templateInterpreter.cpp 22.8 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_templateInterpreter.cpp.incl"

#ifndef CC_INTERP

# define __ _masm->

void TemplateInterpreter::initialize() {
  if (_code != NULL) return;
  // assertions
  assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
         "dispatch table too small");

  AbstractInterpreter::initialize();

  TemplateTable::initialize();

  // generate interpreter
  { ResourceMark rm;
    TraceTime timer("Interpreter generation", TraceStartupTime);
    int code_size = InterpreterCodeSize;
    NOT_PRODUCT(code_size *= 4;)  // debug uses extra interpreter code space
    _code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
                          "Interpreter");
    InterpreterGenerator g(_code);
    if (PrintInterpreter) print();
  }

  // initialize dispatch table
  _active_table = _normal_table;
}

//------------------------------------------------------------------------------------------------------------------------
// Implementation of EntryPoint

EntryPoint::EntryPoint() {
  assert(number_of_states == 9, "check the code below");
  _entry[btos] = NULL;
  _entry[ctos] = NULL;
  _entry[stos] = NULL;
  _entry[atos] = NULL;
  _entry[itos] = NULL;
  _entry[ltos] = NULL;
  _entry[ftos] = NULL;
  _entry[dtos] = NULL;
  _entry[vtos] = NULL;
}


EntryPoint::EntryPoint(address bentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
  assert(number_of_states == 9, "check the code below");
  _entry[btos] = bentry;
  _entry[ctos] = centry;
  _entry[stos] = sentry;
  _entry[atos] = aentry;
  _entry[itos] = ientry;
  _entry[ltos] = lentry;
  _entry[ftos] = fentry;
  _entry[dtos] = dentry;
  _entry[vtos] = ventry;
}


void EntryPoint::set_entry(TosState state, address entry) {
  assert(0 <= state && state < number_of_states, "state out of bounds");
  _entry[state] = entry;
}


address EntryPoint::entry(TosState state) const {
  assert(0 <= state && state < number_of_states, "state out of bounds");
  return _entry[state];
}


void EntryPoint::print() {
  tty->print("[");
  for (int i = 0; i < number_of_states; i++) {
    if (i > 0) tty->print(", ");
    tty->print(INTPTR_FORMAT, _entry[i]);
  }
  tty->print("]");
}


bool EntryPoint::operator == (const EntryPoint& y) {
  int i = number_of_states;
  while (i-- > 0) {
    if (_entry[i] != y._entry[i]) return false;
  }
  return true;
}


//------------------------------------------------------------------------------------------------------------------------
// Implementation of DispatchTable

EntryPoint DispatchTable::entry(int i) const {
  assert(0 <= i && i < length, "index out of bounds");
  return
    EntryPoint(
      _table[btos][i],
      _table[ctos][i],
      _table[stos][i],
      _table[atos][i],
      _table[itos][i],
      _table[ltos][i],
      _table[ftos][i],
      _table[dtos][i],
      _table[vtos][i]
    );
}


void DispatchTable::set_entry(int i, EntryPoint& entry) {
  assert(0 <= i && i < length, "index out of bounds");
  assert(number_of_states == 9, "check the code below");
  _table[btos][i] = entry.entry(btos);
  _table[ctos][i] = entry.entry(ctos);
  _table[stos][i] = entry.entry(stos);
  _table[atos][i] = entry.entry(atos);
  _table[itos][i] = entry.entry(itos);
  _table[ltos][i] = entry.entry(ltos);
  _table[ftos][i] = entry.entry(ftos);
  _table[dtos][i] = entry.entry(dtos);
  _table[vtos][i] = entry.entry(vtos);
}


bool DispatchTable::operator == (DispatchTable& y) {
  int i = length;
  while (i-- > 0) {
    EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
    if (!(entry(i) == t)) return false;
  }
  return true;
}

address    TemplateInterpreter::_remove_activation_entry                    = NULL;
address    TemplateInterpreter::_remove_activation_preserving_args_entry    = NULL;


address    TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
address    TemplateInterpreter::_throw_ArrayStoreException_entry            = NULL;
address    TemplateInterpreter::_throw_ArithmeticException_entry            = NULL;
address    TemplateInterpreter::_throw_ClassCastException_entry             = NULL;
171
address    TemplateInterpreter::_throw_WrongMethodType_entry                = NULL;
D
duke 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
address    TemplateInterpreter::_throw_NullPointerException_entry           = NULL;
address    TemplateInterpreter::_throw_StackOverflowError_entry             = NULL;
address    TemplateInterpreter::_throw_exception_entry                      = NULL;

#ifndef PRODUCT
EntryPoint TemplateInterpreter::_trace_code;
#endif // !PRODUCT
EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
EntryPoint TemplateInterpreter::_earlyret_entry;
EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
EntryPoint TemplateInterpreter::_continuation_entry;
EntryPoint TemplateInterpreter::_safept_entry;

address    TemplateInterpreter::_return_3_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
address    TemplateInterpreter::_return_5_addrs_by_index[TemplateInterpreter::number_of_return_addrs];

DispatchTable TemplateInterpreter::_active_table;
DispatchTable TemplateInterpreter::_normal_table;
DispatchTable TemplateInterpreter::_safept_table;
address    TemplateInterpreter::_wentry_point[DispatchTable::length];

TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
  _unimplemented_bytecode    = NULL;
  _illegal_bytecode_sequence = NULL;
}

static const BasicType types[Interpreter::number_of_result_handlers] = {
  T_BOOLEAN,
  T_CHAR   ,
  T_BYTE   ,
  T_SHORT  ,
  T_INT    ,
  T_LONG   ,
  T_VOID   ,
  T_FLOAT  ,
  T_DOUBLE ,
  T_OBJECT
};

void TemplateInterpreterGenerator::generate_all() {
  AbstractInterpreterGenerator::generate_all();

  { CodeletMark cm(_masm, "error exits");
    _unimplemented_bytecode    = generate_error_exit("unimplemented bytecode");
    _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
  }

#ifndef PRODUCT
  if (TraceBytecodes) {
    CodeletMark cm(_masm, "bytecode tracing support");
    Interpreter::_trace_code =
      EntryPoint(
        generate_trace_code(btos),
        generate_trace_code(ctos),
        generate_trace_code(stos),
        generate_trace_code(atos),
        generate_trace_code(itos),
        generate_trace_code(ltos),
        generate_trace_code(ftos),
        generate_trace_code(dtos),
        generate_trace_code(vtos)
      );
  }
#endif // !PRODUCT

  { CodeletMark cm(_masm, "return entry points");
    for (int i = 0; i < Interpreter::number_of_return_entries; i++) {
      Interpreter::_return_entry[i] =
        EntryPoint(
          generate_return_entry_for(itos, i),
          generate_return_entry_for(itos, i),
          generate_return_entry_for(itos, i),
          generate_return_entry_for(atos, i),
          generate_return_entry_for(itos, i),
          generate_return_entry_for(ltos, i),
          generate_return_entry_for(ftos, i),
          generate_return_entry_for(dtos, i),
          generate_return_entry_for(vtos, i)
        );
    }
  }

  { CodeletMark cm(_masm, "earlyret entry points");
    Interpreter::_earlyret_entry =
      EntryPoint(
        generate_earlyret_entry_for(btos),
        generate_earlyret_entry_for(ctos),
        generate_earlyret_entry_for(stos),
        generate_earlyret_entry_for(atos),
        generate_earlyret_entry_for(itos),
        generate_earlyret_entry_for(ltos),
        generate_earlyret_entry_for(ftos),
        generate_earlyret_entry_for(dtos),
        generate_earlyret_entry_for(vtos)
      );
  }

  { CodeletMark cm(_masm, "deoptimization entry points");
    for (int i = 0; i < Interpreter::number_of_deopt_entries; i++) {
      Interpreter::_deopt_entry[i] =
        EntryPoint(
          generate_deopt_entry_for(itos, i),
          generate_deopt_entry_for(itos, i),
          generate_deopt_entry_for(itos, i),
          generate_deopt_entry_for(atos, i),
          generate_deopt_entry_for(itos, i),
          generate_deopt_entry_for(ltos, i),
          generate_deopt_entry_for(ftos, i),
          generate_deopt_entry_for(dtos, i),
          generate_deopt_entry_for(vtos, i)
        );
    }
  }

  { CodeletMark cm(_masm, "result handlers for native calls");
    // The various result converter stublets.
    int is_generated[Interpreter::number_of_result_handlers];
    memset(is_generated, 0, sizeof(is_generated));

    for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
      BasicType type = types[i];
      if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
        Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
      }
    }
  }

  for (int j = 0; j < number_of_states; j++) {
    const TosState states[] = {btos, ctos, stos, itos, ltos, ftos, dtos, atos, vtos};
    Interpreter::_return_3_addrs_by_index[Interpreter::TosState_as_index(states[j])] = Interpreter::return_entry(states[j], 3);
    Interpreter::_return_5_addrs_by_index[Interpreter::TosState_as_index(states[j])] = Interpreter::return_entry(states[j], 5);
  }

  { CodeletMark cm(_masm, "continuation entry points");
    Interpreter::_continuation_entry =
      EntryPoint(
        generate_continuation_for(btos),
        generate_continuation_for(ctos),
        generate_continuation_for(stos),
        generate_continuation_for(atos),
        generate_continuation_for(itos),
        generate_continuation_for(ltos),
        generate_continuation_for(ftos),
        generate_continuation_for(dtos),
        generate_continuation_for(vtos)
      );
  }

  { CodeletMark cm(_masm, "safepoint entry points");
    Interpreter::_safept_entry =
      EntryPoint(
        generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
        generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
        generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
        generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
        generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
        generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
        generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
        generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
        generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
      );
  }

  { CodeletMark cm(_masm, "exception handling");
    // (Note: this is not safepoint safe because thread may return to compiled code)
    generate_throw_exception();
  }

  { CodeletMark cm(_masm, "throw exception entrypoints");
    Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler("java/lang/ArrayIndexOutOfBoundsException");
    Interpreter::_throw_ArrayStoreException_entry            = generate_klass_exception_handler("java/lang/ArrayStoreException"                 );
    Interpreter::_throw_ArithmeticException_entry            = generate_exception_handler("java/lang/ArithmeticException"           , "/ by zero");
    Interpreter::_throw_ClassCastException_entry             = generate_ClassCastException_handler();
345
    Interpreter::_throw_WrongMethodType_entry                = generate_WrongMethodType_handler();
D
duke 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    Interpreter::_throw_NullPointerException_entry           = generate_exception_handler("java/lang/NullPointerException"          , NULL       );
    Interpreter::_throw_StackOverflowError_entry             = generate_StackOverflowError_handler();
  }



#define method_entry(kind)                                                                    \
  { CodeletMark cm(_masm, "method entry point (kind = " #kind ")");                    \
    Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind);  \
  }

  // all non-native method kinds
  method_entry(zerolocals)
  method_entry(zerolocals_synchronized)
  method_entry(empty)
  method_entry(accessor)
  method_entry(abstract)
363
  method_entry(method_handle)
D
duke 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
  method_entry(java_lang_math_sin  )
  method_entry(java_lang_math_cos  )
  method_entry(java_lang_math_tan  )
  method_entry(java_lang_math_abs  )
  method_entry(java_lang_math_sqrt )
  method_entry(java_lang_math_log  )
  method_entry(java_lang_math_log10)

  // all native method kinds (must be one contiguous block)
  Interpreter::_native_entry_begin = Interpreter::code()->code_end();
  method_entry(native)
  method_entry(native_synchronized)
  Interpreter::_native_entry_end = Interpreter::code()->code_end();

#undef method_entry

  // Bytecodes
  set_entry_points_for_all_bytes();
  set_safepoints_for_all_bytes();
}

//------------------------------------------------------------------------------------------------------------------------

address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
  address entry = __ pc();
  __ stop(msg);
  return entry;
}


//------------------------------------------------------------------------------------------------------------------------

void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
  for (int i = 0; i < DispatchTable::length; i++) {
    Bytecodes::Code code = (Bytecodes::Code)i;
    if (Bytecodes::is_defined(code)) {
      set_entry_points(code);
    } else {
      set_unimplemented(i);
    }
  }
}


void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
  for (int i = 0; i < DispatchTable::length; i++) {
    Bytecodes::Code code = (Bytecodes::Code)i;
    if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
  }
}


void TemplateInterpreterGenerator::set_unimplemented(int i) {
  address e = _unimplemented_bytecode;
  EntryPoint entry(e, e, e, e, e, e, e, e, e);
  Interpreter::_normal_table.set_entry(i, entry);
  Interpreter::_wentry_point[i] = _unimplemented_bytecode;
}


void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
  CodeletMark cm(_masm, Bytecodes::name(code), code);
  // initialize entry points
  assert(_unimplemented_bytecode    != NULL, "should have been generated before");
  assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
  address bep = _illegal_bytecode_sequence;
  address cep = _illegal_bytecode_sequence;
  address sep = _illegal_bytecode_sequence;
  address aep = _illegal_bytecode_sequence;
  address iep = _illegal_bytecode_sequence;
  address lep = _illegal_bytecode_sequence;
  address fep = _illegal_bytecode_sequence;
  address dep = _illegal_bytecode_sequence;
  address vep = _unimplemented_bytecode;
  address wep = _unimplemented_bytecode;
  // code for short & wide version of bytecode
  if (Bytecodes::is_defined(code)) {
    Template* t = TemplateTable::template_for(code);
    assert(t->is_valid(), "just checking");
    set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
  }
  if (Bytecodes::wide_is_defined(code)) {
    Template* t = TemplateTable::template_for_wide(code);
    assert(t->is_valid(), "just checking");
    set_wide_entry_point(t, wep);
  }
  // set entry points
  EntryPoint entry(bep, cep, sep, aep, iep, lep, fep, dep, vep);
  Interpreter::_normal_table.set_entry(code, entry);
  Interpreter::_wentry_point[code] = wep;
}


void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
  assert(t->is_valid(), "template must exist");
  assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions")
  wep = __ pc(); generate_and_dispatch(t);
}


void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  assert(t->is_valid(), "template must exist");
  switch (t->tos_in()) {
    case btos: vep = __ pc(); __ pop(btos); bep = __ pc(); generate_and_dispatch(t); break;
    case ctos: vep = __ pc(); __ pop(ctos); sep = __ pc(); generate_and_dispatch(t); break;
    case stos: vep = __ pc(); __ pop(stos); sep = __ pc(); generate_and_dispatch(t); break;
    case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
    case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
    case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
    case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
    case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
    case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);     break;
    default  : ShouldNotReachHere();                                                 break;
  }
}


//------------------------------------------------------------------------------------------------------------------------

void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
  if (PrintBytecodeHistogram)                                    histogram_bytecode(t);
#ifndef PRODUCT
  // debugging code
  if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
  if (PrintBytecodePairHistogram)                                histogram_bytecode_pair(t);
  if (TraceBytecodes)                                            trace_bytecode(t);
  if (StopInterpreterAt > 0)                                     stop_interpreter_at();
  __ verify_FPU(1, t->tos_in());
#endif // !PRODUCT
  int step;
  if (!t->does_dispatch()) {
    step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
    if (tos_out == ilgl) tos_out = t->tos_out();
    // compute bytecode size
    assert(step > 0, "just checkin'");
    // setup stuff for dispatching next bytecode
    if (ProfileInterpreter && VerifyDataPointer
        && methodDataOopDesc::bytecode_has_profile(t->bytecode())) {
      __ verify_method_data_pointer();
    }
    __ dispatch_prolog(tos_out, step);
  }
  // generate template
  t->generate(_masm);
  // advance
  if (t->does_dispatch()) {
#ifdef ASSERT
    // make sure execution doesn't go beyond this point if code is broken
    __ should_not_reach_here();
#endif // ASSERT
  } else {
    // dispatch to next bytecode
    __ dispatch_epilog(tos_out, step);
  }
}

//------------------------------------------------------------------------------------------------------------------------
// Entry points

address TemplateInterpreter::return_entry(TosState state, int length) {
  guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
  return _return_entry[length].entry(state);
}


address TemplateInterpreter::deopt_entry(TosState state, int length) {
  guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
  return _deopt_entry[length].entry(state);
}

//------------------------------------------------------------------------------------------------------------------------
// Suport for invokes

int TemplateInterpreter::TosState_as_index(TosState state) {
  assert( state < number_of_states , "Invalid state in TosState_as_index");
  assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
  return (int)state;
}


//------------------------------------------------------------------------------------------------------------------------
// Safepoint suppport

static inline void copy_table(address* from, address* to, int size) {
  // Copy non-overlapping tables. The copy has to occur word wise for MT safety.
  while (size-- > 0) *to++ = *from++;
}

void TemplateInterpreter::notice_safepoints() {
  if (!_notice_safepoints) {
    // switch to safepoint dispatch table
    _notice_safepoints = true;
    copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
  }
}

// switch from the dispatch table which notices safepoints back to the
// normal dispatch table.  So that we can notice single stepping points,
// keep the safepoint dispatch table if we are single stepping in JVMTI.
// Note that the should_post_single_step test is exactly as fast as the
// JvmtiExport::_enabled test and covers both cases.
void TemplateInterpreter::ignore_safepoints() {
  if (_notice_safepoints) {
    if (!JvmtiExport::should_post_single_step()) {
      // switch to normal dispatch table
      _notice_safepoints = false;
      copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
    }
  }
}

// If deoptimization happens, this method returns the point where to continue in
// interpreter. For calls (invokexxxx, newxxxx) the continuation is at next
// bci and the top of stack is in eax/edx/FPU tos.
// For putfield/getfield, put/getstatic, the continuation is at the same
// bci and the TOS is on stack.

// Note: deopt_entry(type, 0) means reexecute bytecode
//       deopt_entry(type, length) means continue at next bytecode

address TemplateInterpreter::continuation_for(methodOop method, address bcp, int callee_parameters, bool is_top_frame, bool& use_next_mdp) {
  assert(method->contains(bcp), "just checkin'");
  Bytecodes::Code code   = Bytecodes::java_code_at(bcp);
  if (code == Bytecodes::_return) {
      // This is used for deopt during registration of finalizers
      // during Object.<init>.  We simply need to resume execution at
      // the standard return vtos bytecode to pop the frame normally.
      // reexecuting the real bytecode would cause double registration
      // of the finalizable object.
      assert(is_top_frame, "must be on top");
      return _normal_table.entry(Bytecodes::_return).entry(vtos);
  } else {
    return AbstractInterpreter::continuation_for(method, bcp, callee_parameters, is_top_frame, use_next_mdp);
  }
}

#endif // !CC_INTERP