mutableNUMASpace.cpp 28.1 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790

/*
 * Copyright 2006-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_mutableNUMASpace.cpp.incl"


MutableNUMASpace::MutableNUMASpace() {
  _lgrp_spaces = new (ResourceObj::C_HEAP) GrowableArray<LGRPSpace*>(0, true);
  _page_size = os::vm_page_size();
  _adaptation_cycles = 0;
  _samples_count = 0;
  update_layout(true);
}

MutableNUMASpace::~MutableNUMASpace() {
  for (int i = 0; i < lgrp_spaces()->length(); i++) {
    delete lgrp_spaces()->at(i);
  }
  delete lgrp_spaces();
}

void MutableNUMASpace::mangle_unused_area() {
  for (int i = 0; i < lgrp_spaces()->length(); i++) {
    LGRPSpace *ls = lgrp_spaces()->at(i);
    MutableSpace *s = ls->space();
    HeapWord *top = MAX2((HeapWord*)round_down((intptr_t)s->top(), page_size()), s->bottom());
    if (top < s->end()) {
      ls->add_invalid_region(MemRegion(top, s->end()));
    }
    s->mangle_unused_area();
  }
}

// There may be unallocated holes in the middle chunks
// that should be filled with dead objects to ensure parseability.
void MutableNUMASpace::ensure_parsability() {
  for (int i = 0; i < lgrp_spaces()->length(); i++) {
    LGRPSpace *ls = lgrp_spaces()->at(i);
    MutableSpace *s = ls->space();
    if (!s->contains(top())) {
      if (s->free_in_words() > 0) {
        SharedHeap::fill_region_with_object(MemRegion(s->top(), s->end()));
        size_t area_touched_words = pointer_delta(s->end(), s->top(), sizeof(HeapWordSize));
#ifndef ASSERT
        if (!ZapUnusedHeapArea) {
          area_touched_words = MIN2((size_t)align_object_size(typeArrayOopDesc::header_size(T_INT)),
                                    area_touched_words);
        }
#endif
        MemRegion invalid;
        HeapWord *crossing_start = (HeapWord*)round_to((intptr_t)s->top(), os::vm_page_size());
        HeapWord *crossing_end = (HeapWord*)round_to((intptr_t)(s->top() + area_touched_words),
                                                     os::vm_page_size());
        if (crossing_start != crossing_end) {
          // If object header crossed a small page boundary we mark the area
          // as invalid rounding it to a page_size().
          HeapWord *start = MAX2((HeapWord*)round_down((intptr_t)s->top(), page_size()), s->bottom());
          HeapWord *end = MIN2((HeapWord*)round_to((intptr_t)(s->top() + area_touched_words), page_size()),
                               s->end());
          invalid = MemRegion(start, end);
        }

        ls->add_invalid_region(invalid);
        s->set_top(s->end());
      }
    } else {
#ifdef ASSERT
      MemRegion invalid(s->top(), s->end());
      ls->add_invalid_region(invalid);
#else
      if (ZapUnusedHeapArea) {
        MemRegion invalid(s->top(), s->end());
        ls->add_invalid_region(invalid);
      } else break;
#endif
    }
  }
}

size_t MutableNUMASpace::used_in_words() const {
  size_t s = 0;
  for (int i = 0; i < lgrp_spaces()->length(); i++) {
    s += lgrp_spaces()->at(i)->space()->used_in_words();
  }
  return s;
}

size_t MutableNUMASpace::free_in_words() const {
  size_t s = 0;
  for (int i = 0; i < lgrp_spaces()->length(); i++) {
    s += lgrp_spaces()->at(i)->space()->free_in_words();
  }
  return s;
}


size_t MutableNUMASpace::tlab_capacity(Thread *thr) const {
  guarantee(thr != NULL, "No thread");
  int lgrp_id = thr->lgrp_id();
  assert(lgrp_id != -1, "No lgrp_id set");
  int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
  if (i == -1) {
    return 0;
  }
  return lgrp_spaces()->at(i)->space()->capacity_in_bytes();
}

size_t MutableNUMASpace::unsafe_max_tlab_alloc(Thread *thr) const {
  guarantee(thr != NULL, "No thread");
  int lgrp_id = thr->lgrp_id();
  assert(lgrp_id != -1, "No lgrp_id set");
  int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
  if (i == -1) {
    return 0;
  }
  return lgrp_spaces()->at(i)->space()->free_in_bytes();
}

// Check if the NUMA topology has changed. Add and remove spaces if needed.
// The update can be forced by setting the force parameter equal to true.
bool MutableNUMASpace::update_layout(bool force) {
  // Check if the topology had changed.
  bool changed = os::numa_topology_changed();
  if (force || changed) {
    // Compute lgrp intersection. Add/remove spaces.
    int lgrp_limit = (int)os::numa_get_groups_num();
    int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit);
    int lgrp_num = (int)os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
    assert(lgrp_num > 0, "There should be at least one locality group");
    // Add new spaces for the new nodes
    for (int i = 0; i < lgrp_num; i++) {
      bool found = false;
      for (int j = 0; j < lgrp_spaces()->length(); j++) {
        if (lgrp_spaces()->at(j)->lgrp_id() == lgrp_ids[i]) {
          found = true;
          break;
        }
      }
      if (!found) {
        lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i]));
      }
    }

    // Remove spaces for the removed nodes.
    for (int i = 0; i < lgrp_spaces()->length();) {
      bool found = false;
      for (int j = 0; j < lgrp_num; j++) {
        if (lgrp_spaces()->at(i)->lgrp_id() == lgrp_ids[j]) {
          found = true;
          break;
        }
      }
      if (!found) {
        delete lgrp_spaces()->at(i);
        lgrp_spaces()->remove_at(i);
      } else {
        i++;
      }
    }

    FREE_C_HEAP_ARRAY(int, lgrp_ids);

    if (changed) {
      for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
        thread->set_lgrp_id(-1);
      }
    }
    return true;
  }
  return false;
}

// Bias region towards the first-touching lgrp. Set the right page sizes.
void MutableNUMASpace::bias_region(MemRegion mr) {
  HeapWord *start = (HeapWord*)round_to((intptr_t)mr.start(), page_size());
  HeapWord *end = (HeapWord*)round_down((intptr_t)mr.end(), page_size());
  if (end > start) {
    MemRegion aligned_region(start, end);
    assert((intptr_t)aligned_region.start()     % page_size() == 0 &&
           (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment");
    assert(region().contains(aligned_region), "Sanity");
    os::free_memory((char*)aligned_region.start(), aligned_region.byte_size());
    os::realign_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size());
    os::numa_make_local((char*)aligned_region.start(), aligned_region.byte_size());
  }
}

// Free all pages in the region.
void MutableNUMASpace::free_region(MemRegion mr) {
  HeapWord *start = (HeapWord*)round_to((intptr_t)mr.start(), page_size());
  HeapWord *end = (HeapWord*)round_down((intptr_t)mr.end(), page_size());
  if (end > start) {
    MemRegion aligned_region(start, end);
    assert((intptr_t)aligned_region.start()     % page_size() == 0 &&
           (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment");
    assert(region().contains(aligned_region), "Sanity");
    os::free_memory((char*)aligned_region.start(), aligned_region.byte_size());
  }
}

// Update space layout. Perform adaptation.
void MutableNUMASpace::update() {
  if (update_layout(false)) {
    // If the topology has changed, make all chunks zero-sized.
    for (int i = 0; i < lgrp_spaces()->length(); i++) {
      MutableSpace *s = lgrp_spaces()->at(i)->space();
      s->set_end(s->bottom());
      s->set_top(s->bottom());
    }
    initialize(region(), true);
  } else {
    bool should_initialize = false;
    for (int i = 0; i < lgrp_spaces()->length(); i++) {
      if (!lgrp_spaces()->at(i)->invalid_region().is_empty()) {
        should_initialize = true;
        break;
      }
    }

    if (should_initialize ||
        (UseAdaptiveNUMAChunkSizing && adaptation_cycles() < samples_count())) {
      initialize(region(), true);
    }
  }

  if (NUMAStats) {
    for (int i = 0; i < lgrp_spaces()->length(); i++) {
      lgrp_spaces()->at(i)->accumulate_statistics(page_size());
    }
  }

  scan_pages(NUMAPageScanRate);
}

// Scan pages. Free pages that have smaller size or wrong placement.
void MutableNUMASpace::scan_pages(size_t page_count)
{
  size_t pages_per_chunk = page_count / lgrp_spaces()->length();
  if (pages_per_chunk > 0) {
    for (int i = 0; i < lgrp_spaces()->length(); i++) {
      LGRPSpace *ls = lgrp_spaces()->at(i);
      ls->scan_pages(page_size(), pages_per_chunk);
    }
  }
}

// Accumulate statistics about the allocation rate of each lgrp.
void MutableNUMASpace::accumulate_statistics() {
  if (UseAdaptiveNUMAChunkSizing) {
    for (int i = 0; i < lgrp_spaces()->length(); i++) {
      lgrp_spaces()->at(i)->sample();
    }
    increment_samples_count();
  }

  if (NUMAStats) {
    for (int i = 0; i < lgrp_spaces()->length(); i++) {
      lgrp_spaces()->at(i)->accumulate_statistics(page_size());
    }
  }
}

// Get the current size of a chunk.
// This function computes the size of the chunk based on the
// difference between chunk ends. This allows it to work correctly in
// case the whole space is resized and during the process of adaptive
// chunk resizing.
size_t MutableNUMASpace::current_chunk_size(int i) {
  HeapWord *cur_end, *prev_end;
  if (i == 0) {
    prev_end = bottom();
  } else {
    prev_end = lgrp_spaces()->at(i - 1)->space()->end();
  }
  if (i == lgrp_spaces()->length() - 1) {
    cur_end = end();
  } else {
    cur_end = lgrp_spaces()->at(i)->space()->end();
  }
  if (cur_end > prev_end) {
    return pointer_delta(cur_end, prev_end, sizeof(char));
  }
  return 0;
}

// Return the default chunk size by equally diving the space.
// page_size() aligned.
size_t MutableNUMASpace::default_chunk_size() {
  return base_space_size() / lgrp_spaces()->length() * page_size();
}

// Produce a new chunk size. page_size() aligned.
size_t MutableNUMASpace::adaptive_chunk_size(int i, size_t limit) {
  size_t pages_available = base_space_size();
  for (int j = 0; j < i; j++) {
    pages_available -= round_down(current_chunk_size(j), page_size()) / page_size();
  }
  pages_available -= lgrp_spaces()->length() - i - 1;
  assert(pages_available > 0, "No pages left");
  float alloc_rate = 0;
  for (int j = i; j < lgrp_spaces()->length(); j++) {
    alloc_rate += lgrp_spaces()->at(j)->alloc_rate()->average();
  }
  size_t chunk_size = 0;
  if (alloc_rate > 0) {
    LGRPSpace *ls = lgrp_spaces()->at(i);
    chunk_size = (size_t)(ls->alloc_rate()->average() * pages_available / alloc_rate) * page_size();
  }
  chunk_size = MAX2(chunk_size, page_size());

  if (limit > 0) {
    limit = round_down(limit, page_size());
    if (chunk_size > current_chunk_size(i)) {
      chunk_size = MIN2((off_t)chunk_size, (off_t)current_chunk_size(i) + (off_t)limit);
    } else {
      chunk_size = MAX2((off_t)chunk_size, (off_t)current_chunk_size(i) - (off_t)limit);
    }
  }
  assert(chunk_size <= pages_available * page_size(), "Chunk size out of range");
  return chunk_size;
}


// Return the bottom_region and the top_region. Align them to page_size() boundary.
// |------------------new_region---------------------------------|
// |----bottom_region--|---intersection---|------top_region------|
void MutableNUMASpace::select_tails(MemRegion new_region, MemRegion intersection,
                                    MemRegion* bottom_region, MemRegion *top_region) {
  // Is there bottom?
  if (new_region.start() < intersection.start()) { // Yes
    // Try to coalesce small pages into a large one.
    if (UseLargePages && page_size() >= os::large_page_size()) {
      HeapWord* p = (HeapWord*)round_to((intptr_t) intersection.start(), os::large_page_size());
      if (new_region.contains(p)
          && pointer_delta(p, new_region.start(), sizeof(char)) >= os::large_page_size()) {
        if (intersection.contains(p)) {
          intersection = MemRegion(p, intersection.end());
        } else {
          intersection = MemRegion(p, p);
        }
      }
    }
    *bottom_region = MemRegion(new_region.start(), intersection.start());
  } else {
    *bottom_region = MemRegion();
  }

  // Is there top?
  if (intersection.end() < new_region.end()) { // Yes
    // Try to coalesce small pages into a large one.
    if (UseLargePages && page_size() >= os::large_page_size()) {
      HeapWord* p = (HeapWord*)round_down((intptr_t) intersection.end(), os::large_page_size());
      if (new_region.contains(p)
          && pointer_delta(new_region.end(), p, sizeof(char)) >= os::large_page_size()) {
        if (intersection.contains(p)) {
          intersection = MemRegion(intersection.start(), p);
        } else {
          intersection = MemRegion(p, p);
        }
      }
    }
    *top_region = MemRegion(intersection.end(), new_region.end());
  } else {
    *top_region = MemRegion();
  }
}

// Try to merge the invalid region with the bottom or top region by decreasing
// the intersection area. Return the invalid_region aligned to the page_size()
// boundary if it's inside the intersection. Return non-empty invalid_region
// if it lies inside the intersection (also page-aligned).
// |------------------new_region---------------------------------|
// |----------------|-------invalid---|--------------------------|
// |----bottom_region--|---intersection---|------top_region------|
void MutableNUMASpace::merge_regions(MemRegion new_region, MemRegion* intersection,
                                     MemRegion *invalid_region) {
  if (intersection->start() >= invalid_region->start() && intersection->contains(invalid_region->end())) {
    *intersection = MemRegion(invalid_region->end(), intersection->end());
    *invalid_region = MemRegion();
  } else
    if (intersection->end() <= invalid_region->end() && intersection->contains(invalid_region->start())) {
      *intersection = MemRegion(intersection->start(), invalid_region->start());
      *invalid_region = MemRegion();
    } else
      if (intersection->equals(*invalid_region) || invalid_region->contains(*intersection)) {
        *intersection = MemRegion(new_region.start(), new_region.start());
        *invalid_region = MemRegion();
      } else
        if (intersection->contains(invalid_region)) {
            // That's the only case we have to make an additional bias_region() call.
            HeapWord* start = invalid_region->start();
            HeapWord* end = invalid_region->end();
            if (UseLargePages && page_size() >= os::large_page_size()) {
              HeapWord *p = (HeapWord*)round_down((intptr_t) start, os::large_page_size());
              if (new_region.contains(p)) {
                start = p;
              }
              p = (HeapWord*)round_to((intptr_t) end, os::large_page_size());
              if (new_region.contains(end)) {
                end = p;
              }
            }
            if (intersection->start() > start) {
              *intersection = MemRegion(start, intersection->end());
            }
            if (intersection->end() < end) {
              *intersection = MemRegion(intersection->start(), end);
            }
            *invalid_region = MemRegion(start, end);
        }
}

void MutableNUMASpace::initialize(MemRegion mr, bool clear_space) {
  assert(clear_space, "Reallocation will destory data!");
  assert(lgrp_spaces()->length() > 0, "There should be at least one space");

  MemRegion old_region = region(), new_region;
  set_bottom(mr.start());
  set_end(mr.end());
  MutableSpace::set_top(bottom());

  // Compute chunk sizes
  size_t prev_page_size = page_size();
  set_page_size(UseLargePages ? os::large_page_size() : os::vm_page_size());
  HeapWord* rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size());
  HeapWord* rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size());
  size_t base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();

  // Try small pages if the chunk size is too small
  if (base_space_size_pages / lgrp_spaces()->length() == 0
      && page_size() > (size_t)os::vm_page_size()) {
    set_page_size(os::vm_page_size());
    rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size());
    rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size());
    base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();
  }
  guarantee(base_space_size_pages / lgrp_spaces()->length() > 0, "Space too small");
  set_base_space_size(base_space_size_pages);

  // Handle space resize
  MemRegion top_region, bottom_region;
  if (!old_region.equals(region())) {
    new_region = MemRegion(rounded_bottom, rounded_end);
    MemRegion intersection = new_region.intersection(old_region);
    if (intersection.start() == NULL ||
        intersection.end() == NULL   ||
        prev_page_size > page_size()) { // If the page size got smaller we have to change
                                        // the page size preference for the whole space.
      intersection = MemRegion(new_region.start(), new_region.start());
    }
    select_tails(new_region, intersection, &bottom_region, &top_region);
    bias_region(bottom_region);
    bias_region(top_region);
  }

  // Check if the space layout has changed significantly?
  // This happens when the space has been resized so that either head or tail
  // chunk became less than a page.
  bool layout_valid = UseAdaptiveNUMAChunkSizing          &&
                      current_chunk_size(0) > page_size() &&
                      current_chunk_size(lgrp_spaces()->length() - 1) > page_size();


  for (int i = 0; i < lgrp_spaces()->length(); i++) {
    LGRPSpace *ls = lgrp_spaces()->at(i);
    MutableSpace *s = ls->space();
    old_region = s->region();

    size_t chunk_byte_size = 0, old_chunk_byte_size = 0;
    if (i < lgrp_spaces()->length() - 1) {
      if (!UseAdaptiveNUMAChunkSizing                                ||
          (UseAdaptiveNUMAChunkSizing && NUMAChunkResizeWeight == 0) ||
           samples_count() < AdaptiveSizePolicyReadyThreshold) {
        // No adaptation. Divide the space equally.
        chunk_byte_size = default_chunk_size();
      } else
        if (!layout_valid || NUMASpaceResizeRate == 0) {
          // Fast adaptation. If no space resize rate is set, resize
          // the chunks instantly.
          chunk_byte_size = adaptive_chunk_size(i, 0);
        } else {
          // Slow adaptation. Resize the chunks moving no more than
          // NUMASpaceResizeRate bytes per collection.
          size_t limit = NUMASpaceResizeRate /
                         (lgrp_spaces()->length() * (lgrp_spaces()->length() + 1) / 2);
          chunk_byte_size = adaptive_chunk_size(i, MAX2(limit * (i + 1), page_size()));
        }

      assert(chunk_byte_size >= page_size(), "Chunk size too small");
      assert(chunk_byte_size <= capacity_in_bytes(), "Sanity check");
    }

    if (i == 0) { // Bottom chunk
      if (i != lgrp_spaces()->length() - 1) {
        new_region = MemRegion(bottom(), rounded_bottom + (chunk_byte_size >> LogHeapWordSize));
      } else {
        new_region = MemRegion(bottom(), end());
      }
    } else
      if (i < lgrp_spaces()->length() - 1) { // Middle chunks
        MutableSpace *ps = lgrp_spaces()->at(i - 1)->space();
        new_region = MemRegion(ps->end(),
                               ps->end() + (chunk_byte_size >> LogHeapWordSize));
      } else { // Top chunk
        MutableSpace *ps = lgrp_spaces()->at(i - 1)->space();
        new_region = MemRegion(ps->end(), end());
      }
    guarantee(region().contains(new_region), "Region invariant");


    // The general case:
    // |---------------------|--invalid---|--------------------------|
    // |------------------new_region---------------------------------|
    // |----bottom_region--|---intersection---|------top_region------|
    //                     |----old_region----|
    // The intersection part has all pages in place we don't need to migrate them.
    // Pages for the top and bottom part should be freed and then reallocated.

    MemRegion intersection = old_region.intersection(new_region);

    if (intersection.start() == NULL || intersection.end() == NULL) {
      intersection = MemRegion(new_region.start(), new_region.start());
    }

    MemRegion invalid_region = ls->invalid_region().intersection(new_region);
    if (!invalid_region.is_empty()) {
      merge_regions(new_region, &intersection, &invalid_region);
      free_region(invalid_region);
    }
    select_tails(new_region, intersection, &bottom_region, &top_region);
    free_region(bottom_region);
    free_region(top_region);

    // If we clear the region, we would mangle it in debug. That would cause page
    // allocation in a different place. Hence setting the top directly.
    s->initialize(new_region, false);
    s->set_top(s->bottom());

    ls->set_invalid_region(MemRegion());

    set_adaptation_cycles(samples_count());
  }
}

// Set the top of the whole space.
// Mark the the holes in chunks below the top() as invalid.
void MutableNUMASpace::set_top(HeapWord* value) {
  bool found_top = false;
  for (int i = 0; i < lgrp_spaces()->length(); i++) {
    LGRPSpace *ls = lgrp_spaces()->at(i);
    MutableSpace *s = ls->space();
    HeapWord *top = MAX2((HeapWord*)round_down((intptr_t)s->top(), page_size()), s->bottom());

    if (s->contains(value)) {
      if (top < value && top < s->end()) {
        ls->add_invalid_region(MemRegion(top, value));
      }
      s->set_top(value);
      found_top = true;
    } else {
        if (found_top) {
            s->set_top(s->bottom());
        } else {
            if (top < s->end()) {
              ls->add_invalid_region(MemRegion(top, s->end()));
            }
            s->set_top(s->end());
        }
    }
  }
  MutableSpace::set_top(value);
}

void MutableNUMASpace::clear() {
  MutableSpace::set_top(bottom());
  for (int i = 0; i < lgrp_spaces()->length(); i++) {
    lgrp_spaces()->at(i)->space()->clear();
  }
}

HeapWord* MutableNUMASpace::allocate(size_t size) {
  int lgrp_id = Thread::current()->lgrp_id();
  if (lgrp_id == -1) {
    lgrp_id = os::numa_get_group_id();
    Thread::current()->set_lgrp_id(lgrp_id);
  }

  int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);

  // It is possible that a new CPU has been hotplugged and
  // we haven't reshaped the space accordingly.
  if (i == -1) {
    i = os::random() % lgrp_spaces()->length();
  }

  MutableSpace *s = lgrp_spaces()->at(i)->space();
  HeapWord *p = s->allocate(size);

  if (p != NULL && s->free_in_words() < (size_t)oopDesc::header_size()) {
    s->set_top(s->top() - size);
    p = NULL;
  }
  if (p != NULL) {
    if (top() < s->top()) { // Keep _top updated.
      MutableSpace::set_top(s->top());
    }
  }
  // Make the page allocation happen here.
  if (p != NULL) {
    for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) {
      *(int*)i = 0;
    }
  }

  return p;
}

// This version is lock-free.
HeapWord* MutableNUMASpace::cas_allocate(size_t size) {
  int lgrp_id = Thread::current()->lgrp_id();
  if (lgrp_id == -1) {
    lgrp_id = os::numa_get_group_id();
    Thread::current()->set_lgrp_id(lgrp_id);
  }

  int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
  // It is possible that a new CPU has been hotplugged and
  // we haven't reshaped the space accordingly.
  if (i == -1) {
    i = os::random() % lgrp_spaces()->length();
  }
  MutableSpace *s = lgrp_spaces()->at(i)->space();
  HeapWord *p = s->cas_allocate(size);
  if (p != NULL && s->free_in_words() < (size_t)oopDesc::header_size()) {
    if (s->cas_deallocate(p, size)) {
      // We were the last to allocate and created a fragment less than
      // a minimal object.
      p = NULL;
    }
  }
  if (p != NULL) {
    HeapWord* cur_top, *cur_chunk_top = p + size;
    while ((cur_top = top()) < cur_chunk_top) { // Keep _top updated.
      if (Atomic::cmpxchg_ptr(cur_chunk_top, top_addr(), cur_top) == cur_top) {
        break;
      }
    }
  }

  // Make the page allocation happen here.
  if (p != NULL) {
    for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) {
      *(int*)i = 0;
    }
  }
  return p;
}

void MutableNUMASpace::print_short_on(outputStream* st) const {
  MutableSpace::print_short_on(st);
  st->print(" (");
  for (int i = 0; i < lgrp_spaces()->length(); i++) {
    st->print("lgrp %d: ", lgrp_spaces()->at(i)->lgrp_id());
    lgrp_spaces()->at(i)->space()->print_short_on(st);
    if (i < lgrp_spaces()->length() - 1) {
      st->print(", ");
    }
  }
  st->print(")");
}

void MutableNUMASpace::print_on(outputStream* st) const {
  MutableSpace::print_on(st);
  for (int i = 0; i < lgrp_spaces()->length(); i++) {
    LGRPSpace *ls = lgrp_spaces()->at(i);
    st->print("    lgrp %d", ls->lgrp_id());
    ls->space()->print_on(st);
    if (NUMAStats) {
      st->print("    local/remote/unbiased/uncommitted: %dK/%dK/%dK/%dK, large/small pages: %d/%d\n",
                ls->space_stats()->_local_space / K,
                ls->space_stats()->_remote_space / K,
                ls->space_stats()->_unbiased_space / K,
                ls->space_stats()->_uncommited_space / K,
                ls->space_stats()->_large_pages,
                ls->space_stats()->_small_pages);
    }
  }
}

void MutableNUMASpace::verify(bool allow_dirty) const {
 for (int i = 0; i < lgrp_spaces()->length(); i++) {
    lgrp_spaces()->at(i)->space()->verify(allow_dirty);
  }
}

// Scan pages and gather stats about page placement and size.
void MutableNUMASpace::LGRPSpace::accumulate_statistics(size_t page_size) {
  clear_space_stats();
  char *start = (char*)round_to((intptr_t) space()->bottom(), page_size);
  char* end = (char*)round_down((intptr_t) space()->end(), page_size);
  if (start < end) {
    for (char *p = start; p < end;) {
      os::page_info info;
      if (os::get_page_info(p, &info)) {
        if (info.size > 0) {
          if (info.size > (size_t)os::vm_page_size()) {
            space_stats()->_large_pages++;
          } else {
            space_stats()->_small_pages++;
          }
          if (info.lgrp_id == lgrp_id()) {
            space_stats()->_local_space += info.size;
          } else {
            space_stats()->_remote_space += info.size;
          }
          p += info.size;
        } else {
          p += os::vm_page_size();
          space_stats()->_uncommited_space += os::vm_page_size();
        }
      } else {
        return;
      }
    }
  }
  space_stats()->_unbiased_space = pointer_delta(start, space()->bottom(), sizeof(char)) +
                                   pointer_delta(space()->end(), end, sizeof(char));

}

// Scan page_count pages and verify if they have the right size and right placement.
// If invalid pages are found they are freed in hope that subsequent reallocation
// will be more successful.
void MutableNUMASpace::LGRPSpace::scan_pages(size_t page_size, size_t page_count)
{
  char* range_start = (char*)round_to((intptr_t) space()->bottom(), page_size);
  char* range_end = (char*)round_down((intptr_t) space()->end(), page_size);

  if (range_start > last_page_scanned() || last_page_scanned() >= range_end) {
    set_last_page_scanned(range_start);
  }

  char *scan_start = last_page_scanned();
  char* scan_end = MIN2(scan_start + page_size * page_count, range_end);

  os::page_info page_expected, page_found;
  page_expected.size = page_size;
  page_expected.lgrp_id = lgrp_id();

  char *s = scan_start;
  while (s < scan_end) {
    char *e = os::scan_pages(s, (char*)scan_end, &page_expected, &page_found);
    if (e == NULL) {
      break;
    }
    if (e != scan_end) {
      if ((page_expected.size != page_size || page_expected.lgrp_id != lgrp_id())
          && page_expected.size != 0) {
        os::free_memory(s, pointer_delta(e, s, sizeof(char)));
      }
      page_expected = page_found;
    }
    s = e;
  }

  set_last_page_scanned(scan_end);
}