block.hpp 25.5 KB
Newer Older
D
duke 已提交
1
/*
N
never 已提交
2
 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31
#ifndef SHARE_VM_OPTO_BLOCK_HPP
#define SHARE_VM_OPTO_BLOCK_HPP

#include "opto/multnode.hpp"
#include "opto/node.hpp"
#include "opto/phase.hpp"

D
duke 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
// Optimization - Graph Style

class Block;
class CFGLoop;
class MachCallNode;
class Matcher;
class RootNode;
class VectorSet;
struct Tarjan;

//------------------------------Block_Array------------------------------------
// Map dense integer indices to Blocks.  Uses classic doubling-array trick.
// Abstractly provides an infinite array of Block*'s, initialized to NULL.
// Note that the constructor just zeros things, and since I use Arena
// allocation I do not need a destructor to reclaim storage.
class Block_Array : public ResourceObj {
N
never 已提交
48
  friend class VMStructs;
D
duke 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  uint _size;                   // allocated size, as opposed to formal limit
  debug_only(uint _limit;)      // limit to formal domain
protected:
  Block **_blocks;
  void grow( uint i );          // Grow array node to fit

public:
  Arena *_arena;                // Arena to allocate in

  Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
    debug_only(_limit=0);
    _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
    for( int i = 0; i < OptoBlockListSize; i++ ) {
      _blocks[i] = NULL;
    }
  }
  Block *lookup( uint i ) const // Lookup, or NULL for not mapped
  { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
  Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
  { assert( i < Max(), "oob" ); return _blocks[i]; }
  // Extend the mapping: index i maps to Block *n.
  void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
  uint Max() const { debug_only(return _limit); return _size; }
};


class Block_List : public Block_Array {
N
never 已提交
76
  friend class VMStructs;
D
duke 已提交
77 78 79 80 81 82 83 84 85 86
public:
  uint _cnt;
  Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
  void push( Block *b ) { map(_cnt++,b); }
  Block *pop() { return _blocks[--_cnt]; }
  Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
  void remove( uint i );
  void insert( uint i, Block *n );
  uint size() const { return _cnt; }
  void reset() { _cnt = 0; }
R
rasbold 已提交
87
  void print();
D
duke 已提交
88 89 90 91
};


class CFGElement : public ResourceObj {
N
never 已提交
92
  friend class VMStructs;
D
duke 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 public:
  float _freq; // Execution frequency (estimate)

  CFGElement() : _freq(0.0f) {}
  virtual bool is_block() { return false; }
  virtual bool is_loop()  { return false; }
  Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
  CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
};

//------------------------------Block------------------------------------------
// This class defines a Basic Block.
// Basic blocks are used during the output routines, and are not used during
// any optimization pass.  They are created late in the game.
class Block : public CFGElement {
N
never 已提交
108
  friend class VMStructs;
D
duke 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
 public:
  // Nodes in this block, in order
  Node_List _nodes;

  // Basic blocks have a Node which defines Control for all Nodes pinned in
  // this block.  This Node is a RegionNode.  Exception-causing Nodes
  // (division, subroutines) and Phi functions are always pinned.  Later,
  // every Node will get pinned to some block.
  Node *head() const { return _nodes[0]; }

  // CAUTION: num_preds() is ONE based, so that predecessor numbers match
  // input edges to Regions and Phis.
  uint num_preds() const { return head()->req(); }
  Node *pred(uint i) const { return head()->in(i); }

  // Array of successor blocks, same size as projs array
  Block_Array _succs;

  // Basic blocks have some number of Nodes which split control to all
  // following blocks.  These Nodes are always Projections.  The field in
  // the Projection and the block-ending Node determine which Block follows.
  uint _num_succs;

  // Basic blocks also carry all sorts of good old fashioned DFS information
  // used to find loops, loop nesting depth, dominators, etc.
  uint _pre_order;              // Pre-order DFS number

  // Dominator tree
  uint _dom_depth;              // Depth in dominator tree for fast LCA
  Block* _idom;                 // Immediate dominator block

  CFGLoop *_loop;               // Loop to which this block belongs
  uint _rpo;                    // Number in reverse post order walk

  virtual bool is_block() { return true; }
R
rasbold 已提交
144 145 146 147 148
  float succ_prob(uint i);      // return probability of i'th successor
  int num_fall_throughs();      // How many fall-through candidate this block has
  void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
  bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
  Block* lone_fall_through();   // Return lone fall-through Block or null
D
duke 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162

  Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
#ifdef ASSERT
  bool dominates(Block* that) {
    int dom_diff = this->_dom_depth - that->_dom_depth;
    if (dom_diff > 0)  return false;
    for (; dom_diff < 0; dom_diff++)  that = that->_idom;
    return this == that;
  }
#endif

  // Report the alignment required by this block.  Must be a power of 2.
  // The previous block will insert nops to get this alignment.
  uint code_alignment();
R
rasbold 已提交
163
  uint compute_loop_alignment();
D
duke 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

  // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
  // It is currently also used to scale such frequencies relative to
  // FreqCountInvocations relative to the old value of 1500.
#define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)

  // Register Pressure (estimate) for Splitting heuristic
  uint _reg_pressure;
  uint _ihrp_index;
  uint _freg_pressure;
  uint _fhrp_index;

  // Mark and visited bits for an LCA calculation in insert_anti_dependences.
  // Since they hold unique node indexes, they do not need reinitialization.
  node_idx_t _raise_LCA_mark;
  void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
  node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
  node_idx_t _raise_LCA_visited;
  void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
  node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }

  // Estimated size in bytes of first instructions in a loop.
  uint _first_inst_size;
  uint first_inst_size() const     { return _first_inst_size; }
  void set_first_inst_size(uint s) { _first_inst_size = s; }

  // Compute the size of first instructions in this block.
  uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);

  // Compute alignment padding if the block needs it.
  // Align a loop if loop's padding is less or equal to padding limit
  // or the size of first instructions in the loop > padding.
  uint alignment_padding(int current_offset) {
    int block_alignment = code_alignment();
    int max_pad = block_alignment-relocInfo::addr_unit();
    if( max_pad > 0 ) {
      assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
      int current_alignment = current_offset & max_pad;
      if( current_alignment != 0 ) {
        uint padding = (block_alignment-current_alignment) & max_pad;
R
rasbold 已提交
204 205 206 207
        if( has_loop_alignment() &&
            padding > (uint)MaxLoopPad &&
            first_inst_size() <= padding ) {
          return 0;
D
duke 已提交
208
        }
R
rasbold 已提交
209
        return padding;
D
duke 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222
      }
    }
    return 0;
  }

  // Connector blocks. Connector blocks are basic blocks devoid of
  // instructions, but may have relevant non-instruction Nodes, such as
  // Phis or MergeMems. Such blocks are discovered and marked during the
  // RemoveEmpty phase, and elided during Output.
  bool _connector;
  void set_connector() { _connector = true; }
  bool is_connector() const { return _connector; };

R
rasbold 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
  // Loop_alignment will be set for blocks which are at the top of loops.
  // The block layout pass may rotate loops such that the loop head may not
  // be the sequentially first block of the loop encountered in the linear
  // list of blocks.  If the layout pass is not run, loop alignment is set
  // for each block which is the head of a loop.
  uint _loop_alignment;
  void set_loop_alignment(Block *loop_top) {
    uint new_alignment = loop_top->compute_loop_alignment();
    if (new_alignment > _loop_alignment) {
      _loop_alignment = new_alignment;
    }
  }
  uint loop_alignment() const { return _loop_alignment; }
  bool has_loop_alignment() const { return loop_alignment() > 0; }

D
duke 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
  // Create a new Block with given head Node.
  // Creates the (empty) predecessor arrays.
  Block( Arena *a, Node *headnode )
    : CFGElement(),
      _nodes(a),
      _succs(a),
      _num_succs(0),
      _pre_order(0),
      _idom(0),
      _loop(NULL),
      _reg_pressure(0),
      _ihrp_index(1),
      _freg_pressure(0),
      _fhrp_index(1),
      _raise_LCA_mark(0),
      _raise_LCA_visited(0),
      _first_inst_size(999999),
R
rasbold 已提交
255 256
      _connector(false),
      _loop_alignment(0) {
D
duke 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    _nodes.push(headnode);
  }

  // Index of 'end' Node
  uint end_idx() const {
    // %%%%% add a proj after every goto
    // so (last->is_block_proj() != last) always, then simplify this code
    // This will not give correct end_idx for block 0 when it only contains root.
    int last_idx = _nodes.size() - 1;
    Node *last  = _nodes[last_idx];
    assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
    return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
  }

  // Basic blocks have a Node which ends them.  This Node determines which
  // basic block follows this one in the program flow.  This Node is either an
  // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
  Node *end() const { return _nodes[end_idx()]; }

  // Add an instruction to an existing block.  It must go after the head
  // instruction and before the end instruction.
  void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
  // Find node in block
  uint find_node( const Node *n ) const;
  // Find and remove n from block list
  void find_remove( const Node *n );

284 285
  // helper function that adds caller save registers to MachProjNode
  void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe);
D
duke 已提交
286
  // Schedule a call next in the block
287
  uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call);
D
duke 已提交
288 289

  // Perform basic-block local scheduling
290
  Node *select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot);
D
duke 已提交
291 292
  void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs );
  void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs);
293
  bool schedule_local(PhaseCFG *cfg, Matcher &m, GrowableArray<int> &ready_cnt, VectorSet &next_call);
D
duke 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
  // Cleanup if any code lands between a Call and his Catch
  void call_catch_cleanup(Block_Array &bbs);
  // Detect implicit-null-check opportunities.  Basically, find NULL checks
  // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  // I can generate a memory op if there is not one nearby.
  void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);

  // Return the empty status of a block
  enum { not_empty, empty_with_goto, completely_empty };
  int is_Empty() const;

  // Forward through connectors
  Block* non_connector() {
    Block* s = this;
    while (s->is_connector()) {
      s = s->_succs[0];
    }
    return s;
  }

R
rasbold 已提交
314 315 316 317 318 319 320 321 322 323
  // Return true if b is a successor of this block
  bool has_successor(Block* b) const {
    for (uint i = 0; i < _num_succs; i++ ) {
      if (non_connector_successor(i) == b) {
        return true;
      }
    }
    return false;
  }

D
duke 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337
  // Successor block, after forwarding through connectors
  Block* non_connector_successor(int i) const {
    return _succs[i]->non_connector();
  }

  // Examine block's code shape to predict if it is not commonly executed.
  bool has_uncommon_code() const;

  // Use frequency calculations and code shape to predict if the block
  // is uncommon.
  bool is_uncommon( Block_Array &bbs ) const;

#ifndef PRODUCT
  // Debugging print of basic block
338 339 340 341
  void dump_bidx(const Block* orig, outputStream* st = tty) const;
  void dump_pred(const Block_Array *bbs, Block* orig, outputStream* st = tty) const;
  void dump_head( const Block_Array *bbs, outputStream* st = tty ) const;
  void dump() const;
D
duke 已提交
342 343 344 345 346 347 348 349
  void dump( const Block_Array *bbs ) const;
#endif
};


//------------------------------PhaseCFG---------------------------------------
// Build an array of Basic Block pointers, one per Node.
class PhaseCFG : public Phase {
N
never 已提交
350
  friend class VMStructs;
D
duke 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363
 private:
  // Build a proper looking cfg.  Return count of basic blocks
  uint build_cfg();

  // Perform DFS search.
  // Setup 'vertex' as DFS to vertex mapping.
  // Setup 'semi' as vertex to DFS mapping.
  // Set 'parent' to DFS parent.
  uint DFS( Tarjan *tarjan );

  // Helper function to insert a node into a block
  void schedule_node_into_block( Node *n, Block *b );

K
kvn 已提交
364
  void replace_block_proj_ctrl( Node *n );
365

D
duke 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  // Set the basic block for pinned Nodes
  void schedule_pinned_nodes( VectorSet &visited );

  // I'll need a few machine-specific GotoNodes.  Clone from this one.
  MachNode *_goto;

  Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
  void verify_anti_dependences(Block* LCA, Node* load) {
    assert(LCA == _bbs[load->_idx], "should already be scheduled");
    insert_anti_dependences(LCA, load, true);
  }

 public:
  PhaseCFG( Arena *a, RootNode *r, Matcher &m );

  uint _num_blocks;             // Count of basic blocks
  Block_List _blocks;           // List of basic blocks
  RootNode *_root;              // Root of whole program
  Block_Array _bbs;             // Map Nodes to owning Basic Block
  Block *_broot;                // Basic block of root
  uint _rpo_ctr;
  CFGLoop* _root_loop;
388
  float _outer_loop_freq;       // Outmost loop frequency
D
duke 已提交
389 390

  // Per node latency estimation, valid only during GCM
391
  GrowableArray<uint> *_node_latency;
D
duke 已提交
392 393 394 395 396

#ifndef PRODUCT
  bool _trace_opto_pipelining;  // tracing flag
#endif

397 398 399 400
#ifdef ASSERT
  Unique_Node_List _raw_oops;
#endif

D
duke 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  // Build dominators
  void Dominators();

  // Estimate block frequencies based on IfNode probabilities
  void Estimate_Block_Frequency();

  // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
  // basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block.
  void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );

  // Compute the (backwards) latency of a node from the uses
  void latency_from_uses(Node *n);

  // Compute the (backwards) latency of a node from a single use
  int latency_from_use(Node *n, const Node *def, Node *use);

  // Compute the (backwards) latency of a node from the uses of this instruction
  void partial_latency_of_defs(Node *n);

  // Schedule Nodes early in their basic blocks.
  bool schedule_early(VectorSet &visited, Node_List &roots);

  // For each node, find the latest block it can be scheduled into
  // and then select the cheapest block between the latest and earliest
  // block to place the node.
  void schedule_late(VectorSet &visited, Node_List &stack);

  // Pick a block between early and late that is a cheaper alternative
  // to late. Helper for schedule_late.
  Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);

  // Compute the instruction global latency with a backwards walk
  void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack);

R
rasbold 已提交
435 436 437
  // Set loop alignment
  void set_loop_alignment();

D
duke 已提交
438
  // Remove empty basic blocks
R
rasbold 已提交
439 440 441 442 443
  void remove_empty();
  void fixup_flow();
  bool move_to_next(Block* bx, uint b_index);
  void move_to_end(Block* bx, uint b_index);
  void insert_goto_at(uint block_no, uint succ_no);
D
duke 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

  // Check for NeverBranch at block end.  This needs to become a GOTO to the
  // true target.  NeverBranch are treated as a conditional branch that always
  // goes the same direction for most of the optimizer and are used to give a
  // fake exit path to infinite loops.  At this late stage they need to turn
  // into Goto's so that when you enter the infinite loop you indeed hang.
  void convert_NeverBranch_to_Goto(Block *b);

  CFGLoop* create_loop_tree();

  // Insert a node into a block, and update the _bbs
  void insert( Block *b, uint idx, Node *n ) {
    b->_nodes.insert( idx, n );
    _bbs.map( n->_idx, b );
  }

#ifndef PRODUCT
  bool trace_opto_pipelining() const { return _trace_opto_pipelining; }

  // Debugging print of CFG
  void dump( ) const;           // CFG only
  void _dump_cfg( const Node *end, VectorSet &visited  ) const;
  void verify() const;
  void dump_headers();
#else
  bool trace_opto_pipelining() const { return false; }
#endif
};


R
rasbold 已提交
474
//------------------------------UnionFind--------------------------------------
D
duke 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
// Map Block indices to a block-index for a cfg-cover.
// Array lookup in the optimized case.
class UnionFind : public ResourceObj {
  uint _cnt, _max;
  uint* _indices;
  ReallocMark _nesting;  // assertion check for reallocations
public:
  UnionFind( uint max );
  void reset( uint max );  // Reset to identity map for [0..max]

  uint lookup( uint nidx ) const {
    return _indices[nidx];
  }
  uint operator[] (uint nidx) const { return lookup(nidx); }

  void map( uint from_idx, uint to_idx ) {
    assert( from_idx < _cnt, "oob" );
    _indices[from_idx] = to_idx;
  }
  void extend( uint from_idx, uint to_idx );

  uint Size() const { return _cnt; }

  uint Find( uint idx ) {
    assert( idx < 65536, "Must fit into uint");
    uint uf_idx = lookup(idx);
    return (uf_idx == idx) ? uf_idx : Find_compress(idx);
  }
  uint Find_compress( uint idx );
  uint Find_const( uint idx ) const;
  void Union( uint idx1, uint idx2 );

};

//----------------------------BlockProbPair---------------------------
// Ordered pair of Node*.
class BlockProbPair VALUE_OBJ_CLASS_SPEC {
protected:
  Block* _target;      // block target
  float  _prob;        // probability of edge to block
public:
  BlockProbPair() : _target(NULL), _prob(0.0) {}
  BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}

  Block* get_target() const { return _target; }
  float get_prob() const { return _prob; }
};

//------------------------------CFGLoop-------------------------------------------
class CFGLoop : public CFGElement {
N
never 已提交
525
  friend class VMStructs;
D
duke 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
  int _id;
  int _depth;
  CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
  CFGLoop *_sibling;     // null terminated list
  CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
  GrowableArray<CFGElement*> _members; // list of members of loop
  GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
  float _exit_prob;       // probability any loop exit is taken on a single loop iteration
  void update_succ_freq(Block* b, float freq);

 public:
  CFGLoop(int id) :
    CFGElement(),
    _id(id),
    _depth(0),
    _parent(NULL),
    _sibling(NULL),
    _child(NULL),
    _exit_prob(1.0f) {}
  CFGLoop* parent() { return _parent; }
  void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk);
  void add_member(CFGElement *s) { _members.push(s); }
  void add_nested_loop(CFGLoop* cl);
  Block* head() {
    assert(_members.at(0)->is_block(), "head must be a block");
    Block* hd = _members.at(0)->as_Block();
    assert(hd->_loop == this, "just checking");
    assert(hd->head()->is_Loop(), "must begin with loop head node");
    return hd;
  }
  Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
  void compute_loop_depth(int depth);
  void compute_freq(); // compute frequency with loop assuming head freq 1.0f
  void scale_freq();   // scale frequency by loop trip count (including outer loops)
560
  float outer_loop_freq() const; // frequency of outer loop
D
duke 已提交
561 562 563 564 565 566 567 568 569 570
  bool in_loop_nest(Block* b);
  float trip_count() const { return 1.0f / _exit_prob; }
  virtual bool is_loop()  { return true; }
  int id() { return _id; }

#ifndef PRODUCT
  void dump( ) const;
  void dump_tree() const;
#endif
};
R
rasbold 已提交
571 572 573 574 575 576


//----------------------------------CFGEdge------------------------------------
// A edge between two basic blocks that will be embodied by a branch or a
// fall-through.
class CFGEdge : public ResourceObj {
N
never 已提交
577
  friend class VMStructs;
R
rasbold 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
 private:
  Block * _from;        // Source basic block
  Block * _to;          // Destination basic block
  float _freq;          // Execution frequency (estimate)
  int   _state;
  bool  _infrequent;
  int   _from_pct;
  int   _to_pct;

  // Private accessors
  int  from_pct() const { return _from_pct; }
  int  to_pct()   const { return _to_pct;   }
  int  from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
  int  to_infrequent()   const { return to_pct()   < BlockLayoutMinDiamondPercentage; }

 public:
  enum {
    open,               // initial edge state; unprocessed
    connected,          // edge used to connect two traces together
    interior            // edge is interior to trace (could be backedge)
  };

  CFGEdge(Block *from, Block *to, float freq, int from_pct, int to_pct) :
    _from(from), _to(to), _freq(freq),
    _from_pct(from_pct), _to_pct(to_pct), _state(open) {
    _infrequent = from_infrequent() || to_infrequent();
  }

  float  freq() const { return _freq; }
  Block* from() const { return _from; }
  Block* to  () const { return _to;   }
  int  infrequent() const { return _infrequent; }
  int state() const { return _state; }

  void set_state(int state) { _state = state; }

#ifndef PRODUCT
  void dump( ) const;
#endif
};


//-----------------------------------Trace-------------------------------------
// An ordered list of basic blocks.
class Trace : public ResourceObj {
 private:
  uint _id;             // Unique Trace id (derived from initial block)
  Block ** _next_list;  // Array mapping index to next block
  Block ** _prev_list;  // Array mapping index to previous block
  Block * _first;       // First block in the trace
  Block * _last;        // Last block in the trace

  // Return the block that follows "b" in the trace.
  Block * next(Block *b) const { return _next_list[b->_pre_order]; }
  void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }

T
twisti 已提交
634
  // Return the block that precedes "b" in the trace.
R
rasbold 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
  Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
  void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }

  // We've discovered a loop in this trace. Reset last to be "b", and first as
  // the block following "b
  void break_loop_after(Block *b) {
    _last = b;
    _first = next(b);
    set_prev(_first, NULL);
    set_next(_last, NULL);
  }

 public:

  Trace(Block *b, Block **next_list, Block **prev_list) :
    _first(b),
    _last(b),
    _next_list(next_list),
    _prev_list(prev_list),
    _id(b->_pre_order) {
    set_next(b, NULL);
    set_prev(b, NULL);
  };

  // Return the id number
  uint id() const { return _id; }
  void set_id(uint id) { _id = id; }

  // Return the first block in the trace
  Block * first_block() const { return _first; }

  // Return the last block in the trace
  Block * last_block() const { return _last; }

  // Insert a trace in the middle of this one after b
  void insert_after(Block *b, Trace *tr) {
    set_next(tr->last_block(), next(b));
    if (next(b) != NULL) {
      set_prev(next(b), tr->last_block());
    }

    set_next(b, tr->first_block());
    set_prev(tr->first_block(), b);

    if (b == _last) {
      _last = tr->last_block();
    }
  }

  void insert_before(Block *b, Trace *tr) {
    Block *p = prev(b);
    assert(p != NULL, "use append instead");
    insert_after(p, tr);
  }

  // Append another trace to this one.
  void append(Trace *tr) {
    insert_after(_last, tr);
  }

  // Append a block at the end of this trace
  void append(Block *b) {
    set_next(_last, b);
    set_prev(b, _last);
    _last = b;
  }

  // Adjust the the blocks in this trace
  void fixup_blocks(PhaseCFG &cfg);
  bool backedge(CFGEdge *e);

#ifndef PRODUCT
  void dump( ) const;
#endif
};

//------------------------------PhaseBlockLayout-------------------------------
// Rearrange blocks into some canonical order, based on edges and their frequencies
class PhaseBlockLayout : public Phase {
N
never 已提交
714
  friend class VMStructs;
R
rasbold 已提交
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
  PhaseCFG &_cfg;               // Control flow graph

  GrowableArray<CFGEdge *> *edges;
  Trace **traces;
  Block **next;
  Block **prev;
  UnionFind *uf;

  // Given a block, find its encompassing Trace
  Trace * trace(Block *b) {
    return traces[uf->Find_compress(b->_pre_order)];
  }
 public:
  PhaseBlockLayout(PhaseCFG &cfg);

  void find_edges();
  void grow_traces();
  void merge_traces(bool loose_connections);
  void reorder_traces(int count);
  void union_traces(Trace* from, Trace* to);
};
736 737

#endif // SHARE_VM_OPTO_BLOCK_HPP