heapRegion.cpp 37.0 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25
#include "precompiled.hpp"
J
johnc 已提交
26
#include "code/nmethod.hpp"
27 28 29 30
#include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/heapRegion.inline.hpp"
31
#include "gc_implementation/g1/heapRegionBounds.inline.hpp"
32
#include "gc_implementation/g1/heapRegionRemSet.hpp"
33
#include "gc_implementation/g1/heapRegionManager.inline.hpp"
34
#include "gc_implementation/shared/liveRange.hpp"
35 36
#include "memory/genOopClosures.inline.hpp"
#include "memory/iterator.hpp"
37
#include "memory/space.inline.hpp"
38
#include "oops/oop.inline.hpp"
39
#include "runtime/orderAccess.inline.hpp"
40

41 42
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC

43 44 45 46 47
int    HeapRegion::LogOfHRGrainBytes = 0;
int    HeapRegion::LogOfHRGrainWords = 0;
size_t HeapRegion::GrainBytes        = 0;
size_t HeapRegion::GrainWords        = 0;
size_t HeapRegion::CardsPerRegion    = 0;
48

49
HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
50
                                 HeapRegion* hr, ExtendedOopClosure* cl,
51 52
                                 CardTableModRefBS::PrecisionStyle precision,
                                 FilterKind fk) :
53
  DirtyCardToOopClosure(hr, cl, precision, NULL),
54
  _hr(hr), _fk(fk), _g1(g1) { }
55 56 57

FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
                                                   OopClosure* oc) :
58
  _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
59 60 61 62 63 64

template<class ClosureType>
HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
                               HeapRegion* hr,
                               HeapWord* cur, HeapWord* top) {
  oop cur_oop = oop(cur);
65
  size_t oop_size = hr->block_size(cur);
66 67 68 69 70 71 72 73 74 75
  HeapWord* next_obj = cur + oop_size;
  while (next_obj < top) {
    // Keep filtering the remembered set.
    if (!g1h->is_obj_dead(cur_oop, hr)) {
      // Bottom lies entirely below top, so we can call the
      // non-memRegion version of oop_iterate below.
      cur_oop->oop_iterate(cl);
    }
    cur = next_obj;
    cur_oop = oop(cur);
76
    oop_size = hr->block_size(cur);
77 78 79 80 81
    next_obj = cur + oop_size;
  }
  return cur;
}

82 83 84
void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
                                      HeapWord* bottom,
                                      HeapWord* top) {
85
  G1CollectedHeap* g1h = _g1;
86
  size_t oop_size;
87
  ExtendedOopClosure* cl2 = NULL;
88

89 90
  FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
  FilterOutOfRegionClosure outOfRegionFilt(_hr, _cl);
91

92
  switch (_fk) {
93
  case NoFilterKind:          cl2 = _cl; break;
94 95
  case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
96
  default:                    ShouldNotReachHere();
97 98 99 100 101 102 103 104 105
  }

  // Start filtering what we add to the remembered set. If the object is
  // not considered dead, either because it is marked (in the mark bitmap)
  // or it was allocated after marking finished, then we add it. Otherwise
  // we can safely ignore the object.
  if (!g1h->is_obj_dead(oop(bottom), _hr)) {
    oop_size = oop(bottom)->oop_iterate(cl2, mr);
  } else {
106
    oop_size = _hr->block_size(bottom);
107 108 109 110 111 112 113 114
  }

  bottom += oop_size;

  if (bottom < top) {
    // We replicate the loop below for several kinds of possible filters.
    switch (_fk) {
    case NoFilterKind:
115
      bottom = walk_mem_region_loop(_cl, g1h, _hr, bottom, top);
116
      break;
117

118
    case IntoCSFilterKind: {
119
      FilterIntoCSClosure filt(this, g1h, _cl);
120 121 122
      bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
      break;
    }
123

124
    case OutOfRegionFilterKind: {
125
      FilterOutOfRegionClosure filt(_hr, _cl);
126 127 128
      bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
      break;
    }
129

130 131 132 133 134 135 136 137 138 139 140
    default:
      ShouldNotReachHere();
    }

    // Last object. Need to do dead-obj filtering here too.
    if (!g1h->is_obj_dead(oop(bottom), _hr)) {
      oop(bottom)->oop_iterate(cl2, mr);
    }
  }
}

141
size_t HeapRegion::max_region_size() {
142
  return HeapRegionBounds::max_size();
143 144
}

145
void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
146 147
  uintx region_size = G1HeapRegionSize;
  if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
148
    size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
149 150
    region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
                       (uintx) HeapRegionBounds::min_size());
151 152 153 154 155 156
  }

  int region_size_log = log2_long((jlong) region_size);
  // Recalculate the region size to make sure it's a power of
  // 2. This means that region_size is the largest power of 2 that's
  // <= what we've calculated so far.
157
  region_size = ((uintx)1 << region_size_log);
158 159

  // Now make sure that we don't go over or under our limits.
160 161 162 163
  if (region_size < HeapRegionBounds::min_size()) {
    region_size = HeapRegionBounds::min_size();
  } else if (region_size > HeapRegionBounds::max_size()) {
    region_size = HeapRegionBounds::max_size();
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  }

  // And recalculate the log.
  region_size_log = log2_long((jlong) region_size);

  // Now, set up the globals.
  guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
  LogOfHRGrainBytes = region_size_log;

  guarantee(LogOfHRGrainWords == 0, "we should only set it once");
  LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;

  guarantee(GrainBytes == 0, "we should only set it once");
  // The cast to int is safe, given that we've bounded region_size by
  // MIN_REGION_SIZE and MAX_REGION_SIZE.
179
  GrainBytes = (size_t)region_size;
180 181 182

  guarantee(GrainWords == 0, "we should only set it once");
  GrainWords = GrainBytes >> LogHeapWordSize;
183
  guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
184 185 186 187 188

  guarantee(CardsPerRegion == 0, "we should only set it once");
  CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
}

189 190 191 192 193 194 195 196
void HeapRegion::reset_after_compaction() {
  G1OffsetTableContigSpace::reset_after_compaction();
  // After a compaction the mark bitmap is invalid, so we must
  // treat all objects as being inside the unmarked area.
  zero_marked_bytes();
  init_top_at_mark_start();
}

197
void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
198 199 200 201 202
  assert(_humongous_start_region == NULL,
         "we should have already filtered out humongous regions");
  assert(_end == _orig_end,
         "we should have already filtered out humongous regions");

203 204
  _in_collection_set = false;

205
  set_allocation_context(AllocationContext::system());
206 207
  set_young_index_in_cset(-1);
  uninstall_surv_rate_group();
208
  set_free();
209
  reset_pre_dummy_top();
210 211 212 213

  if (!par) {
    // If this is parallel, this will be done later.
    HeapRegionRemSet* hrrs = rem_set();
214 215 216 217 218
    if (locked) {
      hrrs->clear_locked();
    } else {
      hrrs->clear();
    }
219
    _claimed = InitialClaimValue;
220 221 222 223 224
  }
  zero_marked_bytes();

  _offsets.resize(HeapRegion::GrainWords);
  init_top_at_mark_start();
T
Merge  
tonyp 已提交
225
  if (clear_space) clear(SpaceDecorator::Mangle);
226 227
}

228 229
void HeapRegion::par_clear() {
  assert(used() == 0, "the region should have been already cleared");
230
  assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
231 232 233 234 235 236 237
  HeapRegionRemSet* hrrs = rem_set();
  hrrs->clear();
  CardTableModRefBS* ct_bs =
                   (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
  ct_bs->clear(MemRegion(bottom(), end()));
}

238
void HeapRegion::calc_gc_efficiency() {
239 240
  // GC efficiency is the ratio of how much space would be
  // reclaimed over how long we predict it would take to reclaim it.
241
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
242
  G1CollectorPolicy* g1p = g1h->g1_policy();
243 244 245 246 247 248 249

  // Retrieve a prediction of the elapsed time for this region for
  // a mixed gc because the region will only be evacuated during a
  // mixed gc.
  double region_elapsed_time_ms =
    g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
  _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
250 251
}

252
void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
253
  assert(!isHumongous(), "sanity / pre-condition");
254 255 256
  assert(end() == _orig_end,
         "Should be normal before the humongous object allocation");
  assert(top() == bottom(), "should be empty");
257
  assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
258

259
  _type.set_starts_humongous();
260
  _humongous_start_region = this;
261 262

  set_end(new_end);
263
  _offsets.set_for_starts_humongous(new_top);
264 265
}

266
void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
267
  assert(!isHumongous(), "sanity / pre-condition");
268 269 270
  assert(end() == _orig_end,
         "Should be normal before the humongous object allocation");
  assert(top() == bottom(), "should be empty");
271
  assert(first_hr->startsHumongous(), "pre-condition");
272

273
  _type.set_continues_humongous();
274
  _humongous_start_region = first_hr;
275 276
}

277
void HeapRegion::clear_humongous() {
278 279 280 281 282 283 284 285 286 287 288 289 290 291
  assert(isHumongous(), "pre-condition");

  if (startsHumongous()) {
    assert(top() <= end(), "pre-condition");
    set_end(_orig_end);
    if (top() > end()) {
      // at least one "continues humongous" region after it
      set_top(end());
    }
  } else {
    // continues humongous
    assert(end() == _orig_end, "sanity");
  }

292
  assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
293 294 295
  _humongous_start_region = NULL;
}

296 297 298 299 300 301 302 303 304 305 306
bool HeapRegion::claimHeapRegion(jint claimValue) {
  jint current = _claimed;
  if (current != claimValue) {
    jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
    if (res == current) {
      return true;
    }
  }
  return false;
}

307
HeapRegion::HeapRegion(uint hrm_index,
308
                       G1BlockOffsetSharedArray* sharedOffsetArray,
S
sjohanss 已提交
309
                       MemRegion mr) :
310
    G1OffsetTableContigSpace(sharedOffsetArray, mr),
S
sjohanss 已提交
311 312
    _hrm_index(hrm_index),
    _allocation_context(AllocationContext::system()),
313
    _humongous_start_region(NULL),
314
    _in_collection_set(false),
315
    _next_in_special_set(NULL), _orig_end(NULL),
316
    _claimed(InitialClaimValue), _evacuation_failed(false),
317
    _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
318
    _next_young_region(NULL),
319
    _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
320 321 322 323 324
#ifdef ASSERT
    _containing_set(NULL),
#endif // ASSERT
     _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
    _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
325
    _predicted_bytes_to_copy(0)
326
{
J
johnc 已提交
327
  _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
328 329 330 331 332 333 334 335 336 337
  assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");

  initialize(mr);
}

void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
  assert(_rem_set->is_empty(), "Remembered set must be empty");

  G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);

338
  _orig_end = mr.end();
339
  hr_clear(false /*par*/, false /*clear_space*/);
T
Merge  
tonyp 已提交
340
  set_top(bottom());
341
  record_timestamp();
342 343 344
}

CompactibleSpace* HeapRegion::next_compaction_space() const {
345
  return G1CollectedHeap::heap()->next_compaction_region(this);
346 347
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
                                                    bool during_conc_mark) {
  // We always recreate the prev marking info and we'll explicitly
  // mark all objects we find to be self-forwarded on the prev
  // bitmap. So all objects need to be below PTAMS.
  _prev_marked_bytes = 0;

  if (during_initial_mark) {
    // During initial-mark, we'll also explicitly mark all objects
    // we find to be self-forwarded on the next bitmap. So all
    // objects need to be below NTAMS.
    _next_top_at_mark_start = top();
    _next_marked_bytes = 0;
  } else if (during_conc_mark) {
    // During concurrent mark, all objects in the CSet (including
    // the ones we find to be self-forwarded) are implicitly live.
    // So all objects need to be above NTAMS.
    _next_top_at_mark_start = bottom();
    _next_marked_bytes = 0;
  }
}

void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
                                                  bool during_conc_mark,
                                                  size_t marked_bytes) {
  assert(0 <= marked_bytes && marked_bytes <= used(),
         err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
                 marked_bytes, used()));
376
  _prev_top_at_mark_start = top();
377 378 379
  _prev_marked_bytes = marked_bytes;
}

380 381 382 383 384 385 386 387 388 389 390 391
HeapWord*
HeapRegion::object_iterate_mem_careful(MemRegion mr,
                                                 ObjectClosure* cl) {
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  // We used to use "block_start_careful" here.  But we're actually happy
  // to update the BOT while we do this...
  HeapWord* cur = block_start(mr.start());
  mr = mr.intersection(used_region());
  if (mr.is_empty()) return NULL;
  // Otherwise, find the obj that extends onto mr.start().

  assert(cur <= mr.start()
392
         && (oop(cur)->klass_or_null() == NULL ||
393 394 395 396 397
             cur + oop(cur)->size() > mr.start()),
         "postcondition of block_start");
  oop obj;
  while (cur < mr.end()) {
    obj = oop(cur);
398
    if (obj->klass_or_null() == NULL) {
399 400 401 402 403 404 405 406
      // Ran into an unparseable point.
      return cur;
    } else if (!g1h->is_obj_dead(obj)) {
      cl->do_object(obj);
    }
    if (cl->abort()) return cur;
    // The check above must occur before the operation below, since an
    // abort might invalidate the "size" operation.
407
    cur += block_size(cur);
408 409 410 411 412 413 414
  }
  return NULL;
}

HeapWord*
HeapRegion::
oops_on_card_seq_iterate_careful(MemRegion mr,
415
                                 FilterOutOfRegionClosure* cl,
416 417 418 419 420 421 422 423 424
                                 bool filter_young,
                                 jbyte* card_ptr) {
  // Currently, we should only have to clean the card if filter_young
  // is true and vice versa.
  if (filter_young) {
    assert(card_ptr != NULL, "pre-condition");
  } else {
    assert(card_ptr == NULL, "pre-condition");
  }
425 426 427 428
  G1CollectedHeap* g1h = G1CollectedHeap::heap();

  // If we're within a stop-world GC, then we might look at a card in a
  // GC alloc region that extends onto a GC LAB, which may not be
429
  // parseable.  Stop such at the "scan_top" of the region.
430
  if (g1h->is_gc_active()) {
431
    mr = mr.intersection(MemRegion(bottom(), scan_top()));
432 433 434 435 436 437
  } else {
    mr = mr.intersection(used_region());
  }
  if (mr.is_empty()) return NULL;
  // Otherwise, find the obj that extends onto mr.start().

438 439 440 441 442 443 444 445 446 447
  // The intersection of the incoming mr (for the card) and the
  // allocated part of the region is non-empty. This implies that
  // we have actually allocated into this region. The code in
  // G1CollectedHeap.cpp that allocates a new region sets the
  // is_young tag on the region before allocating. Thus we
  // safely know if this region is young.
  if (is_young() && filter_young) {
    return NULL;
  }

J
johnc 已提交
448 449
  assert(!is_young(), "check value of filter_young");

450 451 452 453 454 455 456 457 458
  // We can only clean the card here, after we make the decision that
  // the card is not young. And we only clean the card if we have been
  // asked to (i.e., card_ptr != NULL).
  if (card_ptr != NULL) {
    *card_ptr = CardTableModRefBS::clean_card_val();
    // We must complete this write before we do any of the reads below.
    OrderAccess::storeload();
  }

459 460 461 462
  // Cache the boundaries of the memory region in some const locals
  HeapWord* const start = mr.start();
  HeapWord* const end = mr.end();

463 464
  // We used to use "block_start_careful" here.  But we're actually happy
  // to update the BOT while we do this...
465 466
  HeapWord* cur = block_start(start);
  assert(cur <= start, "Postcondition");
467

468 469 470
  oop obj;

  HeapWord* next = cur;
471
  do {
472 473 474
    cur = next;
    obj = oop(cur);
    if (obj->klass_or_null() == NULL) {
475 476 477 478
      // Ran into an unparseable point.
      return cur;
    }
    // Otherwise...
479
    next = cur + block_size(cur);
480
  } while (next <= start);
481 482 483 484

  // If we finish the above loop...We have a parseable object that
  // begins on or before the start of the memory region, and ends
  // inside or spans the entire region.
485 486
  assert(cur <= start, "Loop postcondition");
  assert(obj->klass_or_null() != NULL, "Loop postcondition");
487

488
  do {
489
    obj = oop(cur);
490
    assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant");
491
    if (obj->klass_or_null() == NULL) {
492 493
      // Ran into an unparseable point.
      return cur;
494
    }
495

496 497
    // Advance the current pointer. "obj" still points to the object to iterate.
    cur = cur + block_size(cur);
498

499
    if (!g1h->is_obj_dead(obj)) {
500 501 502 503 504
      // Non-objArrays are sometimes marked imprecise at the object start. We
      // always need to iterate over them in full.
      // We only iterate over object arrays in full if they are completely contained
      // in the memory region.
      if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
505 506
        obj->oop_iterate(cl);
      } else {
507
        obj->oop_iterate(cl, mr);
508 509
      }
    }
510 511
  } while (cur < end);

512 513 514
  return NULL;
}

J
johnc 已提交
515 516 517 518 519 520 521
// Code roots support

void HeapRegion::add_strong_code_root(nmethod* nm) {
  HeapRegionRemSet* hrrs = rem_set();
  hrrs->add_strong_code_root(nm);
}

522 523
void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
  assert_locked_or_safepoint(CodeCache_lock);
J
johnc 已提交
524
  HeapRegionRemSet* hrrs = rem_set();
525
  hrrs->add_strong_code_root_locked(nm);
J
johnc 已提交
526 527
}

528
void HeapRegion::remove_strong_code_root(nmethod* nm) {
J
johnc 已提交
529
  HeapRegionRemSet* hrrs = rem_set();
530
  hrrs->remove_strong_code_root(nm);
J
johnc 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
}

void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
  HeapRegionRemSet* hrrs = rem_set();
  hrrs->strong_code_roots_do(blk);
}

class VerifyStrongCodeRootOopClosure: public OopClosure {
  const HeapRegion* _hr;
  nmethod* _nm;
  bool _failures;
  bool _has_oops_in_region;

  template <class T> void do_oop_work(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);

      // Note: not all the oops embedded in the nmethod are in the
      // current region. We only look at those which are.
      if (_hr->is_in(obj)) {
        // Object is in the region. Check that its less than top
        if (_hr->top() <= (HeapWord*)obj) {
          // Object is above top
          gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
                                 "["PTR_FORMAT", "PTR_FORMAT") is above "
                                 "top "PTR_FORMAT,
558
                                 (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
J
johnc 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
          _failures = true;
          return;
        }
        // Nmethod has at least one oop in the current region
        _has_oops_in_region = true;
      }
    }
  }

public:
  VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
    _hr(hr), _failures(false), _has_oops_in_region(false) {}

  void do_oop(narrowOop* p) { do_oop_work(p); }
  void do_oop(oop* p)       { do_oop_work(p); }

  bool failures()           { return _failures; }
  bool has_oops_in_region() { return _has_oops_in_region; }
};

class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
  const HeapRegion* _hr;
  bool _failures;
public:
  VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
    _hr(hr), _failures(false) {}

  void do_code_blob(CodeBlob* cb) {
    nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
    if (nm != NULL) {
      // Verify that the nemthod is live
      if (!nm->is_alive()) {
        gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
                               PTR_FORMAT" in its strong code roots",
                               _hr->bottom(), _hr->end(), nm);
        _failures = true;
      } else {
        VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
        nm->oops_do(&oop_cl);
        if (!oop_cl.has_oops_in_region()) {
          gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
                                 PTR_FORMAT" in its strong code roots "
                                 "with no pointers into region",
                                 _hr->bottom(), _hr->end(), nm);
          _failures = true;
        } else if (oop_cl.failures()) {
          gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
                                 "failures for nmethod "PTR_FORMAT,
                                 _hr->bottom(), _hr->end(), nm);
          _failures = true;
        }
      }
    }
  }

  bool failures()       { return _failures; }
};

void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
  if (!G1VerifyHeapRegionCodeRoots) {
    // We're not verifying code roots.
    return;
  }
  if (vo == VerifyOption_G1UseMarkWord) {
    // Marking verification during a full GC is performed after class
    // unloading, code cache unloading, etc so the strong code roots
    // attached to each heap region are in an inconsistent state. They won't
    // be consistent until the strong code roots are rebuilt after the
    // actual GC. Skip verifying the strong code roots in this particular
    // time.
    assert(VerifyDuringGC, "only way to get here");
    return;
  }

  HeapRegionRemSet* hrrs = rem_set();
634
  size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
J
johnc 已提交
635 636 637 638 639 640

  // if this region is empty then there should be no entries
  // on its strong code root list
  if (is_empty()) {
    if (strong_code_roots_length > 0) {
      gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
641
                             "but has "SIZE_FORMAT" code root entries",
J
johnc 已提交
642 643 644 645 646 647
                             bottom(), end(), strong_code_roots_length);
      *failures = true;
    }
    return;
  }

648
  if (continuesHumongous()) {
J
johnc 已提交
649
    if (strong_code_roots_length > 0) {
650
      gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
651
                             "region but has "SIZE_FORMAT" code root entries",
652
                             HR_FORMAT_PARAMS(this), strong_code_roots_length);
J
johnc 已提交
653 654 655 656 657 658 659 660 661 662 663 664 665
      *failures = true;
    }
    return;
  }

  VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
  strong_code_roots_do(&cb_cl);

  if (cb_cl.failures()) {
    *failures = true;
  }
}

666 667
void HeapRegion::print() const { print_on(gclog_or_tty); }
void HeapRegion::print_on(outputStream* st) const {
668
  st->print("AC%4u", allocation_context());
669
  st->print(" %2s", get_short_type_str());
670 671 672 673
  if (in_collection_set())
    st->print(" CS");
  else
    st->print("   ");
674
  st->print(" TS %5d", _gc_time_stamp);
675 676
  st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
            prev_top_at_mark_start(), next_top_at_mark_start());
677 678 679
  G1OffsetTableContigSpace::print_on(st);
}

J
johnc 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
class VerifyLiveClosure: public OopClosure {
private:
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _bs;
  oop _containing_obj;
  bool _failures;
  int _n_failures;
  VerifyOption _vo;
public:
  // _vo == UsePrevMarking -> use "prev" marking information,
  // _vo == UseNextMarking -> use "next" marking information,
  // _vo == UseMarkWord    -> use mark word from object header.
  VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
    _g1h(g1h), _bs(NULL), _containing_obj(NULL),
    _failures(false), _n_failures(0), _vo(vo)
  {
    BarrierSet* bs = _g1h->barrier_set();
    if (bs->is_a(BarrierSet::CardTableModRef))
      _bs = (CardTableModRefBS*)bs;
  }

  void set_containing_obj(oop obj) {
    _containing_obj = obj;
  }

  bool failures() { return _failures; }
  int n_failures() { return _n_failures; }

  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }

  void print_object(outputStream* out, oop obj) {
#ifdef PRODUCT
    Klass* k = obj->klass();
    const char* class_name = InstanceKlass::cast(k)->external_name();
    out->print_cr("class name %s", class_name);
#else // PRODUCT
    obj->print_on(out);
#endif // PRODUCT
  }

  template <class T>
  void do_oop_work(T* p) {
    assert(_containing_obj != NULL, "Precondition");
    assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
           "Precondition");
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
      bool failed = false;
      if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
        MutexLockerEx x(ParGCRareEvent_lock,
                        Mutex::_no_safepoint_check_flag);

        if (!_failures) {
735
          gclog_or_tty->cr();
J
johnc 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
          gclog_or_tty->print_cr("----------");
        }
        if (!_g1h->is_in_closed_subset(obj)) {
          HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
          gclog_or_tty->print_cr("Field "PTR_FORMAT
                                 " of live obj "PTR_FORMAT" in region "
                                 "["PTR_FORMAT", "PTR_FORMAT")",
                                 p, (void*) _containing_obj,
                                 from->bottom(), from->end());
          print_object(gclog_or_tty, _containing_obj);
          gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
                                 (void*) obj);
        } else {
          HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
          HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
          gclog_or_tty->print_cr("Field "PTR_FORMAT
                                 " of live obj "PTR_FORMAT" in region "
                                 "["PTR_FORMAT", "PTR_FORMAT")",
                                 p, (void*) _containing_obj,
                                 from->bottom(), from->end());
          print_object(gclog_or_tty, _containing_obj);
          gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
                                 "["PTR_FORMAT", "PTR_FORMAT")",
                                 (void*) obj, to->bottom(), to->end());
          print_object(gclog_or_tty, obj);
        }
        gclog_or_tty->print_cr("----------");
        gclog_or_tty->flush();
        _failures = true;
        failed = true;
        _n_failures++;
      }

      if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
        HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
        HeapRegion* to   = _g1h->heap_region_containing(obj);
        if (from != NULL && to != NULL &&
            from != to &&
            !to->isHumongous()) {
          jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
          jbyte cv_field = *_bs->byte_for_const(p);
          const jbyte dirty = CardTableModRefBS::dirty_card_val();

          bool is_bad = !(from->is_young()
                          || to->rem_set()->contains_reference(p)
                          || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
                              (_containing_obj->is_objArray() ?
                                  cv_field == dirty
                               : cv_obj == dirty || cv_field == dirty));
          if (is_bad) {
            MutexLockerEx x(ParGCRareEvent_lock,
                            Mutex::_no_safepoint_check_flag);

            if (!_failures) {
790
              gclog_or_tty->cr();
J
johnc 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
              gclog_or_tty->print_cr("----------");
            }
            gclog_or_tty->print_cr("Missing rem set entry:");
            gclog_or_tty->print_cr("Field "PTR_FORMAT" "
                                   "of obj "PTR_FORMAT", "
                                   "in region "HR_FORMAT,
                                   p, (void*) _containing_obj,
                                   HR_FORMAT_PARAMS(from));
            _containing_obj->print_on(gclog_or_tty);
            gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
                                   "in region "HR_FORMAT,
                                   (void*) obj,
                                   HR_FORMAT_PARAMS(to));
            obj->print_on(gclog_or_tty);
            gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
                          cv_obj, cv_field);
            gclog_or_tty->print_cr("----------");
            gclog_or_tty->flush();
            _failures = true;
            if (!failed) _n_failures++;
          }
        }
      }
    }
  }
};
817

818 819 820
// This really ought to be commoned up into OffsetTableContigSpace somehow.
// We would need a mechanism to make that code skip dead objects.

821
void HeapRegion::verify(VerifyOption vo,
822
                        bool* failures) const {
823
  G1CollectedHeap* g1 = G1CollectedHeap::heap();
824
  *failures = false;
825 826
  HeapWord* p = bottom();
  HeapWord* prev_p = NULL;
827
  VerifyLiveClosure vl_cl(g1, vo);
828
  bool is_humongous = isHumongous();
829
  bool do_bot_verify = !is_young();
830
  size_t object_num = 0;
831
  while (p < top()) {
832
    oop obj = oop(p);
833
    size_t obj_size = block_size(p);
834 835
    object_num += 1;

836 837
    if (is_humongous != g1->isHumongous(obj_size) &&
        !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
838 839
      gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
                             SIZE_FORMAT" words) in a %shumongous region",
840 841
                             p, g1->isHumongous(obj_size) ? "" : "non-",
                             obj_size, is_humongous ? "" : "non-");
842
       *failures = true;
843
       return;
844
    }
845 846

    // If it returns false, verify_for_object() will output the
847
    // appropriate message.
848 849 850
    if (do_bot_verify &&
        !g1->is_obj_dead(obj, this) &&
        !_offsets.verify_for_object(p, obj_size)) {
851 852
      *failures = true;
      return;
853
    }
854

855
    if (!g1->is_obj_dead_cond(obj, this, vo)) {
856
      if (obj->is_oop()) {
857
        Klass* klass = obj->klass();
858 859 860 861
        bool is_metaspace_object = Metaspace::contains(klass) ||
                                   (vo == VerifyOption_G1UsePrevMarking &&
                                   ClassLoaderDataGraph::unload_list_contains(klass));
        if (!is_metaspace_object) {
862
          gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
863
                                 "not metadata", klass, (void *)obj);
864 865 866 867
          *failures = true;
          return;
        } else if (!klass->is_klass()) {
          gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
868
                                 "not a klass", klass, (void *)obj);
869 870 871 872
          *failures = true;
          return;
        } else {
          vl_cl.set_containing_obj(obj);
873
          obj->oop_iterate_no_header(&vl_cl);
874
          if (vl_cl.failures()) {
875
            *failures = true;
876 877 878
          }
          if (G1MaxVerifyFailures >= 0 &&
              vl_cl.n_failures() >= G1MaxVerifyFailures) {
879 880 881
            return;
          }
        }
882
      } else {
883
        gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
884 885
        *failures = true;
        return;
886 887 888
      }
    }
    prev_p = p;
889
    p += obj_size;
890
  }
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923

  if (p != top()) {
    gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
                           "does not match top "PTR_FORMAT, p, top());
    *failures = true;
    return;
  }

  HeapWord* the_end = end();
  assert(p == top(), "it should still hold");
  // Do some extra BOT consistency checking for addresses in the
  // range [top, end). BOT look-ups in this range should yield
  // top. No point in doing that if top == end (there's nothing there).
  if (p < the_end) {
    // Look up top
    HeapWord* addr_1 = p;
    HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
    if (b_start_1 != p) {
      gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
                             " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
                             addr_1, b_start_1, p);
      *failures = true;
      return;
    }

    // Look up top + 1
    HeapWord* addr_2 = p + 1;
    if (addr_2 < the_end) {
      HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
      if (b_start_2 != p) {
        gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
                               " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
                               addr_2, b_start_2, p);
924 925
        *failures = true;
        return;
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
      }
    }

    // Look up an address between top and end
    size_t diff = pointer_delta(the_end, p) / 2;
    HeapWord* addr_3 = p + diff;
    if (addr_3 < the_end) {
      HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
      if (b_start_3 != p) {
        gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
                               " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
                               addr_3, b_start_3, p);
        *failures = true;
        return;
      }
    }

    // Loook up end - 1
    HeapWord* addr_4 = the_end - 1;
    HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
    if (b_start_4 != p) {
      gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
                             " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
                             addr_4, b_start_4, p);
      *failures = true;
      return;
952
    }
953
  }
954

955 956 957 958 959
  if (is_humongous && object_num > 1) {
    gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
                           "but has "SIZE_FORMAT", objects",
                           bottom(), end(), object_num);
    *failures = true;
960
    return;
961
  }
J
johnc 已提交
962 963 964 965 966 967 968

  verify_strong_code_roots(vo, failures);
}

void HeapRegion::verify() const {
  bool dummy = false;
  verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
969 970 971 972 973
}

// G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
// away eventually.

T
Merge  
tonyp 已提交
974
void G1OffsetTableContigSpace::clear(bool mangle_space) {
975
  set_top(bottom());
976
  _scan_top = bottom();
977
  CompactibleSpace::clear(mangle_space);
978
  reset_bot();
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
}

void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  Space::set_bottom(new_bottom);
  _offsets.set_bottom(new_bottom);
}

void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  Space::set_end(new_end);
  _offsets.resize(new_end - bottom());
}

void G1OffsetTableContigSpace::print() const {
  print_short();
  gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
                INTPTR_FORMAT ", " INTPTR_FORMAT ")",
                bottom(), top(), _offsets.threshold(), end());
}

HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  return _offsets.initialize_threshold();
}

HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
                                                    HeapWord* end) {
  _offsets.alloc_block(start, end);
  return _offsets.threshold();
}

1008
HeapWord* G1OffsetTableContigSpace::scan_top() const {
1009
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
1010 1011
  HeapWord* local_top = top();
  OrderAccess::loadload();
1012 1013 1014
  const unsigned local_time_stamp = _gc_time_stamp;
  assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
  if (local_time_stamp < g1h->get_gc_time_stamp()) {
1015 1016
    return local_top;
  } else {
1017
    return _scan_top;
1018
  }
1019 1020
}

1021
void G1OffsetTableContigSpace::record_timestamp() {
1022 1023 1024 1025
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();

  if (_gc_time_stamp < curr_gc_time_stamp) {
1026 1027 1028 1029 1030 1031 1032 1033
    // Setting the time stamp here tells concurrent readers to look at
    // scan_top to know the maximum allowed address to look at.

    // scan_top should be bottom for all regions except for the
    // retained old alloc region which should have scan_top == top
    HeapWord* st = _scan_top;
    guarantee(st == _bottom || st == _top, "invariant");

1034
    _gc_time_stamp = curr_gc_time_stamp;
1035 1036 1037
  }
}

1038 1039 1040 1041 1042 1043
void G1OffsetTableContigSpace::record_retained_region() {
  // scan_top is the maximum address where it's safe for the next gc to
  // scan this region.
  _scan_top = top();
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
  object_iterate(blk);
}

void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
  HeapWord* p = bottom();
  while (p < top()) {
    if (block_is_obj(p)) {
      blk->do_object(oop(p));
    }
    p += block_size(p);
  }
}

#define block_is_always_obj(q) true
void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
  SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
}
#undef block_is_always_obj

1064 1065
G1OffsetTableContigSpace::
G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1066
                         MemRegion mr) :
1067 1068 1069 1070 1071
  _offsets(sharedOffsetArray, mr),
  _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  _gc_time_stamp(0)
{
  _offsets.set_space(this);
1072 1073 1074 1075
}

void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
  CompactibleSpace::initialize(mr, clear_space, mangle_space);
1076
  _top = bottom();
1077 1078
  _scan_top = bottom();
  set_saved_mark_word(NULL);
1079
  reset_bot();
1080
}
1081