connode.cpp 49.7 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// Optimization - Graph Style

#include "incls/_precompiled.incl"
#include "incls/_connode.cpp.incl"

//=============================================================================
//------------------------------hash-------------------------------------------
uint ConNode::hash() const {
  return (uintptr_t)in(TypeFunc::Control) + _type->hash();
}

//------------------------------make-------------------------------------------
ConNode *ConNode::make( Compile* C, const Type *t ) {
  switch( t->basic_type() ) {
  case T_INT:       return new (C, 1) ConINode( t->is_int() );
  case T_LONG:      return new (C, 1) ConLNode( t->is_long() );
  case T_FLOAT:     return new (C, 1) ConFNode( t->is_float_constant() );
  case T_DOUBLE:    return new (C, 1) ConDNode( t->is_double_constant() );
  case T_VOID:      return new (C, 1) ConNode ( Type::TOP );
  case T_OBJECT:    return new (C, 1) ConPNode( t->is_oopptr() );
45
  case T_ARRAY:     return new (C, 1) ConPNode( t->is_aryptr() );
D
duke 已提交
46
  case T_ADDRESS:   return new (C, 1) ConPNode( t->is_ptr() );
47
  case T_NARROWOOP: return new (C, 1) ConNNode( t->is_narrowoop() );
D
duke 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    // Expected cases:  TypePtr::NULL_PTR, any is_rawptr()
    // Also seen: AnyPtr(TopPTR *+top); from command line:
    //   r -XX:+PrintOpto -XX:CIStart=285 -XX:+CompileTheWorld -XX:CompileTheWorldStartAt=660
    // %%%% Stop using TypePtr::NULL_PTR to represent nulls:  use either TypeRawPtr::NULL_PTR
    // or else TypeOopPtr::NULL_PTR.  Then set Type::_basic_type[AnyPtr] = T_ILLEGAL
  }
  ShouldNotReachHere();
  return NULL;
}

//=============================================================================
/*
The major change is for CMoveP and StrComp.  They have related but slightly
different problems.  They both take in TWO oops which are both null-checked
independently before the using Node.  After CCP removes the CastPP's they need
to pick up the guarding test edge - in this case TWO control edges.  I tried
various solutions, all have problems:

(1) Do nothing.  This leads to a bug where we hoist a Load from a CMoveP or a
StrComp above a guarding null check.  I've seen both cases in normal -Xcomp
testing.

(2) Plug the control edge from 1 of the 2 oops in.  Apparent problem here is
to figure out which test post-dominates.  The real problem is that it doesn't
matter which one you pick.  After you pick up, the dominating-test elider in
IGVN can remove the test and allow you to hoist up to the dominating test on
T
twisti 已提交
74
the chosen oop bypassing the test on the not-chosen oop.  Seen in testing.
D
duke 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
Oops.

(3) Leave the CastPP's in.  This makes the graph more accurate in some sense;
we get to keep around the knowledge that an oop is not-null after some test.
Alas, the CastPP's interfere with GVN (some values are the regular oop, some
are the CastPP of the oop, all merge at Phi's which cannot collapse, etc).
This cost us 10% on SpecJVM, even when I removed some of the more trivial
cases in the optimizer.  Removing more useless Phi's started allowing Loads to
illegally float above null checks.  I gave up on this approach.

(4) Add BOTH control edges to both tests.  Alas, too much code knows that
control edges are in slot-zero ONLY.  Many quick asserts fail; no way to do
this one.  Note that I really want to allow the CMoveP to float and add both
control edges to the dependent Load op - meaning I can select early but I
cannot Load until I pass both tests.

(5) Do not hoist CMoveP and StrComp.  To this end I added the v-call
depends_only_on_test().  No obvious performance loss on Spec, but we are
clearly conservative on CMoveP (also so on StrComp but that's unlikely to
matter ever).

*/


//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node.
// Move constants to the right.
Node *CMoveNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if( in(0) && remove_dead_region(phase, can_reshape) ) return this;
104 105
  // Don't bother trying to transform a dead node
  if( in(0) && in(0)->is_top() )  return NULL;
D
duke 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  assert( !phase->eqv(in(Condition), this) &&
          !phase->eqv(in(IfFalse), this) &&
          !phase->eqv(in(IfTrue), this), "dead loop in CMoveNode::Ideal" );
  if( phase->type(in(Condition)) == Type::TOP )
    return NULL; // return NULL when Condition is dead

  if( in(IfFalse)->is_Con() && !in(IfTrue)->is_Con() ) {
    if( in(Condition)->is_Bool() ) {
      BoolNode* b  = in(Condition)->as_Bool();
      BoolNode* b2 = b->negate(phase);
      return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
    }
  }
  return NULL;
}

//------------------------------is_cmove_id------------------------------------
// Helper function to check for CMOVE identity.  Shared with PhiNode::Identity
Node *CMoveNode::is_cmove_id( PhaseTransform *phase, Node *cmp, Node *t, Node *f, BoolNode *b ) {
  // Check for Cmp'ing and CMove'ing same values
  if( (phase->eqv(cmp->in(1),f) &&
       phase->eqv(cmp->in(2),t)) ||
      // Swapped Cmp is OK
      (phase->eqv(cmp->in(2),f) &&
       phase->eqv(cmp->in(1),t)) ) {
131 132 133 134
    // Give up this identity check for floating points because it may choose incorrect
    // value around 0.0 and -0.0
    if ( cmp->Opcode()==Op_CmpF || cmp->Opcode()==Op_CmpD )
      return NULL;
D
duke 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    // Check for "(t==f)?t:f;" and replace with "f"
    if( b->_test._test == BoolTest::eq )
      return f;
    // Allow the inverted case as well
    // Check for "(t!=f)?t:f;" and replace with "t"
    if( b->_test._test == BoolTest::ne )
      return t;
  }
  return NULL;
}

//------------------------------Identity---------------------------------------
// Conditional-move is an identity if both inputs are the same, or the test
// true or false.
Node *CMoveNode::Identity( PhaseTransform *phase ) {
  if( phase->eqv(in(IfFalse),in(IfTrue)) ) // C-moving identical inputs?
    return in(IfFalse);         // Then it doesn't matter
  if( phase->type(in(Condition)) == TypeInt::ZERO )
    return in(IfFalse);         // Always pick left(false) input
  if( phase->type(in(Condition)) == TypeInt::ONE )
    return in(IfTrue);          // Always pick right(true) input

  // Check for CMove'ing a constant after comparing against the constant.
  // Happens all the time now, since if we compare equality vs a constant in
  // the parser, we "know" the variable is constant on one path and we force
  // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
  // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
  // general in that we don't need constants.
  if( in(Condition)->is_Bool() ) {
    BoolNode *b = in(Condition)->as_Bool();
    Node *cmp = b->in(1);
    if( cmp->is_Cmp() ) {
      Node *id = is_cmove_id( phase, cmp, in(IfTrue), in(IfFalse), b );
      if( id ) return id;
    }
  }

  return this;
}

//------------------------------Value------------------------------------------
// Result is the meet of inputs
const Type *CMoveNode::Value( PhaseTransform *phase ) const {
  if( phase->type(in(Condition)) == Type::TOP )
    return Type::TOP;
  return phase->type(in(IfFalse))->meet(phase->type(in(IfTrue)));
}

//------------------------------make-------------------------------------------
// Make a correctly-flavored CMove.  Since _type is directly determined
// from the inputs we do not need to specify it here.
CMoveNode *CMoveNode::make( Compile *C, Node *c, Node *bol, Node *left, Node *right, const Type *t ) {
  switch( t->basic_type() ) {
  case T_INT:     return new (C, 4) CMoveINode( bol, left, right, t->is_int() );
  case T_FLOAT:   return new (C, 4) CMoveFNode( bol, left, right, t );
  case T_DOUBLE:  return new (C, 4) CMoveDNode( bol, left, right, t );
  case T_LONG:    return new (C, 4) CMoveLNode( bol, left, right, t->is_long() );
  case T_OBJECT:  return new (C, 4) CMovePNode( c, bol, left, right, t->is_oopptr() );
  case T_ADDRESS: return new (C, 4) CMovePNode( c, bol, left, right, t->is_ptr() );
194
  case T_NARROWOOP: return new (C, 4) CMoveNNode( c, bol, left, right, t );
D
duke 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
  default:
    ShouldNotReachHere();
    return NULL;
  }
}

//=============================================================================
//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node.
// Check for conversions to boolean
Node *CMoveINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Try generic ideal's first
  Node *x = CMoveNode::Ideal(phase, can_reshape);
  if( x ) return x;

  // If zero is on the left (false-case, no-move-case) it must mean another
  // constant is on the right (otherwise the shared CMove::Ideal code would
  // have moved the constant to the right).  This situation is bad for Intel
  // and a don't-care for Sparc.  It's bad for Intel because the zero has to
  // be manifested in a register with a XOR which kills flags, which are live
  // on input to the CMoveI, leading to a situation which causes excessive
  // spilling on Intel.  For Sparc, if the zero in on the left the Sparc will
  // zero a register via G0 and conditionally-move the other constant.  If the
  // zero is on the right, the Sparc will load the first constant with a
  // 13-bit set-lo and conditionally move G0.  See bug 4677505.
  if( phase->type(in(IfFalse)) == TypeInt::ZERO && !(phase->type(in(IfTrue)) == TypeInt::ZERO) ) {
    if( in(Condition)->is_Bool() ) {
      BoolNode* b  = in(Condition)->as_Bool();
      BoolNode* b2 = b->negate(phase);
      return make( phase->C, in(Control), phase->transform(b2), in(IfTrue), in(IfFalse), _type );
    }
  }

  // Now check for booleans
  int flip = 0;

  // Check for picking from zero/one
  if( phase->type(in(IfFalse)) == TypeInt::ZERO && phase->type(in(IfTrue)) == TypeInt::ONE ) {
    flip = 1 - flip;
  } else if( phase->type(in(IfFalse)) == TypeInt::ONE && phase->type(in(IfTrue)) == TypeInt::ZERO ) {
  } else return NULL;

  // Check for eq/ne test
  if( !in(1)->is_Bool() ) return NULL;
  BoolNode *bol = in(1)->as_Bool();
  if( bol->_test._test == BoolTest::eq ) {
  } else if( bol->_test._test == BoolTest::ne ) {
    flip = 1-flip;
  } else return NULL;

  // Check for vs 0 or 1
  if( !bol->in(1)->is_Cmp() ) return NULL;
  const CmpNode *cmp = bol->in(1)->as_Cmp();
  if( phase->type(cmp->in(2)) == TypeInt::ZERO ) {
  } else if( phase->type(cmp->in(2)) == TypeInt::ONE ) {
    // Allow cmp-vs-1 if the other input is bounded by 0-1
    if( phase->type(cmp->in(1)) != TypeInt::BOOL )
      return NULL;
    flip = 1 - flip;
  } else return NULL;

  // Convert to a bool (flipped)
  // Build int->bool conversion
#ifndef PRODUCT
  if( PrintOpto ) tty->print_cr("CMOV to I2B");
#endif
  Node *n = new (phase->C, 2) Conv2BNode( cmp->in(1) );
  if( flip )
    n = new (phase->C, 3) XorINode( phase->transform(n), phase->intcon(1) );

  return n;
}

//=============================================================================
//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node.
// Check for absolute value
Node *CMoveFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Try generic ideal's first
  Node *x = CMoveNode::Ideal(phase, can_reshape);
  if( x ) return x;

  int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
  int  phi_x_idx = 0;           // Index of phi input where to find naked x

  // Find the Bool
  if( !in(1)->is_Bool() ) return NULL;
  BoolNode *bol = in(1)->as_Bool();
  // Check bool sense
  switch( bol->_test._test ) {
  case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue;  break;
  case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
  case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue;  break;
  case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
  default:           return NULL;                           break;
  }

  // Find zero input of CmpF; the other input is being abs'd
  Node *cmpf = bol->in(1);
  if( cmpf->Opcode() != Op_CmpF ) return NULL;
  Node *X = NULL;
  bool flip = false;
  if( phase->type(cmpf->in(cmp_zero_idx)) == TypeF::ZERO ) {
    X = cmpf->in(3 - cmp_zero_idx);
  } else if (phase->type(cmpf->in(3 - cmp_zero_idx)) == TypeF::ZERO) {
    // The test is inverted, we should invert the result...
    X = cmpf->in(cmp_zero_idx);
    flip = true;
  } else {
    return NULL;
  }

  // If X is found on the appropriate phi input, find the subtract on the other
  if( X != in(phi_x_idx) ) return NULL;
  int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
  Node *sub = in(phi_sub_idx);

  // Allow only SubF(0,X) and fail out for all others; NegF is not OK
  if( sub->Opcode() != Op_SubF ||
      sub->in(2) != X ||
      phase->type(sub->in(1)) != TypeF::ZERO ) return NULL;

  Node *abs = new (phase->C, 2) AbsFNode( X );
  if( flip )
    abs = new (phase->C, 3) SubFNode(sub->in(1), phase->transform(abs));

  return abs;
}

//=============================================================================
//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node.
// Check for absolute value
Node *CMoveDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Try generic ideal's first
  Node *x = CMoveNode::Ideal(phase, can_reshape);
  if( x ) return x;

  int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
  int  phi_x_idx = 0;           // Index of phi input where to find naked x

  // Find the Bool
  if( !in(1)->is_Bool() ) return NULL;
  BoolNode *bol = in(1)->as_Bool();
  // Check bool sense
  switch( bol->_test._test ) {
  case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = IfTrue;  break;
  case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = IfFalse; break;
  case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = IfTrue;  break;
  case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = IfFalse; break;
  default:           return NULL;                           break;
  }

  // Find zero input of CmpD; the other input is being abs'd
  Node *cmpd = bol->in(1);
  if( cmpd->Opcode() != Op_CmpD ) return NULL;
  Node *X = NULL;
  bool flip = false;
  if( phase->type(cmpd->in(cmp_zero_idx)) == TypeD::ZERO ) {
    X = cmpd->in(3 - cmp_zero_idx);
  } else if (phase->type(cmpd->in(3 - cmp_zero_idx)) == TypeD::ZERO) {
    // The test is inverted, we should invert the result...
    X = cmpd->in(cmp_zero_idx);
    flip = true;
  } else {
    return NULL;
  }

  // If X is found on the appropriate phi input, find the subtract on the other
  if( X != in(phi_x_idx) ) return NULL;
  int phi_sub_idx = phi_x_idx == IfTrue ? IfFalse : IfTrue;
  Node *sub = in(phi_sub_idx);

  // Allow only SubD(0,X) and fail out for all others; NegD is not OK
  if( sub->Opcode() != Op_SubD ||
      sub->in(2) != X ||
      phase->type(sub->in(1)) != TypeD::ZERO ) return NULL;

  Node *abs = new (phase->C, 2) AbsDNode( X );
  if( flip )
    abs = new (phase->C, 3) SubDNode(sub->in(1), phase->transform(abs));

  return abs;
}


//=============================================================================
// If input is already higher or equal to cast type, then this is an identity.
Node *ConstraintCastNode::Identity( PhaseTransform *phase ) {
  return phase->type(in(1))->higher_equal(_type) ? in(1) : this;
}

//------------------------------Value------------------------------------------
// Take 'join' of input and cast-up type
const Type *ConstraintCastNode::Value( PhaseTransform *phase ) const {
  if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;
  const Type* ft = phase->type(in(1))->filter(_type);

#ifdef ASSERT
  // Previous versions of this function had some special case logic,
  // which is no longer necessary.  Make sure of the required effects.
  switch (Opcode()) {
  case Op_CastII:
    {
      const Type* t1 = phase->type(in(1));
      if( t1 == Type::TOP )  assert(ft == Type::TOP, "special case #1");
      const Type* rt = t1->join(_type);
      if (rt->empty())       assert(ft == Type::TOP, "special case #2");
      break;
    }
  case Op_CastPP:
    if (phase->type(in(1)) == TypePtr::NULL_PTR &&
        _type->isa_ptr() && _type->is_ptr()->_ptr == TypePtr::NotNull)
      assert(ft == Type::TOP, "special case #3");
    break;
  }
#endif //ASSERT

  return ft;
}

//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node.  Strip out
// control copies
Node *ConstraintCastNode::Ideal(PhaseGVN *phase, bool can_reshape){
  return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
}

//------------------------------Ideal_DU_postCCP-------------------------------
// Throw away cast after constant propagation
Node *ConstraintCastNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
  const Type *t = ccp->type(in(1));
  ccp->hash_delete(this);
  set_type(t);                   // Turn into ID function
  ccp->hash_insert(this);
  return this;
}


//=============================================================================

//------------------------------Ideal_DU_postCCP-------------------------------
// If not converting int->oop, throw away cast after constant propagation
Node *CastPPNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
  const Type *t = ccp->type(in(1));
440
  if (!t->isa_oop_ptr() || (in(1)->is_DecodeN() && Universe::narrow_oop_use_implicit_null_checks())) {
441
    return NULL; // do not transform raw pointers or narrow oops
D
duke 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
  }
  return ConstraintCastNode::Ideal_DU_postCCP(ccp);
}



//=============================================================================
//------------------------------Identity---------------------------------------
// If input is already higher or equal to cast type, then this is an identity.
Node *CheckCastPPNode::Identity( PhaseTransform *phase ) {
  // Toned down to rescue meeting at a Phi 3 different oops all implementing
  // the same interface.  CompileTheWorld starting at 502, kd12rc1.zip.
  return (phase->type(in(1)) == phase->type(this)) ? in(1) : this;
}

// Determine whether "n" is a node which can cause an alias of one of its inputs.  Node types
// which can create aliases are: CheckCastPP, Phi, and any store (if there is also a load from
// the location.)
// Note:  this checks for aliases created in this compilation, not ones which may
//        be potentially created at call sites.
static bool can_cause_alias(Node *n, PhaseTransform *phase) {
  bool possible_alias = false;

  if (n->is_Store()) {
    possible_alias = !n->as_Store()->value_never_loaded(phase);
  } else {
    int opc = n->Opcode();
    possible_alias = n->is_Phi() ||
        opc == Op_CheckCastPP ||
        opc == Op_StorePConditional ||
472 473
        opc == Op_CompareAndSwapP ||
        opc == Op_CompareAndSwapN;
D
duke 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
  }
  return possible_alias;
}

//------------------------------Value------------------------------------------
// Take 'join' of input and cast-up type, unless working with an Interface
const Type *CheckCastPPNode::Value( PhaseTransform *phase ) const {
  if( in(0) && phase->type(in(0)) == Type::TOP ) return Type::TOP;

  const Type *inn = phase->type(in(1));
  if( inn == Type::TOP ) return Type::TOP;  // No information yet

  const TypePtr *in_type   = inn->isa_ptr();
  const TypePtr *my_type   = _type->isa_ptr();
  const Type *result = _type;
  if( in_type != NULL && my_type != NULL ) {
    TypePtr::PTR   in_ptr    = in_type->ptr();
    if( in_ptr == TypePtr::Null ) {
      result = in_type;
    } else if( in_ptr == TypePtr::Constant ) {
      // Casting a constant oop to an interface?
      // (i.e., a String to a Comparable?)
      // Then return the interface.
      const TypeOopPtr *jptr = my_type->isa_oopptr();
      assert( jptr, "" );
      result =  (jptr->klass()->is_interface() || !in_type->higher_equal(_type))
        ? my_type->cast_to_ptr_type( TypePtr::NotNull )
        : in_type;
    } else {
      result =  my_type->cast_to_ptr_type( my_type->join_ptr(in_ptr) );
    }
  }
  return result;

  // JOIN NOT DONE HERE BECAUSE OF INTERFACE ISSUES.
  // FIX THIS (DO THE JOIN) WHEN UNION TYPES APPEAR!

  //
  // Remove this code after overnight run indicates no performance
  // loss from not performing JOIN at CheckCastPPNode
  //
  // const TypeInstPtr *in_oop = in->isa_instptr();
  // const TypeInstPtr *my_oop = _type->isa_instptr();
  // // If either input is an 'interface', return destination type
  // assert (in_oop == NULL || in_oop->klass() != NULL, "");
  // assert (my_oop == NULL || my_oop->klass() != NULL, "");
  // if( (in_oop && in_oop->klass()->klass_part()->is_interface())
  //   ||(my_oop && my_oop->klass()->klass_part()->is_interface()) ) {
  //   TypePtr::PTR  in_ptr = in->isa_ptr() ? in->is_ptr()->_ptr : TypePtr::BotPTR;
  //   // Preserve cast away nullness for interfaces
  //   if( in_ptr == TypePtr::NotNull && my_oop && my_oop->_ptr == TypePtr::BotPTR ) {
  //     return my_oop->cast_to_ptr_type(TypePtr::NotNull);
  //   }
  //   return _type;
  // }
  //
  // // Neither the input nor the destination type is an interface,
  //
  // // history: JOIN used to cause weird corner case bugs
  // //          return (in == TypeOopPtr::NULL_PTR) ? in : _type;
  // // JOIN picks up NotNull in common instance-of/check-cast idioms, both oops.
  // // JOIN does not preserve NotNull in other cases, e.g. RawPtr vs InstPtr
  // const Type *join = in->join(_type);
  // // Check if join preserved NotNull'ness for pointers
  // if( join->isa_ptr() && _type->isa_ptr() ) {
  //   TypePtr::PTR join_ptr = join->is_ptr()->_ptr;
  //   TypePtr::PTR type_ptr = _type->is_ptr()->_ptr;
  //   // If there isn't any NotNull'ness to preserve
  //   // OR if join preserved NotNull'ness then return it
  //   if( type_ptr == TypePtr::BotPTR  || type_ptr == TypePtr::Null ||
  //       join_ptr == TypePtr::NotNull || join_ptr == TypePtr::Constant ) {
  //     return join;
  //   }
  //   // ELSE return same old type as before
  //   return _type;
  // }
  // // Not joining two pointers
  // return join;
}

//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node.  Strip out
// control copies
Node *CheckCastPPNode::Ideal(PhaseGVN *phase, bool can_reshape){
  return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
}

561 562 563 564 565

Node* DecodeNNode::Identity(PhaseTransform* phase) {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return in(1);

566
  if (in(1)->is_EncodeP()) {
567 568 569 570 571 572
    // (DecodeN (EncodeP p)) -> p
    return in(1)->in(1);
  }
  return this;
}

573
const Type *DecodeNNode::Value( PhaseTransform *phase ) const {
574 575 576
  const Type *t = phase->type( in(1) );
  if (t == Type::TOP) return Type::TOP;
  if (t == TypeNarrowOop::NULL_PTR) return TypePtr::NULL_PTR;
577

578
  assert(t->isa_narrowoop(), "only  narrowoop here");
579
  return t->make_ptr();
580 581
}

582 583 584 585
Node* EncodePNode::Identity(PhaseTransform* phase) {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return in(1);

586
  if (in(1)->is_DecodeN()) {
587 588 589 590 591 592
    // (EncodeP (DecodeN p)) -> p
    return in(1)->in(1);
  }
  return this;
}

593
const Type *EncodePNode::Value( PhaseTransform *phase ) const {
594 595 596
  const Type *t = phase->type( in(1) );
  if (t == Type::TOP) return Type::TOP;
  if (t == TypePtr::NULL_PTR) return TypeNarrowOop::NULL_PTR;
597

598
  assert(t->isa_oopptr(), "only oopptr here");
599
  return t->make_narrowoop();
600 601 602
}


603 604 605
Node *EncodePNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
  return MemNode::Ideal_common_DU_postCCP(ccp, this, in(1));
}
606

D
duke 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
//=============================================================================
//------------------------------Identity---------------------------------------
Node *Conv2BNode::Identity( PhaseTransform *phase ) {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return in(1);
  if( t == TypeInt::ZERO ) return in(1);
  if( t == TypeInt::ONE ) return in(1);
  if( t == TypeInt::BOOL ) return in(1);
  return this;
}

//------------------------------Value------------------------------------------
const Type *Conv2BNode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  if( t == TypeInt::ZERO ) return TypeInt::ZERO;
  if( t == TypePtr::NULL_PTR ) return TypeInt::ZERO;
  const TypePtr *tp = t->isa_ptr();
  if( tp != NULL ) {
    if( tp->ptr() == TypePtr::AnyNull ) return Type::TOP;
    if( tp->ptr() == TypePtr::Constant) return TypeInt::ONE;
    if (tp->ptr() == TypePtr::NotNull)  return TypeInt::ONE;
    return TypeInt::BOOL;
  }
  if (t->base() != Type::Int) return TypeInt::BOOL;
  const TypeInt *ti = t->is_int();
  if( ti->_hi < 0 || ti->_lo > 0 ) return TypeInt::ONE;
  return TypeInt::BOOL;
}


// The conversions operations are all Alpha sorted.  Please keep it that way!
//=============================================================================
//------------------------------Value------------------------------------------
const Type *ConvD2FNode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  if( t == Type::DOUBLE ) return Type::FLOAT;
  const TypeD *td = t->is_double_constant();
  return TypeF::make( (float)td->getd() );
}

//------------------------------Identity---------------------------------------
// Float's can be converted to doubles with no loss of bits.  Hence
// converting a float to a double and back to a float is a NOP.
Node *ConvD2FNode::Identity(PhaseTransform *phase) {
  return (in(1)->Opcode() == Op_ConvF2D) ? in(1)->in(1) : this;
}

//=============================================================================
//------------------------------Value------------------------------------------
const Type *ConvD2INode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  if( t == Type::DOUBLE ) return TypeInt::INT;
  const TypeD *td = t->is_double_constant();
  return TypeInt::make( SharedRuntime::d2i( td->getd() ) );
}

//------------------------------Ideal------------------------------------------
// If converting to an int type, skip any rounding nodes
Node *ConvD2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if( in(1)->Opcode() == Op_RoundDouble )
    set_req(1,in(1)->in(1));
  return NULL;
}

//------------------------------Identity---------------------------------------
// Int's can be converted to doubles with no loss of bits.  Hence
// converting an integer to a double and back to an integer is a NOP.
Node *ConvD2INode::Identity(PhaseTransform *phase) {
  return (in(1)->Opcode() == Op_ConvI2D) ? in(1)->in(1) : this;
}

//=============================================================================
//------------------------------Value------------------------------------------
const Type *ConvD2LNode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  if( t == Type::DOUBLE ) return TypeLong::LONG;
  const TypeD *td = t->is_double_constant();
  return TypeLong::make( SharedRuntime::d2l( td->getd() ) );
}

//------------------------------Identity---------------------------------------
Node *ConvD2LNode::Identity(PhaseTransform *phase) {
  // Remove ConvD2L->ConvL2D->ConvD2L sequences.
  if( in(1)       ->Opcode() == Op_ConvL2D &&
      in(1)->in(1)->Opcode() == Op_ConvD2L )
    return in(1)->in(1);
  return this;
}

//------------------------------Ideal------------------------------------------
// If converting to an int type, skip any rounding nodes
Node *ConvD2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if( in(1)->Opcode() == Op_RoundDouble )
    set_req(1,in(1)->in(1));
  return NULL;
}

//=============================================================================
//------------------------------Value------------------------------------------
const Type *ConvF2DNode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  if( t == Type::FLOAT ) return Type::DOUBLE;
  const TypeF *tf = t->is_float_constant();
#ifndef IA64
  return TypeD::make( (double)tf->getf() );
#else
  float x = tf->getf();
  return TypeD::make( (x == 0.0f) ? (double)x : (double)x + ia64_double_zero );
#endif
}

//=============================================================================
//------------------------------Value------------------------------------------
const Type *ConvF2INode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP )       return Type::TOP;
  if( t == Type::FLOAT ) return TypeInt::INT;
  const TypeF *tf = t->is_float_constant();
  return TypeInt::make( SharedRuntime::f2i( tf->getf() ) );
}

//------------------------------Identity---------------------------------------
Node *ConvF2INode::Identity(PhaseTransform *phase) {
  // Remove ConvF2I->ConvI2F->ConvF2I sequences.
  if( in(1)       ->Opcode() == Op_ConvI2F &&
      in(1)->in(1)->Opcode() == Op_ConvF2I )
    return in(1)->in(1);
  return this;
}

//------------------------------Ideal------------------------------------------
// If converting to an int type, skip any rounding nodes
Node *ConvF2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if( in(1)->Opcode() == Op_RoundFloat )
    set_req(1,in(1)->in(1));
  return NULL;
}

//=============================================================================
//------------------------------Value------------------------------------------
const Type *ConvF2LNode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP )       return Type::TOP;
  if( t == Type::FLOAT ) return TypeLong::LONG;
  const TypeF *tf = t->is_float_constant();
  return TypeLong::make( SharedRuntime::f2l( tf->getf() ) );
}

//------------------------------Identity---------------------------------------
Node *ConvF2LNode::Identity(PhaseTransform *phase) {
  // Remove ConvF2L->ConvL2F->ConvF2L sequences.
  if( in(1)       ->Opcode() == Op_ConvL2F &&
      in(1)->in(1)->Opcode() == Op_ConvF2L )
    return in(1)->in(1);
  return this;
}

//------------------------------Ideal------------------------------------------
// If converting to an int type, skip any rounding nodes
Node *ConvF2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if( in(1)->Opcode() == Op_RoundFloat )
    set_req(1,in(1)->in(1));
  return NULL;
}

//=============================================================================
//------------------------------Value------------------------------------------
const Type *ConvI2DNode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  const TypeInt *ti = t->is_int();
  if( ti->is_con() ) return TypeD::make( (double)ti->get_con() );
  return bottom_type();
}

//=============================================================================
//------------------------------Value------------------------------------------
const Type *ConvI2FNode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  const TypeInt *ti = t->is_int();
  if( ti->is_con() ) return TypeF::make( (float)ti->get_con() );
  return bottom_type();
}

//------------------------------Identity---------------------------------------
Node *ConvI2FNode::Identity(PhaseTransform *phase) {
  // Remove ConvI2F->ConvF2I->ConvI2F sequences.
  if( in(1)       ->Opcode() == Op_ConvF2I &&
      in(1)->in(1)->Opcode() == Op_ConvI2F )
    return in(1)->in(1);
  return this;
}

//=============================================================================
//------------------------------Value------------------------------------------
const Type *ConvI2LNode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  const TypeInt *ti = t->is_int();
  const Type* tl = TypeLong::make(ti->_lo, ti->_hi, ti->_widen);
  // Join my declared type against my incoming type.
  tl = tl->filter(_type);
  return tl;
}

#ifdef _LP64
static inline bool long_ranges_overlap(jlong lo1, jlong hi1,
                                       jlong lo2, jlong hi2) {
  // Two ranges overlap iff one range's low point falls in the other range.
  return (lo2 <= lo1 && lo1 <= hi2) || (lo1 <= lo2 && lo2 <= hi1);
}
#endif

//------------------------------Ideal------------------------------------------
Node *ConvI2LNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  const TypeLong* this_type = this->type()->is_long();
  Node* this_changed = NULL;

  // If _major_progress, then more loop optimizations follow.  Do NOT
  // remove this node's type assertion until no more loop ops can happen.
  // The progress bit is set in the major loop optimizations THEN comes the
  // call to IterGVN and any chance of hitting this code.  Cf. Opaque1Node.
  if (can_reshape && !phase->C->major_progress()) {
    const TypeInt* in_type = phase->type(in(1))->isa_int();
    if (in_type != NULL && this_type != NULL &&
        (in_type->_lo != this_type->_lo ||
         in_type->_hi != this_type->_hi)) {
      // Although this WORSENS the type, it increases GVN opportunities,
      // because I2L nodes with the same input will common up, regardless
      // of slightly differing type assertions.  Such slight differences
      // arise routinely as a result of loop unrolling, so this is a
      // post-unrolling graph cleanup.  Choose a type which depends only
      // on my input.  (Exception:  Keep a range assertion of >=0 or <0.)
      jlong lo1 = this_type->_lo;
      jlong hi1 = this_type->_hi;
      int   w1  = this_type->_widen;
      if (lo1 != (jint)lo1 ||
          hi1 != (jint)hi1 ||
          lo1 > hi1) {
        // Overflow leads to wraparound, wraparound leads to range saturation.
        lo1 = min_jint; hi1 = max_jint;
      } else if (lo1 >= 0) {
        // Keep a range assertion of >=0.
        lo1 = 0;        hi1 = max_jint;
      } else if (hi1 < 0) {
        // Keep a range assertion of <0.
        lo1 = min_jint; hi1 = -1;
      } else {
        lo1 = min_jint; hi1 = max_jint;
      }
      const TypeLong* wtype = TypeLong::make(MAX2((jlong)in_type->_lo, lo1),
                                             MIN2((jlong)in_type->_hi, hi1),
                                             MAX2((int)in_type->_widen, w1));
      if (wtype != type()) {
        set_type(wtype);
        // Note: this_type still has old type value, for the logic below.
        this_changed = this;
      }
    }
  }

#ifdef _LP64
  // Convert ConvI2L(AddI(x, y)) to AddL(ConvI2L(x), ConvI2L(y)) ,
  // but only if x and y have subranges that cannot cause 32-bit overflow,
  // under the assumption that x+y is in my own subrange this->type().

  // This assumption is based on a constraint (i.e., type assertion)
  // established in Parse::array_addressing or perhaps elsewhere.
  // This constraint has been adjoined to the "natural" type of
  // the incoming argument in(0).  We know (because of runtime
  // checks) - that the result value I2L(x+y) is in the joined range.
  // Hence we can restrict the incoming terms (x, y) to values such
  // that their sum also lands in that range.

  // This optimization is useful only on 64-bit systems, where we hope
  // the addition will end up subsumed in an addressing mode.
  // It is necessary to do this when optimizing an unrolled array
  // copy loop such as x[i++] = y[i++].

  // On 32-bit systems, it's better to perform as much 32-bit math as
  // possible before the I2L conversion, because 32-bit math is cheaper.
  // There's no common reason to "leak" a constant offset through the I2L.
  // Addressing arithmetic will not absorb it as part of a 64-bit AddL.

  Node* z = in(1);
  int op = z->Opcode();
  if (op == Op_AddI || op == Op_SubI) {
    Node* x = z->in(1);
    Node* y = z->in(2);
    assert (x != z && y != z, "dead loop in ConvI2LNode::Ideal");
    if (phase->type(x) == Type::TOP)  return this_changed;
    if (phase->type(y) == Type::TOP)  return this_changed;
    const TypeInt*  tx = phase->type(x)->is_int();
    const TypeInt*  ty = phase->type(y)->is_int();
    const TypeLong* tz = this_type;
    jlong xlo = tx->_lo;
    jlong xhi = tx->_hi;
    jlong ylo = ty->_lo;
    jlong yhi = ty->_hi;
    jlong zlo = tz->_lo;
    jlong zhi = tz->_hi;
    jlong vbit = CONST64(1) << BitsPerInt;
    int widen =  MAX2(tx->_widen, ty->_widen);
    if (op == Op_SubI) {
      jlong ylo0 = ylo;
      ylo = -yhi;
      yhi = -ylo0;
    }
    // See if x+y can cause positive overflow into z+2**32
    if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo+vbit, zhi+vbit)) {
      return this_changed;
    }
    // See if x+y can cause negative overflow into z-2**32
    if (long_ranges_overlap(xlo+ylo, xhi+yhi, zlo-vbit, zhi-vbit)) {
      return this_changed;
    }
    // Now it's always safe to assume x+y does not overflow.
    // This is true even if some pairs x,y might cause overflow, as long
    // as that overflow value cannot fall into [zlo,zhi].

    // Confident that the arithmetic is "as if infinite precision",
    // we can now use z's range to put constraints on those of x and y.
    // The "natural" range of x [xlo,xhi] can perhaps be narrowed to a
    // more "restricted" range by intersecting [xlo,xhi] with the
    // range obtained by subtracting y's range from the asserted range
    // of the I2L conversion.  Here's the interval arithmetic algebra:
    //    x == z-y == [zlo,zhi]-[ylo,yhi] == [zlo,zhi]+[-yhi,-ylo]
    //    => x in [zlo-yhi, zhi-ylo]
    //    => x in [zlo-yhi, zhi-ylo] INTERSECT [xlo,xhi]
    //    => x in [xlo MAX zlo-yhi, xhi MIN zhi-ylo]
    jlong rxlo = MAX2(xlo, zlo - yhi);
    jlong rxhi = MIN2(xhi, zhi - ylo);
    // And similarly, x changing place with y:
    jlong rylo = MAX2(ylo, zlo - xhi);
    jlong ryhi = MIN2(yhi, zhi - xlo);
    if (rxlo > rxhi || rylo > ryhi) {
      return this_changed;  // x or y is dying; don't mess w/ it
    }
    if (op == Op_SubI) {
      jlong rylo0 = rylo;
      rylo = -ryhi;
      ryhi = -rylo0;
    }

    Node* cx = phase->transform( new (phase->C, 2) ConvI2LNode(x, TypeLong::make(rxlo, rxhi, widen)) );
    Node* cy = phase->transform( new (phase->C, 2) ConvI2LNode(y, TypeLong::make(rylo, ryhi, widen)) );
    switch (op) {
    case Op_AddI:  return new (phase->C, 3) AddLNode(cx, cy);
    case Op_SubI:  return new (phase->C, 3) SubLNode(cx, cy);
    default:       ShouldNotReachHere();
    }
  }
#endif //_LP64

  return this_changed;
}

//=============================================================================
//------------------------------Value------------------------------------------
const Type *ConvL2DNode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  const TypeLong *tl = t->is_long();
  if( tl->is_con() ) return TypeD::make( (double)tl->get_con() );
  return bottom_type();
}

//=============================================================================
//------------------------------Value------------------------------------------
const Type *ConvL2FNode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  const TypeLong *tl = t->is_long();
  if( tl->is_con() ) return TypeF::make( (float)tl->get_con() );
  return bottom_type();
}

//=============================================================================
//----------------------------Identity-----------------------------------------
Node *ConvL2INode::Identity( PhaseTransform *phase ) {
  // Convert L2I(I2L(x)) => x
  if (in(1)->Opcode() == Op_ConvI2L)  return in(1)->in(1);
  return this;
}

//------------------------------Value------------------------------------------
const Type *ConvL2INode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  const TypeLong *tl = t->is_long();
  if (tl->is_con())
    // Easy case.
    return TypeInt::make((jint)tl->get_con());
  return bottom_type();
}

//------------------------------Ideal------------------------------------------
// Return a node which is more "ideal" than the current node.
// Blow off prior masking to int
Node *ConvL2INode::Ideal(PhaseGVN *phase, bool can_reshape) {
  Node *andl = in(1);
  uint andl_op = andl->Opcode();
  if( andl_op == Op_AndL ) {
    // Blow off prior masking to int
    if( phase->type(andl->in(2)) == TypeLong::make( 0xFFFFFFFF ) ) {
      set_req(1,andl->in(1));
      return this;
    }
  }

  // Swap with a prior add: convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
  // This replaces an 'AddL' with an 'AddI'.
  if( andl_op == Op_AddL ) {
    // Don't do this for nodes which have more than one user since
    // we'll end up computing the long add anyway.
    if (andl->outcnt() > 1) return NULL;

    Node* x = andl->in(1);
    Node* y = andl->in(2);
    assert( x != andl && y != andl, "dead loop in ConvL2INode::Ideal" );
    if (phase->type(x) == Type::TOP)  return NULL;
    if (phase->type(y) == Type::TOP)  return NULL;
    Node *add1 = phase->transform(new (phase->C, 2) ConvL2INode(x));
    Node *add2 = phase->transform(new (phase->C, 2) ConvL2INode(y));
    return new (phase->C, 3) AddINode(add1,add2);
  }

1040 1041 1042
  // Disable optimization: LoadL->ConvL2I ==> LoadI.
  // It causes problems (sizes of Load and Store nodes do not match)
  // in objects initialization code and Escape Analysis.
D
duke 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
  return NULL;
}

//=============================================================================
//------------------------------Value------------------------------------------
const Type *CastX2PNode::Value( PhaseTransform *phase ) const {
  const Type* t = phase->type(in(1));
  if (t->base() == Type_X && t->singleton()) {
    uintptr_t bits = (uintptr_t) t->is_intptr_t()->get_con();
    if (bits == 0)   return TypePtr::NULL_PTR;
    return TypeRawPtr::make((address) bits);
  }
  return CastX2PNode::bottom_type();
}

//------------------------------Idealize---------------------------------------
static inline bool fits_in_int(const Type* t, bool but_not_min_int = false) {
  if (t == Type::TOP)  return false;
  const TypeX* tl = t->is_intptr_t();
  jint lo = min_jint;
  jint hi = max_jint;
  if (but_not_min_int)  ++lo;  // caller wants to negate the value w/o overflow
  return (tl->_lo >= lo) && (tl->_hi <= hi);
}

static inline Node* addP_of_X2P(PhaseGVN *phase,
                                Node* base,
                                Node* dispX,
                                bool negate = false) {
  if (negate) {
    dispX = new (phase->C, 3) SubXNode(phase->MakeConX(0), phase->transform(dispX));
  }
  return new (phase->C, 4) AddPNode(phase->C->top(),
                          phase->transform(new (phase->C, 2) CastX2PNode(base)),
                          phase->transform(dispX));
}

Node *CastX2PNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // convert CastX2P(AddX(x, y)) to AddP(CastX2P(x), y) if y fits in an int
  int op = in(1)->Opcode();
  Node* x;
  Node* y;
  switch (op) {
  case Op_SubX:
    x = in(1)->in(1);
    y = in(1)->in(2);
    if (fits_in_int(phase->type(y), true)) {
      return addP_of_X2P(phase, x, y, true);
    }
    break;
  case Op_AddX:
    x = in(1)->in(1);
    y = in(1)->in(2);
    if (fits_in_int(phase->type(y))) {
      return addP_of_X2P(phase, x, y);
    }
    if (fits_in_int(phase->type(x))) {
      return addP_of_X2P(phase, y, x);
    }
    break;
  }
  return NULL;
}

//------------------------------Identity---------------------------------------
Node *CastX2PNode::Identity( PhaseTransform *phase ) {
  if (in(1)->Opcode() == Op_CastP2X)  return in(1)->in(1);
  return this;
}

//=============================================================================
//------------------------------Value------------------------------------------
const Type *CastP2XNode::Value( PhaseTransform *phase ) const {
  const Type* t = phase->type(in(1));
  if (t->base() == Type::RawPtr && t->singleton()) {
    uintptr_t bits = (uintptr_t) t->is_rawptr()->get_con();
    return TypeX::make(bits);
  }
  return CastP2XNode::bottom_type();
}

Node *CastP2XNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  return (in(0) && remove_dead_region(phase, can_reshape)) ? this : NULL;
}

//------------------------------Identity---------------------------------------
Node *CastP2XNode::Identity( PhaseTransform *phase ) {
  if (in(1)->Opcode() == Op_CastX2P)  return in(1)->in(1);
  return this;
}


//=============================================================================
//------------------------------Identity---------------------------------------
// Remove redundant roundings
Node *RoundFloatNode::Identity( PhaseTransform *phase ) {
  assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
  // Do not round constants
  if (phase->type(in(1))->base() == Type::FloatCon)  return in(1);
  int op = in(1)->Opcode();
  // Redundant rounding
  if( op == Op_RoundFloat ) return in(1);
  // Already rounded
  if( op == Op_Parm ) return in(1);
  if( op == Op_LoadF ) return in(1);
  return this;
}

//------------------------------Value------------------------------------------
const Type *RoundFloatNode::Value( PhaseTransform *phase ) const {
  return phase->type( in(1) );
}

//=============================================================================
//------------------------------Identity---------------------------------------
// Remove redundant roundings.  Incoming arguments are already rounded.
Node *RoundDoubleNode::Identity( PhaseTransform *phase ) {
  assert(Matcher::strict_fp_requires_explicit_rounding, "should only generate for Intel");
  // Do not round constants
  if (phase->type(in(1))->base() == Type::DoubleCon)  return in(1);
  int op = in(1)->Opcode();
  // Redundant rounding
  if( op == Op_RoundDouble ) return in(1);
  // Already rounded
  if( op == Op_Parm ) return in(1);
  if( op == Op_LoadD ) return in(1);
  if( op == Op_ConvF2D ) return in(1);
  if( op == Op_ConvI2D ) return in(1);
  return this;
}

//------------------------------Value------------------------------------------
const Type *RoundDoubleNode::Value( PhaseTransform *phase ) const {
  return phase->type( in(1) );
}


//=============================================================================
// Do not allow value-numbering
uint Opaque1Node::hash() const { return NO_HASH; }
uint Opaque1Node::cmp( const Node &n ) const {
  return (&n == this);          // Always fail except on self
}

//------------------------------Identity---------------------------------------
// If _major_progress, then more loop optimizations follow.  Do NOT remove
// the opaque Node until no more loop ops can happen.  Note the timing of
// _major_progress; it's set in the major loop optimizations THEN comes the
// call to IterGVN and any chance of hitting this code.  Hence there's no
// phase-ordering problem with stripping Opaque1 in IGVN followed by some
// more loop optimizations that require it.
Node *Opaque1Node::Identity( PhaseTransform *phase ) {
  return phase->C->major_progress() ? this : in(1);
}

//=============================================================================
// A node to prevent unwanted optimizations.  Allows constant folding.  Stops
// value-numbering, most Ideal calls or Identity functions.  This Node is
// specifically designed to prevent the pre-increment value of a loop trip
// counter from being live out of the bottom of the loop (hence causing the
// pre- and post-increment values both being live and thus requiring an extra
// temp register and an extra move).  If we "accidentally" optimize through
// this kind of a Node, we'll get slightly pessimal, but correct, code.  Thus
// it's OK to be slightly sloppy on optimizations here.

// Do not allow value-numbering
uint Opaque2Node::hash() const { return NO_HASH; }
uint Opaque2Node::cmp( const Node &n ) const {
  return (&n == this);          // Always fail except on self
}


//------------------------------Value------------------------------------------
const Type *MoveL2DNode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  const TypeLong *tl = t->is_long();
  if( !tl->is_con() ) return bottom_type();
  JavaValue v;
  v.set_jlong(tl->get_con());
  return TypeD::make( v.get_jdouble() );
}

//------------------------------Value------------------------------------------
const Type *MoveI2FNode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  const TypeInt *ti = t->is_int();
  if( !ti->is_con() )   return bottom_type();
  JavaValue v;
  v.set_jint(ti->get_con());
  return TypeF::make( v.get_jfloat() );
}

//------------------------------Value------------------------------------------
const Type *MoveF2INode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP )       return Type::TOP;
  if( t == Type::FLOAT ) return TypeInt::INT;
  const TypeF *tf = t->is_float_constant();
  JavaValue v;
  v.set_jfloat(tf->getf());
  return TypeInt::make( v.get_jint() );
}

//------------------------------Value------------------------------------------
const Type *MoveD2LNode::Value( PhaseTransform *phase ) const {
  const Type *t = phase->type( in(1) );
  if( t == Type::TOP ) return Type::TOP;
  if( t == Type::DOUBLE ) return TypeLong::LONG;
  const TypeD *td = t->is_double_constant();
  JavaValue v;
  v.set_jdouble(td->getd());
  return TypeLong::make( v.get_jlong() );
}