methodHandles_x86.cpp 47.4 KB
Newer Older
1
/*
2
 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28
#include "precompiled.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/allocation.inline.hpp"
#include "prims/methodHandles.hpp"
29 30 31

#define __ _masm->

32 33 34 35 36 37 38 39
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
                                                address interpreted_entry) {
  // Just before the actual machine code entry point, allocate space
  // for a MethodHandleEntry::Data record, so that we can manage everything
  // from one base pointer.
  __ align(wordSize);
  address target = __ pc() + sizeof(Data);
  while (__ pc() < target) {
    __ nop();
    __ align(wordSize);
  }

  MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
  me->set_end_address(__ pc());         // set a temporary end_address
  me->set_from_interpreted_entry(interpreted_entry);
  me->set_type_checking_entry(NULL);

  return (address) me;
}

MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
                                                address start_addr) {
  MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
  assert(me->end_address() == start_addr, "valid ME");

  // Fill in the real end_address:
  __ align(wordSize);
  me->set_end_address(__ pc());

  return me;
}

#ifdef ASSERT
T
twisti 已提交
73
static void verify_argslot(MacroAssembler* _masm, Register argslot_reg,
74 75 76
                           const char* error_message) {
  // Verify that argslot lies within (rsp, rbp].
  Label L_ok, L_bad;
77
  BLOCK_COMMENT("{ verify_argslot");
T
twisti 已提交
78
  __ cmpptr(argslot_reg, rbp);
79
  __ jccb(Assembler::above, L_bad);
T
twisti 已提交
80
  __ cmpptr(rsp, argslot_reg);
81
  __ jccb(Assembler::below, L_ok);
82 83 84
  __ bind(L_bad);
  __ stop(error_message);
  __ bind(L_ok);
85
  BLOCK_COMMENT("} verify_argslot");
86 87 88 89 90 91 92 93 94
}
#endif


// Code generation
address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
  // rbx: methodOop
  // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
  // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
95
  // rdx, rdi: garbage temp, blown away
96 97 98 99 100

  Register rbx_method = rbx;
  Register rcx_recv   = rcx;
  Register rax_mtype  = rax;
  Register rdx_temp   = rdx;
101
  Register rdi_temp   = rdi;
102 103 104 105

  // emit WrongMethodType path first, to enable jccb back-branch from main path
  Label wrong_method_type;
  __ bind(wrong_method_type);
106 107 108 109
  Label invoke_generic_slow_path;
  assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
  __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact);
  __ jcc(Assembler::notEqual, invoke_generic_slow_path);
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
  __ push(rax_mtype);       // required mtype
  __ push(rcx_recv);        // bad mh (1st stacked argument)
  __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));

  // here's where control starts out:
  __ align(CodeEntryAlignment);
  address entry_point = __ pc();

  // fetch the MethodType from the method handle into rax (the 'check' register)
  {
    Register tem = rbx_method;
    for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
      __ movptr(rax_mtype, Address(tem, *pchase));
      tem = rax_mtype;          // in case there is another indirection
    }
  }

  // given the MethodType, find out where the MH argument is buried
128
  __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, rdi_temp)));
129
  Register rdx_vmslots = rdx_temp;
130
  __ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp)));
131
  __ movptr(rcx_recv, __ argument_address(rdx_vmslots));
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  trace_method_handle(_masm, "invokeExact");

  __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type);
  __ jump_to_method_handle_entry(rcx_recv, rdi_temp);

  // for invokeGeneric (only), apply argument and result conversions on the fly
  __ bind(invoke_generic_slow_path);
#ifdef ASSERT
  { Label L;
    __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric);
    __ jcc(Assembler::equal, L);
    __ stop("bad methodOop::intrinsic_id");
    __ bind(L);
  }
#endif //ASSERT
  Register rbx_temp = rbx_method;  // don't need it now

  // make room on the stack for another pointer:
  Register rcx_argslot = rcx_recv;
  __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1));
  insert_arg_slots(_masm, 2 * stack_move_unit(), _INSERT_REF_MASK,
                   rcx_argslot, rbx_temp, rdx_temp);

  // load up an adapter from the calling type (Java weaves this)
157
  __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, rdi_temp)));
158
  Register rdx_adapter = rdx_temp;
159
  // __ load_heap_oop(rdx_adapter, Address(rdx_temp, java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes()));
160
  // deal with old JDK versions:
161
  __ lea(rdi_temp, Address(rdx_temp, __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp)));
162 163
  __ cmpptr(rdi_temp, rdx_temp);
  Label sorry_no_invoke_generic;
164
  __ jcc(Assembler::below, sorry_no_invoke_generic);
165

166
  __ load_heap_oop(rdx_adapter, Address(rdi_temp, 0));
167
  __ testptr(rdx_adapter, rdx_adapter);
168
  __ jcc(Assembler::zero, sorry_no_invoke_generic);
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter);
  // As a trusted first argument, pass the type being called, so the adapter knows
  // the actual types of the arguments and return values.
  // (Generic invokers are shared among form-families of method-type.)
  __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype);
  // FIXME: assert that rdx_adapter is of the right method-type.
  __ mov(rcx, rdx_adapter);
  trace_method_handle(_masm, "invokeGeneric");
  __ jump_to_method_handle_entry(rcx, rdi_temp);

  __ bind(sorry_no_invoke_generic); // no invokeGeneric implementation available!
  __ movptr(rcx_recv, Address(rcx_argslot, -1 * Interpreter::stackElementSize));  // recover original MH
  __ push(rax_mtype);       // required mtype
  __ push(rcx_recv);        // bad mh (1st stacked argument)
  __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
184 185 186 187 188 189 190 191 192 193

  return entry_point;
}

// Helper to insert argument slots into the stack.
// arg_slots must be a multiple of stack_move_unit() and <= 0
void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
                                     RegisterOrConstant arg_slots,
                                     int arg_mask,
                                     Register rax_argslot,
T
twisti 已提交
194 195
                                     Register rbx_temp, Register rdx_temp, Register temp3_reg) {
  assert(temp3_reg == noreg, "temp3 not required");
196 197 198 199 200 201 202 203
  assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
                             (!arg_slots.is_register() ? rsp : arg_slots.as_register()));

#ifdef ASSERT
  verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
  if (arg_slots.is_register()) {
    Label L_ok, L_bad;
    __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
204
    __ jccb(Assembler::greater, L_bad);
205
    __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
206
    __ jccb(Assembler::zero, L_ok);
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    __ bind(L_bad);
    __ stop("assert arg_slots <= 0 and clear low bits");
    __ bind(L_ok);
  } else {
    assert(arg_slots.as_constant() <= 0, "");
    assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
  }
#endif //ASSERT

#ifdef _LP64
  if (arg_slots.is_register()) {
    // clean high bits of stack motion register (was loaded as an int)
    __ movslq(arg_slots.as_register(), arg_slots.as_register());
  }
#endif

  // Make space on the stack for the inserted argument(s).
  // Then pull down everything shallower than rax_argslot.
  // The stacked return address gets pulled down with everything else.
  // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
  //   rsp -= size;
  //   for (rdx = rsp + size; rdx < argslot; rdx++)
  //     rdx[-size] = rdx[0]
  //   argslot -= size;
231
  BLOCK_COMMENT("insert_arg_slots {");
232 233 234 235
  __ mov(rdx_temp, rsp);                        // source pointer for copy
  __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
  {
    Label loop;
236
    __ BIND(loop);
237 238 239 240 241
    // pull one word down each time through the loop
    __ movptr(rbx_temp, Address(rdx_temp, 0));
    __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
    __ addptr(rdx_temp, wordSize);
    __ cmpptr(rdx_temp, rax_argslot);
242
    __ jccb(Assembler::less, loop);
243 244 245 246
  }

  // Now move the argslot down, to point to the opened-up space.
  __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
247
  BLOCK_COMMENT("} insert_arg_slots");
248 249 250 251 252 253 254
}

// Helper to remove argument slots from the stack.
// arg_slots must be a multiple of stack_move_unit() and >= 0
void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
                                    RegisterOrConstant arg_slots,
                                    Register rax_argslot,
T
twisti 已提交
255 256
                                     Register rbx_temp, Register rdx_temp, Register temp3_reg) {
  assert(temp3_reg == noreg, "temp3 not required");
257 258 259 260
  assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
                             (!arg_slots.is_register() ? rsp : arg_slots.as_register()));

#ifdef ASSERT
T
twisti 已提交
261 262 263
  // Verify that [argslot..argslot+size) lies within (rsp, rbp).
  __ lea(rbx_temp, Address(rax_argslot, arg_slots, Address::times_ptr));
  verify_argslot(_masm, rbx_temp, "deleted argument(s) must fall within current frame");
264 265 266
  if (arg_slots.is_register()) {
    Label L_ok, L_bad;
    __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
267
    __ jccb(Assembler::less, L_bad);
268
    __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
269
    __ jccb(Assembler::zero, L_ok);
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    __ bind(L_bad);
    __ stop("assert arg_slots >= 0 and clear low bits");
    __ bind(L_ok);
  } else {
    assert(arg_slots.as_constant() >= 0, "");
    assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
  }
#endif //ASSERT

#ifdef _LP64
  if (false) {                  // not needed, since register is positive
    // clean high bits of stack motion register (was loaded as an int)
    if (arg_slots.is_register())
      __ movslq(arg_slots.as_register(), arg_slots.as_register());
  }
#endif

287
  BLOCK_COMMENT("remove_arg_slots {");
288 289 290 291 292 293 294 295 296 297 298
  // Pull up everything shallower than rax_argslot.
  // Then remove the excess space on the stack.
  // The stacked return address gets pulled up with everything else.
  // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
  //   for (rdx = argslot-1; rdx >= rsp; --rdx)
  //     rdx[size] = rdx[0]
  //   argslot += size;
  //   rsp += size;
  __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
  {
    Label loop;
299
    __ BIND(loop);
300 301 302 303 304
    // pull one word up each time through the loop
    __ movptr(rbx_temp, Address(rdx_temp, 0));
    __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
    __ addptr(rdx_temp, -wordSize);
    __ cmpptr(rdx_temp, rsp);
305
    __ jccb(Assembler::greaterEqual, loop);
306 307 308 309 310 311
  }

  // Now move the argslot up, to point to the just-copied block.
  __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
  // And adjust the argslot address to point at the deletion point.
  __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
312
  BLOCK_COMMENT("} remove_arg_slots");
313 314 315
}

#ifndef PRODUCT
316
extern "C" void print_method_handle(oop mh);
317
void trace_method_handle_stub(const char* adaptername,
318
                              oop mh,
319
                              intptr_t* saved_regs,
320
                              intptr_t* entry_sp,
321 322
                              intptr_t* saved_sp,
                              intptr_t* saved_bp) {
323
  // called as a leaf from native code: do not block the JVM!
324 325 326 327
  intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
  intptr_t* base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset];
  printf("MH %s mh="INTPTR_FORMAT" sp=("INTPTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="INTPTR_FORMAT"\n",
         adaptername, (intptr_t)mh, (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp);
328
  if (last_sp != saved_sp && last_sp != NULL)
329
    printf("*** last_sp="INTPTR_FORMAT"\n", (intptr_t)last_sp);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
  if (Verbose) {
    printf(" reg dump: ");
    int saved_regs_count = (entry_sp-1) - saved_regs;
    // 32 bit: rdi rsi rbp rsp; rbx rdx rcx (*) rax
    int i;
    for (i = 0; i <= saved_regs_count; i++) {
      if (i > 0 && i % 4 == 0 && i != saved_regs_count)
        printf("\n   + dump: ");
      printf(" %d: "INTPTR_FORMAT, i, saved_regs[i]);
    }
    printf("\n");
    int stack_dump_count = 16;
    if (stack_dump_count < (int)(saved_bp + 2 - saved_sp))
      stack_dump_count = (int)(saved_bp + 2 - saved_sp);
    if (stack_dump_count > 64)  stack_dump_count = 48;
    for (i = 0; i < stack_dump_count; i += 4) {
      printf(" dump at SP[%d] "INTPTR_FORMAT": "INTPTR_FORMAT" "INTPTR_FORMAT" "INTPTR_FORMAT" "INTPTR_FORMAT"\n",
347
             i, (intptr_t) &entry_sp[i+0], entry_sp[i+0], entry_sp[i+1], entry_sp[i+2], entry_sp[i+3]);
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    }
    print_method_handle(mh);
  }
}
void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
  if (!TraceMethodHandles)  return;
  BLOCK_COMMENT("trace_method_handle {");
  __ push(rax);
  __ lea(rax, Address(rsp, wordSize*6)); // entry_sp
  __ pusha();
  // arguments:
  __ push(rbp);               // interpreter frame pointer
  __ push(rsi);               // saved_sp
  __ push(rax);               // entry_sp
  __ push(rcx);               // mh
  __ push(rcx);
  __ movptr(Address(rsp, 0), (intptr_t) adaptername);
  __ call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub), 5);
  __ popa();
  __ pop(rax);
  BLOCK_COMMENT("} trace_method_handle");
369 370 371
}
#endif //PRODUCT

372 373
// which conversion op types are implemented here?
int MethodHandles::adapter_conversion_ops_supported_mask() {
374 375 376 377 378 379 380 381 382 383
  return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
         |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
         //|(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS) //BUG!
384 385 386 387
         );
  // FIXME: MethodHandlesTest gets a crash if we enable OP_SPREAD_ARGS.
}

388 389 390
//------------------------------------------------------------------------------
// MethodHandles::generate_method_handle_stub
//
391 392
// Generate an "entry" field for a method handle.
// This determines how the method handle will respond to calls.
393
void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
394 395 396 397 398 399 400 401
  // Here is the register state during an interpreted call,
  // as set up by generate_method_handle_interpreter_entry():
  // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
  // - rcx: receiver method handle
  // - rax: method handle type (only used by the check_mtype entry point)
  // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
  // - rdx: garbage temp, can blow away

402 403 404 405
  const Register rcx_recv    = rcx;
  const Register rax_argslot = rax;
  const Register rbx_temp    = rbx;
  const Register rdx_temp    = rdx;
406

407 408
  // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
  // and gen_c2i_adapter (from compiled calls):
409 410 411 412 413 414 415 416
  const Register saved_last_sp = LP64_ONLY(r13) NOT_LP64(rsi);

  // Argument registers for _raise_exception.
  // 32-bit: Pass first two oop/int args in registers ECX and EDX.
  const Register rarg0_code     = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
  const Register rarg1_actual   = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
  const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
  assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp);
417

418
  guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
419 420 421

  // some handy addresses
  Address rbx_method_fie(     rbx,      methodOopDesc::from_interpreted_offset() );
422
  Address rbx_method_fce(     rbx,      methodOopDesc::from_compiled_offset() );
423

424 425
  Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
  Address rcx_dmh_vmindex(    rcx_recv, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes() );
426

427 428
  Address rcx_bmh_vmargslot(  rcx_recv, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes() );
  Address rcx_bmh_argument(   rcx_recv, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes() );
429

430 431 432
  Address rcx_amh_vmargslot(  rcx_recv, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes() );
  Address rcx_amh_argument(   rcx_recv, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes() );
  Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
433 434
  Address vmarg;                // __ argument_address(vmargslot)

435 436
  const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();

437 438 439 440 441 442 443
  if (have_entry(ek)) {
    __ nop();                   // empty stubs make SG sick
    return;
  }

  address interp_entry = __ pc();

444 445 446
  trace_method_handle(_masm, entry_name(ek));

  BLOCK_COMMENT(entry_name(ek));
447 448

  switch ((int) ek) {
449
  case _raise_exception:
450
    {
451
      // Not a real MH entry, but rather shared code for raising an
452 453
      // exception.  Since we use the compiled entry, arguments are
      // expected in compiler argument registers.
454
      assert(raise_exception_method(), "must be set");
455
      assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
456 457 458 459

      const Register rdi_pc = rax;
      __ pop(rdi_pc);  // caller PC
      __ mov(rsp, saved_last_sp);  // cut the stack back to where the caller started
460

461
      Register rbx_method = rbx_temp;
462
      Label L_no_method;
463
      // FIXME: fill in _raise_exception_method with a suitable java.lang.invoke method
464 465
      __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
      __ testptr(rbx_method, rbx_method);
466 467 468
      __ jccb(Assembler::zero, L_no_method);

      const int jobject_oop_offset = 0;
469 470
      __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
      __ testptr(rbx_method, rbx_method);
471
      __ jccb(Assembler::zero, L_no_method);
472
      __ verify_oop(rbx_method);
473 474

      NOT_LP64(__ push(rarg2_required));
475 476
      __ push(rdi_pc);         // restore caller PC
      __ jmp(rbx_method_fce);  // jump to compiled entry
477

478
      // Do something that is at least causes a valid throw from the interpreter.
479 480 481
      __ bind(L_no_method);
      __ push(rarg2_required);
      __ push(rarg1_actual);
482 483 484 485 486 487 488 489
      __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
    }
    break;

  case _invokestatic_mh:
  case _invokespecial_mh:
    {
      Register rbx_method = rbx_temp;
490
      __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
      __ verify_oop(rbx_method);
      // same as TemplateTable::invokestatic or invokespecial,
      // minus the CP setup and profiling:
      if (ek == _invokespecial_mh) {
        // Must load & check the first argument before entering the target method.
        __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
        __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
        __ null_check(rcx_recv);
        __ verify_oop(rcx_recv);
      }
      __ jmp(rbx_method_fie);
    }
    break;

  case _invokevirtual_mh:
    {
      // same as TemplateTable::invokevirtual,
      // minus the CP setup and profiling:

      // pick out the vtable index and receiver offset from the MH,
      // and then we can discard it:
      __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
      Register rbx_index = rbx_temp;
      __ movl(rbx_index, rcx_dmh_vmindex);
      // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
      __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
      __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());

      // get receiver klass
      Register rax_klass = rax_argslot;
      __ load_klass(rax_klass, rcx_recv);
      __ verify_oop(rax_klass);

      // get target methodOop & entry point
      const int base = instanceKlass::vtable_start_offset() * wordSize;
      assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
      Address vtable_entry_addr(rax_klass,
                                rbx_index, Address::times_ptr,
                                base + vtableEntry::method_offset_in_bytes());
      Register rbx_method = rbx_temp;
531
      __ movptr(rbx_method, vtable_entry_addr);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546

      __ verify_oop(rbx_method);
      __ jmp(rbx_method_fie);
    }
    break;

  case _invokeinterface_mh:
    {
      // same as TemplateTable::invokeinterface,
      // minus the CP setup and profiling:

      // pick out the interface and itable index from the MH.
      __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
      Register rdx_intf  = rdx_temp;
      Register rbx_index = rbx_temp;
547 548
      __ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
      __ movl(rbx_index, rcx_dmh_vmindex);
549 550 551 552 553 554 555 556
      __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
      __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());

      // get receiver klass
      Register rax_klass = rax_argslot;
      __ load_klass(rax_klass, rcx_recv);
      __ verify_oop(rax_klass);

557
      Register rdi_temp   = rdi;
558 559 560 561 562 563 564 565
      Register rbx_method = rbx_index;

      // get interface klass
      Label no_such_interface;
      __ verify_oop(rdx_intf);
      __ lookup_interface_method(rax_klass, rdx_intf,
                                 // note: next two args must be the same:
                                 rbx_index, rbx_method,
566
                                 rdi_temp,
567 568 569 570 571 572 573 574 575
                                 no_such_interface);

      __ verify_oop(rbx_method);
      __ jmp(rbx_method_fie);
      __ hlt();

      __ bind(no_such_interface);
      // Throw an exception.
      // For historical reasons, it will be IncompatibleClassChangeError.
576 577 578 579 580
      __ mov(rbx_temp, rcx_recv);  // rarg2_required might be RCX
      assert_different_registers(rarg2_required, rbx_temp);
      __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset));  // required interface
      __ mov(   rarg1_actual,   rbx_temp);                               // bad receiver
      __ movl(  rarg0_code,     (int) Bytecodes::_invokeinterface);      // who is complaining?
581
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
582 583 584 585 586 587 588 589 590 591 592
    }
    break;

  case _bound_ref_mh:
  case _bound_int_mh:
  case _bound_long_mh:
  case _bound_ref_direct_mh:
  case _bound_int_direct_mh:
  case _bound_long_direct_mh:
    {
      bool direct_to_method = (ek >= _bound_ref_direct_mh);
T
twisti 已提交
593 594 595 596
      BasicType arg_type  = T_ILLEGAL;
      int       arg_mask  = _INSERT_NO_MASK;
      int       arg_slots = -1;
      get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots);
597 598 599 600

      // make room for the new argument:
      __ movl(rax_argslot, rcx_bmh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));
601 602

      insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask, rax_argslot, rbx_temp, rdx_temp);
603 604

      // store bound argument into the new stack slot:
605
      __ load_heap_oop(rbx_temp, rcx_bmh_argument);
606 607 608
      if (arg_type == T_OBJECT) {
        __ movptr(Address(rax_argslot, 0), rbx_temp);
      } else {
609 610 611 612
        Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
        const int arg_size = type2aelembytes(arg_type);
        __ load_sized_value(rdx_temp, prim_value_addr, arg_size, is_signed_subword_type(arg_type), rbx_temp);
        __ store_sized_value(Address(rax_argslot, 0), rdx_temp, arg_size, rbx_temp);
613 614 615 616
      }

      if (direct_to_method) {
        Register rbx_method = rbx_temp;
617
        __ load_heap_oop(rbx_method, rcx_mh_vmtarget);
618 619 620
        __ verify_oop(rbx_method);
        __ jmp(rbx_method_fie);
      } else {
621
        __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
622 623 624 625 626 627 628
        __ verify_oop(rcx_recv);
        __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
      }
    }
    break;

  case _adapter_retype_only:
629
  case _adapter_retype_raw:
630
    // immediately jump to the next MH layer:
631
    __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
    __ verify_oop(rcx_recv);
    __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    // This is OK when all parameter types widen.
    // It is also OK when a return type narrows.
    break;

  case _adapter_check_cast:
    {
      // temps:
      Register rbx_klass = rbx_temp; // interesting AMH data

      // check a reference argument before jumping to the next layer of MH:
      __ movl(rax_argslot, rcx_amh_vmargslot);
      vmarg = __ argument_address(rax_argslot);

      // What class are we casting to?
648 649
      __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
      __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
650 651 652

      Label done;
      __ movptr(rdx_temp, vmarg);
653
      __ testptr(rdx_temp, rdx_temp);
654
      __ jcc(Assembler::zero, done);         // no cast if null
655 656 657 658 659
      __ load_klass(rdx_temp, rdx_temp);

      // live at this point:
      // - rbx_klass:  klass required by the target method
      // - rdx_temp:   argument klass to test
660
      // - rcx_recv:   adapter method handle
661 662 663 664 665
      __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);

      // If we get here, the type check failed!
      // Call the wrong_method_type stub, passing the failing argument type in rax.
      Register rax_mtype = rax_argslot;
666 667 668
      __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
      __ movptr(rdx_temp, vmarg);

669 670 671 672
      assert_different_registers(rarg2_required, rdx_temp);
      __ load_heap_oop(rarg2_required, rcx_amh_argument);             // required class
      __ mov(          rarg1_actual,   rdx_temp);                     // bad object
      __ movl(         rarg0_code,     (int) Bytecodes::_checkcast);  // who is complaining?
673
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
674 675

      __ bind(done);
676
      // get the new MH:
677
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_prim_to_prim:
  case _adapter_ref_to_prim:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
//case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
    {
      // perform an in-place conversion to int or an int subword
      __ movl(rax_argslot, rcx_amh_vmargslot);
      vmarg = __ argument_address(rax_argslot);

      switch (ek) {
      case _adapter_opt_i2i:
        __ movl(rdx_temp, vmarg);
        break;
      case _adapter_opt_l2i:
        {
          // just delete the extra slot; on a little-endian machine we keep the first
          __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
          remove_arg_slots(_masm, -stack_move_unit(),
                           rax_argslot, rbx_temp, rdx_temp);
707
          vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
          __ movl(rdx_temp, vmarg);
        }
        break;
      case _adapter_opt_unboxi:
        {
          // Load the value up from the heap.
          __ movptr(rdx_temp, vmarg);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
#ifdef ASSERT
          for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
            if (is_subword_type(BasicType(bt)))
              assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
          }
#endif
          __ null_check(rdx_temp, value_offset);
          __ movl(rdx_temp, Address(rdx_temp, value_offset));
          // We load this as a word.  Because we are little-endian,
          // the low bits will be correct, but the high bits may need cleaning.
          // The vminfo will guide us to clean those bits.
        }
        break;
      default:
T
twisti 已提交
730
        ShouldNotReachHere();
731 732
      }

T
twisti 已提交
733
      // Do the requested conversion and store the value.
734 735 736 737 738
      Register rbx_vminfo = rbx_temp;
      __ movl(rbx_vminfo, rcx_amh_conversion);
      assert(CONV_VMINFO_SHIFT == 0, "preshifted");

      // get the new MH:
739
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
740 741 742
      // (now we are done with the old MH)

      // original 32-bit vmdata word must be of this form:
743 744
      //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
      __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
745 746 747
      __ shll(rdx_temp /*, rcx*/);
      Label zero_extend, done;
      __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
748
      __ jccb(Assembler::zero, zero_extend);
749 750 751

      // this path is taken for int->byte, int->short
      __ sarl(rdx_temp /*, rcx*/);
752
      __ jmpb(done);
753 754 755 756 757 758

      __ bind(zero_extend);
      // this is taken for int->char
      __ shrl(rdx_temp /*, rcx*/);

      __ bind(done);
T
twisti 已提交
759
      __ movl(vmarg, rdx_temp);  // Store the value.
760
      __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
    {
      // perform an in-place int-to-long or ref-to-long conversion
      __ movl(rax_argslot, rcx_amh_vmargslot);

      // on a little-endian machine we keep the first slot and add another after
      __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
      insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
                       rax_argslot, rbx_temp, rdx_temp);
776 777
      Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
      Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);
778 779 780 781

      switch (ek) {
      case _adapter_opt_i2l:
        {
782 783 784 785
#ifdef _LP64
          __ movslq(rdx_temp, vmarg1);  // Load sign-extended
          __ movq(vmarg1, rdx_temp);    // Store into first slot
#else
786
          __ movl(rdx_temp, vmarg1);
787
          __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
788
          __ movl(vmarg2, rdx_temp); // store second word
789
#endif
790 791 792 793 794 795 796 797 798
        }
        break;
      case _adapter_opt_unboxl:
        {
          // Load the value up from the heap.
          __ movptr(rdx_temp, vmarg1);
          int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
          assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
          __ null_check(rdx_temp, value_offset);
799 800 801 802
#ifdef _LP64
          __ movq(rbx_temp, Address(rdx_temp, value_offset));
          __ movq(vmarg1, rbx_temp);
#else
803 804 805 806
          __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
          __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
          __ movl(vmarg1, rbx_temp);
          __ movl(vmarg2, rdx_temp);
807
#endif
808 809 810
        }
        break;
      default:
T
twisti 已提交
811
        ShouldNotReachHere();
812 813
      }

814
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
815 816 817 818 819 820 821 822 823 824 825 826 827 828
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
    {
      // perform an in-place floating primitive conversion
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
      if (ek == _adapter_opt_f2d) {
        insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
                         rax_argslot, rbx_temp, rdx_temp);
      }
829
      Address vmarg(rax_argslot, -Interpreter::stackElementSize);
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855

#ifdef _LP64
      if (ek == _adapter_opt_f2d) {
        __ movflt(xmm0, vmarg);
        __ cvtss2sd(xmm0, xmm0);
        __ movdbl(vmarg, xmm0);
      } else {
        __ movdbl(xmm0, vmarg);
        __ cvtsd2ss(xmm0, xmm0);
        __ movflt(vmarg, xmm0);
      }
#else //_LP64
      if (ek == _adapter_opt_f2d) {
        __ fld_s(vmarg);        // load float to ST0
        __ fstp_s(vmarg);       // store single
      } else {
        __ fld_d(vmarg);        // load double to ST0
        __ fstp_s(vmarg);       // store single
      }
#endif //_LP64

      if (ek == _adapter_opt_d2f) {
        remove_arg_slots(_masm, -stack_move_unit(),
                         rax_argslot, rbx_temp, rdx_temp);
      }

856
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_prim_to_ref:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  case _adapter_swap_args:
  case _adapter_rot_args:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_swap_1:
  case _adapter_opt_swap_2:
  case _adapter_opt_rot_1_up:
  case _adapter_opt_rot_1_down:
  case _adapter_opt_rot_2_up:
  case _adapter_opt_rot_2_down:
    {
T
twisti 已提交
878 879
      int swap_bytes = 0, rotate = 0;
      get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate);
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916

      // 'argslot' is the position of the first argument to swap
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // 'vminfo' is the second
      Register rbx_destslot = rbx_temp;
      __ movl(rbx_destslot, rcx_amh_conversion);
      assert(CONV_VMINFO_SHIFT == 0, "preshifted");
      __ andl(rbx_destslot, CONV_VMINFO_MASK);
      __ lea(rbx_destslot, __ argument_address(rbx_destslot));
      DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"));

      if (!rotate) {
        for (int i = 0; i < swap_bytes; i += wordSize) {
          __ movptr(rdx_temp, Address(rax_argslot , i));
          __ push(rdx_temp);
          __ movptr(rdx_temp, Address(rbx_destslot, i));
          __ movptr(Address(rax_argslot, i), rdx_temp);
          __ pop(rdx_temp);
          __ movptr(Address(rbx_destslot, i), rdx_temp);
        }
      } else {
        // push the first chunk, which is going to get overwritten
        for (int i = swap_bytes; (i -= wordSize) >= 0; ) {
          __ movptr(rdx_temp, Address(rax_argslot, i));
          __ push(rdx_temp);
        }

        if (rotate > 0) {
          // rotate upward
          __ subptr(rax_argslot, swap_bytes);
#ifdef ASSERT
          {
            // Verify that argslot > destslot, by at least swap_bytes.
            Label L_ok;
            __ cmpptr(rax_argslot, rbx_destslot);
917
            __ jccb(Assembler::aboveEqual, L_ok);
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
            __ stop("source must be above destination (upward rotation)");
            __ bind(L_ok);
          }
#endif
          // work argslot down to destslot, copying contiguous data upwards
          // pseudo-code:
          //   rax = src_addr - swap_bytes
          //   rbx = dest_addr
          //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
          Label loop;
          __ bind(loop);
          __ movptr(rdx_temp, Address(rax_argslot, 0));
          __ movptr(Address(rax_argslot, swap_bytes), rdx_temp);
          __ addptr(rax_argslot, -wordSize);
          __ cmpptr(rax_argslot, rbx_destslot);
933
          __ jccb(Assembler::aboveEqual, loop);
934 935 936 937 938 939 940
        } else {
          __ addptr(rax_argslot, swap_bytes);
#ifdef ASSERT
          {
            // Verify that argslot < destslot, by at least swap_bytes.
            Label L_ok;
            __ cmpptr(rax_argslot, rbx_destslot);
941
            __ jccb(Assembler::belowEqual, L_ok);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
            __ stop("source must be below destination (downward rotation)");
            __ bind(L_ok);
          }
#endif
          // work argslot up to destslot, copying contiguous data downwards
          // pseudo-code:
          //   rax = src_addr + swap_bytes
          //   rbx = dest_addr
          //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
          Label loop;
          __ bind(loop);
          __ movptr(rdx_temp, Address(rax_argslot, 0));
          __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp);
          __ addptr(rax_argslot, wordSize);
          __ cmpptr(rax_argslot, rbx_destslot);
957
          __ jccb(Assembler::belowEqual, loop);
958 959 960 961 962 963 964 965 966
        }

        // pop the original first chunk into the destination slot, now free
        for (int i = 0; i < swap_bytes; i += wordSize) {
          __ pop(rdx_temp);
          __ movptr(Address(rbx_destslot, i), rdx_temp);
        }
      }

967
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
968 969 970 971 972 973 974 975 976 977 978 979
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_dup_args:
    {
      // 'argslot' is the position of the first argument to duplicate
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // 'stack_move' is negative number of words to duplicate
      Register rdx_stack_move = rdx_temp;
980 981
      __ movl2ptr(rdx_stack_move, rcx_amh_conversion);
      __ sarptr(rdx_stack_move, CONV_STACK_MOVE_SHIFT);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

      int argslot0_num = 0;
      Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num));
      assert(argslot0.base() == rsp, "");
      int pre_arg_size = argslot0.disp();
      assert(pre_arg_size % wordSize == 0, "");
      assert(pre_arg_size > 0, "must include PC");

      // remember the old rsp+1 (argslot[0])
      Register rbx_oldarg = rbx_temp;
      __ lea(rbx_oldarg, argslot0);

      // move rsp down to make room for dups
      __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr));

      // compute the new rsp+1 (argslot[0])
      Register rdx_newarg = rdx_temp;
      __ lea(rdx_newarg, argslot0);

      __ push(rdi);             // need a temp
      // (preceding push must be done after arg addresses are taken!)

      // pull down the pre_arg_size data (PC)
      for (int i = -pre_arg_size; i < 0; i += wordSize) {
        __ movptr(rdi, Address(rbx_oldarg, i));
        __ movptr(Address(rdx_newarg, i), rdi);
      }

      // copy from rax_argslot[0...] down to new_rsp[1...]
      // pseudo-code:
      //   rbx = old_rsp+1
      //   rdx = new_rsp+1
      //   rax = argslot
      //   while (rdx < rbx) *rdx++ = *rax++
      Label loop;
      __ bind(loop);
      __ movptr(rdi, Address(rax_argslot, 0));
      __ movptr(Address(rdx_newarg, 0), rdi);
      __ addptr(rax_argslot, wordSize);
      __ addptr(rdx_newarg, wordSize);
      __ cmpptr(rdx_newarg, rbx_oldarg);
1023
      __ jccb(Assembler::less, loop);
1024 1025 1026

      __ pop(rdi);              // restore temp

1027
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_drop_args:
    {
      // 'argslot' is the position of the first argument to nuke
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      __ push(rdi);             // need a temp
      // (must do previous push after argslot address is taken)

      // 'stack_move' is number of words to drop
      Register rdi_stack_move = rdi;
1043 1044
      __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
      __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
1045 1046 1047 1048 1049
      remove_arg_slots(_masm, rdi_stack_move,
                       rax_argslot, rbx_temp, rdx_temp);

      __ pop(rdi);              // restore temp

1050
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
    }
    break;

  case _adapter_collect_args:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  case _adapter_spread_args:
    // handled completely by optimized cases
    __ stop("init_AdapterMethodHandle should not issue this");
    break;

  case _adapter_opt_spread_0:
  case _adapter_opt_spread_1:
  case _adapter_opt_spread_more:
    {
      // spread an array out into a group of arguments
T
twisti 已提交
1069
      int length_constant = get_ek_adapter_opt_spread_info(ek);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

      // find the address of the array argument
      __ movl(rax_argslot, rcx_amh_vmargslot);
      __ lea(rax_argslot, __ argument_address(rax_argslot));

      // grab some temps
      { __ push(rsi); __ push(rdi); }
      // (preceding pushes must be done after argslot address is taken!)
#define UNPUSH_RSI_RDI \
      { __ pop(rdi); __ pop(rsi); }

      // arx_argslot points both to the array and to the first output arg
      vmarg = Address(rax_argslot, 0);

      // Get the array value.
      Register  rsi_array       = rsi;
      Register  rdx_array_klass = rdx_temp;
      BasicType elem_type       = T_OBJECT;
      int       length_offset   = arrayOopDesc::length_offset_in_bytes();
      int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
      __ movptr(rsi_array, vmarg);
      Label skip_array_check;
      if (length_constant == 0) {
        __ testptr(rsi_array, rsi_array);
        __ jcc(Assembler::zero, skip_array_check);
      }
      __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
      __ load_klass(rdx_array_klass, rsi_array);

      // Check the array type.
      Register rbx_klass = rbx_temp;
1101 1102
      __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
      __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

      Label ok_array_klass, bad_array_klass, bad_array_length;
      __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass);
      // If we get here, the type check failed!
      __ jmp(bad_array_klass);
      __ bind(ok_array_klass);

      // Check length.
      if (length_constant >= 0) {
        __ cmpl(Address(rsi_array, length_offset), length_constant);
      } else {
        Register rbx_vminfo = rbx_temp;
        __ movl(rbx_vminfo, rcx_amh_conversion);
        assert(CONV_VMINFO_SHIFT == 0, "preshifted");
        __ andl(rbx_vminfo, CONV_VMINFO_MASK);
        __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
      }
      __ jcc(Assembler::notEqual, bad_array_length);

      Register rdx_argslot_limit = rdx_temp;

      // Array length checks out.  Now insert any required stack slots.
      if (length_constant == -1) {
        // Form a pointer to the end of the affected region.
1127
        __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
1128 1129
        // 'stack_move' is negative number of words to insert
        Register rdi_stack_move = rdi;
1130 1131
        __ movl2ptr(rdi_stack_move, rcx_amh_conversion);
        __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
        Register rsi_temp = rsi_array;  // spill this
        insert_arg_slots(_masm, rdi_stack_move, -1,
                         rax_argslot, rbx_temp, rsi_temp);
        // reload the array (since rsi was killed)
        __ movptr(rsi_array, vmarg);
      } else if (length_constant > 1) {
        int arg_mask = 0;
        int new_slots = (length_constant - 1);
        for (int i = 0; i < new_slots; i++) {
          arg_mask <<= 1;
          arg_mask |= _INSERT_REF_MASK;
        }
        insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask,
                         rax_argslot, rbx_temp, rdx_temp);
      } else if (length_constant == 1) {
        // no stack resizing required
      } else if (length_constant == 0) {
        remove_arg_slots(_masm, -stack_move_unit(),
                         rax_argslot, rbx_temp, rdx_temp);
      }

      // Copy from the array to the new slots.
      // Note: Stack change code preserves integrity of rax_argslot pointer.
      // So even after slot insertions, rax_argslot still points to first argument.
      if (length_constant == -1) {
        // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
        Register rsi_source = rsi_array;
        __ lea(rsi_source, Address(rsi_array, elem0_offset));
        Label loop;
        __ bind(loop);
        __ movptr(rbx_temp, Address(rsi_source, 0));
        __ movptr(Address(rax_argslot, 0), rbx_temp);
        __ addptr(rsi_source, type2aelembytes(elem_type));
1165
        __ addptr(rax_argslot, Interpreter::stackElementSize);
1166
        __ cmpptr(rax_argslot, rdx_argslot_limit);
1167
        __ jccb(Assembler::less, loop);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
      } else if (length_constant == 0) {
        __ bind(skip_array_check);
        // nothing to copy
      } else {
        int elem_offset = elem0_offset;
        int slot_offset = 0;
        for (int index = 0; index < length_constant; index++) {
          __ movptr(rbx_temp, Address(rsi_array, elem_offset));
          __ movptr(Address(rax_argslot, slot_offset), rbx_temp);
          elem_offset += type2aelembytes(elem_type);
1178
           slot_offset += Interpreter::stackElementSize;
1179 1180 1181 1182 1183
        }
      }

      // Arguments are spread.  Move to next method handle.
      UNPUSH_RSI_RDI;
1184
      __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
1185 1186 1187 1188
      __ jump_to_method_handle_entry(rcx_recv, rdx_temp);

      __ bind(bad_array_klass);
      UNPUSH_RSI_RDI;
1189 1190 1191 1192
      assert(!vmarg.uses(rarg2_required), "must be different registers");
      __ movptr(rarg2_required, Address(rdx_array_klass, java_mirror_offset));  // required type
      __ movptr(rarg1_actual,   vmarg);                                         // bad array
      __ movl(  rarg0_code,     (int) Bytecodes::_aaload);                      // who is complaining?
1193
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
1194 1195 1196

      __ bind(bad_array_length);
      UNPUSH_RSI_RDI;
1197 1198 1199 1200
      assert(!vmarg.uses(rarg2_required), "must be different registers");
      __ mov   (rarg2_required, rcx_recv);                       // AMH requiring a certain length
      __ movptr(rarg1_actual,   vmarg);                          // bad array
      __ movl(  rarg0_code,     (int) Bytecodes::_arraylength);  // who is complaining?
1201
      __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220

#undef UNPUSH_RSI_RDI
    }
    break;

  case _adapter_flyby:
  case _adapter_ricochet:
    __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
    break;

  default:  ShouldNotReachHere();
  }
  __ hlt();

  address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  __ unimplemented(entry_name(ek)); // %%% FIXME: NYI

  init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
}