psOldGen.cpp 17.1 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/*
 * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_psOldGen.cpp.incl"

inline const char* PSOldGen::select_name() {
  return UseParallelOldGC ? "ParOldGen" : "PSOldGen";
}

PSOldGen::PSOldGen(ReservedSpace rs, size_t alignment,
                   size_t initial_size, size_t min_size, size_t max_size,
                   const char* perf_data_name, int level):
  _name(select_name()), _init_gen_size(initial_size), _min_gen_size(min_size),
  _max_gen_size(max_size)
{
  initialize(rs, alignment, perf_data_name, level);
}

PSOldGen::PSOldGen(size_t initial_size,
                   size_t min_size, size_t max_size,
                   const char* perf_data_name, int level):
  _name(select_name()), _init_gen_size(initial_size), _min_gen_size(min_size),
  _max_gen_size(max_size)
{}

void PSOldGen::initialize(ReservedSpace rs, size_t alignment,
                          const char* perf_data_name, int level) {
  initialize_virtual_space(rs, alignment);
  initialize_work(perf_data_name, level);
  // The old gen can grow to gen_size_limit().  _reserve reflects only
  // the current maximum that can be committed.
  assert(_reserved.byte_size() <= gen_size_limit(), "Consistency check");
}

void PSOldGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {

  _virtual_space = new PSVirtualSpace(rs, alignment);
  if (!_virtual_space->expand_by(_init_gen_size)) {
    vm_exit_during_initialization("Could not reserve enough space for "
                                  "object heap");
  }
}

void PSOldGen::initialize_work(const char* perf_data_name, int level) {
  //
  // Basic memory initialization
  //

  MemRegion limit_reserved((HeapWord*)virtual_space()->low_boundary(),
    heap_word_size(_max_gen_size));
  assert(limit_reserved.byte_size() == _max_gen_size,
    "word vs bytes confusion");
  //
  // Object start stuff
  //

  start_array()->initialize(limit_reserved);

  _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
                        (HeapWord*)virtual_space()->high_boundary());

  //
  // Card table stuff
  //

  MemRegion cmr((HeapWord*)virtual_space()->low(),
                (HeapWord*)virtual_space()->high());
90 91 92 93 94 95 96 97 98
  if (ZapUnusedHeapArea) {
    // Mangle newly committed space immediately rather than
    // waiting for the initialization of the space even though
    // mangling is related to spaces.  Doing it here eliminates
    // the need to carry along information that a complete mangling
    // (bottom to end) needs to be done.
    SpaceMangler::mangle_region(cmr);
  }

D
duke 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  Universe::heap()->barrier_set()->resize_covered_region(cmr);

  CardTableModRefBS* _ct = (CardTableModRefBS*)Universe::heap()->barrier_set();
  assert (_ct->kind() == BarrierSet::CardTableModRef, "Sanity");

  // Verify that the start and end of this generation is the start of a card.
  // If this wasn't true, a single card could span more than one generation,
  // which would cause problems when we commit/uncommit memory, and when we
  // clear and dirty cards.
  guarantee(_ct->is_card_aligned(_reserved.start()), "generation must be card aligned");
  if (_reserved.end() != Universe::heap()->reserved_region().end()) {
    // Don't check at the very end of the heap as we'll assert that we're probing off
    // the end if we try.
    guarantee(_ct->is_card_aligned(_reserved.end()), "generation must be card aligned");
  }

  //
  // ObjectSpace stuff
  //

  _object_space = new MutableSpace();

  if (_object_space == NULL)
    vm_exit_during_initialization("Could not allocate an old gen space");

124 125 126
  object_space()->initialize(cmr,
                             SpaceDecorator::Clear,
                             SpaceDecorator::Mangle);
D
duke 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

  _object_mark_sweep = new PSMarkSweepDecorator(_object_space, start_array(), MarkSweepDeadRatio);

  if (_object_mark_sweep == NULL)
    vm_exit_during_initialization("Could not complete allocation of old generation");

  // Update the start_array
  start_array()->set_covered_region(cmr);

  // Generation Counters, generation 'level', 1 subspace
  _gen_counters = new PSGenerationCounters(perf_data_name, level, 1,
                                           virtual_space());
  _space_counters = new SpaceCounters(perf_data_name, 0,
                                      virtual_space()->reserved_size(),
                                      _object_space, _gen_counters);
}

// Assume that the generation has been allocated if its
// reserved size is not 0.
bool  PSOldGen::is_allocated() {
  return virtual_space()->reserved_size() != 0;
}

void PSOldGen::precompact() {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  // Reset start array first.
  debug_only(if (!UseParallelOldGC || !VerifyParallelOldWithMarkSweep) {)
  start_array()->reset();
  debug_only(})

  object_mark_sweep()->precompact();

  // Now compact the young gen
  heap->young_gen()->precompact();
}

void PSOldGen::adjust_pointers() {
  object_mark_sweep()->adjust_pointers();
}

void PSOldGen::compact() {
  object_mark_sweep()->compact(ZapUnusedHeapArea);
}

void PSOldGen::move_and_update(ParCompactionManager* cm) {
  PSParallelCompact::move_and_update(cm, PSParallelCompact::old_space_id);
}

size_t PSOldGen::contiguous_available() const {
  return object_space()->free_in_bytes() + virtual_space()->uncommitted_size();
}

// Allocation. We report all successful allocations to the size policy
// Note that the perm gen does not use this method, and should not!
HeapWord* PSOldGen::allocate(size_t word_size, bool is_tlab) {
  assert_locked_or_safepoint(Heap_lock);
  HeapWord* res = allocate_noexpand(word_size, is_tlab);

  if (res == NULL) {
    res = expand_and_allocate(word_size, is_tlab);
  }

  // Allocations in the old generation need to be reported
  if (res != NULL) {
    ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    heap->size_policy()->tenured_allocation(word_size);
  }

  return res;
}

HeapWord* PSOldGen::expand_and_allocate(size_t word_size, bool is_tlab) {
  assert(!is_tlab, "TLAB's are not supported in PSOldGen");
  expand(word_size*HeapWordSize);
  if (GCExpandToAllocateDelayMillis > 0) {
    os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  }
  return allocate_noexpand(word_size, is_tlab);
}

HeapWord* PSOldGen::expand_and_cas_allocate(size_t word_size) {
  expand(word_size*HeapWordSize);
  if (GCExpandToAllocateDelayMillis > 0) {
    os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  }
  return cas_allocate_noexpand(word_size);
}

void PSOldGen::expand(size_t bytes) {
218 219 220
  if (bytes == 0) {
    return;
  }
D
duke 已提交
221 222 223 224
  MutexLocker x(ExpandHeap_lock);
  const size_t alignment = virtual_space()->alignment();
  size_t aligned_bytes  = align_size_up(bytes, alignment);
  size_t aligned_expand_bytes = align_size_up(MinHeapDeltaBytes, alignment);
225 226 227 228 229 230 231 232 233
  if (aligned_bytes == 0){
    // The alignment caused the number of bytes to wrap.  An expand_by(0) will
    // return true with the implication that and expansion was done when it
    // was not.  A call to expand implies a best effort to expand by "bytes"
    // but not a guarantee.  Align down to give a best effort.  This is likely
    // the most that the generation can expand since it has some capacity to
    // start with.
    aligned_bytes = align_size_down(bytes, alignment);
  }
D
duke 已提交
234 235 236 237 238 239 240 241 242 243 244 245

  bool success = false;
  if (aligned_expand_bytes > aligned_bytes) {
    success = expand_by(aligned_expand_bytes);
  }
  if (!success) {
    success = expand_by(aligned_bytes);
  }
  if (!success) {
    success = expand_to_reserved();
  }

246 247
  if (PrintGC && Verbose) {
    if (success && GC_locker::is_active()) {
D
duke 已提交
248 249 250 251 252 253 254 255
      gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
    }
  }
}

bool PSOldGen::expand_by(size_t bytes) {
  assert_lock_strong(ExpandHeap_lock);
  assert_locked_or_safepoint(Heap_lock);
256 257 258
  if (bytes == 0) {
    return true;  // That's what virtual_space()->expand_by(0) would return
  }
D
duke 已提交
259 260
  bool result = virtual_space()->expand_by(bytes);
  if (result) {
261 262 263 264 265 266 267 268 269 270 271 272 273
    if (ZapUnusedHeapArea) {
      // We need to mangle the newly expanded area. The memregion spans
      // end -> new_end, we assume that top -> end is already mangled.
      // Do the mangling before post_resize() is called because
      // the space is available for allocation after post_resize();
      HeapWord* const virtual_space_high = (HeapWord*) virtual_space()->high();
      assert(object_space()->end() < virtual_space_high,
        "Should be true before post_resize()");
      MemRegion mangle_region(object_space()->end(), virtual_space_high);
      // Note that the object space has not yet been updated to
      // coincede with the new underlying virtual space.
      SpaceMangler::mangle_region(mangle_region);
    }
D
duke 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
    post_resize();
    if (UsePerfData) {
      _space_counters->update_capacity();
      _gen_counters->update_all();
    }
  }

  if (result && Verbose && PrintGC) {
    size_t new_mem_size = virtual_space()->committed_size();
    size_t old_mem_size = new_mem_size - bytes;
    gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
                                       SIZE_FORMAT "K to "
                                       SIZE_FORMAT "K",
                    name(), old_mem_size/K, bytes/K, new_mem_size/K);
  }

  return result;
}

bool PSOldGen::expand_to_reserved() {
  assert_lock_strong(ExpandHeap_lock);
  assert_locked_or_safepoint(Heap_lock);

  bool result = true;
  const size_t remaining_bytes = virtual_space()->uncommitted_size();
  if (remaining_bytes > 0) {
    result = expand_by(remaining_bytes);
    DEBUG_ONLY(if (!result) warning("grow to reserve failed"));
  }
  return result;
}

void PSOldGen::shrink(size_t bytes) {
  assert_lock_strong(ExpandHeap_lock);
  assert_locked_or_safepoint(Heap_lock);

  size_t size = align_size_down(bytes, virtual_space()->alignment());
  if (size > 0) {
    assert_lock_strong(ExpandHeap_lock);
    virtual_space()->shrink_by(bytes);
    post_resize();

    if (Verbose && PrintGC) {
      size_t new_mem_size = virtual_space()->committed_size();
      size_t old_mem_size = new_mem_size + bytes;
      gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by "
                                         SIZE_FORMAT "K to "
                                         SIZE_FORMAT "K",
                      name(), old_mem_size/K, bytes/K, new_mem_size/K);
    }
  }
}

void PSOldGen::resize(size_t desired_free_space) {
  const size_t alignment = virtual_space()->alignment();
  const size_t size_before = virtual_space()->committed_size();
  size_t new_size = used_in_bytes() + desired_free_space;
  if (new_size < used_in_bytes()) {
    // Overflowed the addition.
    new_size = gen_size_limit();
  }
  // Adjust according to our min and max
  new_size = MAX2(MIN2(new_size, gen_size_limit()), min_gen_size());

  assert(gen_size_limit() >= reserved().byte_size(), "max new size problem?");
  new_size = align_size_up(new_size, alignment);

  const size_t current_size = capacity_in_bytes();

  if (PrintAdaptiveSizePolicy && Verbose) {
    gclog_or_tty->print_cr("AdaptiveSizePolicy::old generation size: "
      "desired free: " SIZE_FORMAT " used: " SIZE_FORMAT
      " new size: " SIZE_FORMAT " current size " SIZE_FORMAT
      " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
      desired_free_space, used_in_bytes(), new_size, current_size,
      gen_size_limit(), min_gen_size());
  }

  if (new_size == current_size) {
    // No change requested
    return;
  }
  if (new_size > current_size) {
    size_t change_bytes = new_size - current_size;
    expand(change_bytes);
  } else {
    size_t change_bytes = current_size - new_size;
    // shrink doesn't grab this lock, expand does. Is that right?
    MutexLocker x(ExpandHeap_lock);
    shrink(change_bytes);
  }

  if (PrintAdaptiveSizePolicy) {
    ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
    gclog_or_tty->print_cr("AdaptiveSizePolicy::old generation size: "
                  "collection: %d "
                  "(" SIZE_FORMAT ") -> (" SIZE_FORMAT ") ",
                  heap->total_collections(),
                  size_before, virtual_space()->committed_size());
  }
}

// NOTE! We need to be careful about resizing. During a GC, multiple
// allocators may be active during heap expansion. If we allow the
// heap resizing to become visible before we have correctly resized
// all heap related data structures, we may cause program failures.
void PSOldGen::post_resize() {
  // First construct a memregion representing the new size
  MemRegion new_memregion((HeapWord*)virtual_space()->low(),
    (HeapWord*)virtual_space()->high());
  size_t new_word_size = new_memregion.word_size();

  start_array()->set_covered_region(new_memregion);
  Universe::heap()->barrier_set()->resize_covered_region(new_memregion);

  HeapWord* const virtual_space_high = (HeapWord*) virtual_space()->high();

  // ALWAYS do this last!!
  object_space()->set_end(virtual_space_high);

  assert(new_word_size == heap_word_size(object_space()->capacity_in_bytes()),
    "Sanity");
}

size_t PSOldGen::gen_size_limit() {
  return _max_gen_size;
}

void PSOldGen::reset_after_change() {
  ShouldNotReachHere();
  return;
}

size_t PSOldGen::available_for_expansion() {
  ShouldNotReachHere();
  return 0;
}

size_t PSOldGen::available_for_contraction() {
  ShouldNotReachHere();
  return 0;
}

void PSOldGen::print() const { print_on(tty);}
void PSOldGen::print_on(outputStream* st) const {
  st->print(" %-15s", name());
  if (PrintGCDetails && Verbose) {
    st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
                capacity_in_bytes(), used_in_bytes());
  } else {
    st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
                capacity_in_bytes()/K, used_in_bytes()/K);
  }
  st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
                virtual_space()->low_boundary(),
                virtual_space()->high(),
                virtual_space()->high_boundary());

  st->print("  object"); object_space()->print_on(st);
}

void PSOldGen::print_used_change(size_t prev_used) const {
  gclog_or_tty->print(" [%s:", name());
  gclog_or_tty->print(" "  SIZE_FORMAT "K"
                      "->" SIZE_FORMAT "K"
                      "("  SIZE_FORMAT "K)",
                      prev_used / K, used_in_bytes() / K,
                      capacity_in_bytes() / K);
  gclog_or_tty->print("]");
}

void PSOldGen::update_counters() {
  if (UsePerfData) {
    _space_counters->update_all();
    _gen_counters->update_all();
  }
}

#ifndef PRODUCT

void PSOldGen::space_invariants() {
  assert(object_space()->end() == (HeapWord*) virtual_space()->high(),
    "Space invariant");
  assert(object_space()->bottom() == (HeapWord*) virtual_space()->low(),
    "Space invariant");
  assert(virtual_space()->low_boundary() <= virtual_space()->low(),
    "Space invariant");
  assert(virtual_space()->high_boundary() >= virtual_space()->high(),
    "Space invariant");
  assert(virtual_space()->low_boundary() == (char*) _reserved.start(),
    "Space invariant");
  assert(virtual_space()->high_boundary() == (char*) _reserved.end(),
    "Space invariant");
  assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
    "Space invariant");
}
#endif

void PSOldGen::verify(bool allow_dirty) {
  object_space()->verify(allow_dirty);
}
class VerifyObjectStartArrayClosure : public ObjectClosure {
  PSOldGen* _gen;
  ObjectStartArray* _start_array;

 public:
  VerifyObjectStartArrayClosure(PSOldGen* gen, ObjectStartArray* start_array) :
    _gen(gen), _start_array(start_array) { }

  virtual void do_object(oop obj) {
    HeapWord* test_addr = (HeapWord*)obj + 1;
    guarantee(_start_array->object_start(test_addr) == (HeapWord*)obj, "ObjectStartArray cannot find start of object");
    guarantee(_start_array->is_block_allocated((HeapWord*)obj), "ObjectStartArray missing block allocation");
  }
};

void PSOldGen::verify_object_start_array() {
  VerifyObjectStartArrayClosure check( this, &_start_array );
  object_iterate(&check);
}
495 496 497 498 499 500 501

#ifndef PRODUCT
void PSOldGen::record_spaces_top() {
  assert(ZapUnusedHeapArea, "Not mangling unused space");
  object_space()->set_top_for_allocations();
}
#endif