提交
3303 3304 3305

  // rax: exception handler

3306 3307
  // Restore SP from BP if the exception PC is a MethodHandle call site.
  __ cmpl(Address(r15_thread, JavaThread::is_method_handle_return_offset()), 0);
3308
  __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
3309

D
duke 已提交
3310
  // We have a handler in rax (could be deopt blob).
3311
  __ mov(r8, rax);
D
duke 已提交
3312 3313

  // Get the exception oop
3314
  __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
D
duke 已提交
3315
  // Get the exception pc in case we are deoptimized
3316
  __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
D
duke 已提交
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
#ifdef ASSERT
  __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
  __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
#endif
  // Clear the exception oop so GC no longer processes it as a root.
  __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);

  // rax: exception oop
  // r8:  exception handler
  // rdx: exception pc
  // Jump to handler

  __ jmp(r8);

  // Make sure all code is generated
  masm->flush();

  // Set exception blob
  _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
}
#endif // COMPILER2