macro.cpp 99.7 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include "precompiled.hpp"
#include "compiler/compileLog.hpp"
#include "libadt/vectset.hpp"
#include "opto/addnode.hpp"
#include "opto/callnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/compile.hpp"
#include "opto/connode.hpp"
#include "opto/locknode.hpp"
#include "opto/loopnode.hpp"
#include "opto/macro.hpp"
#include "opto/memnode.hpp"
#include "opto/node.hpp"
#include "opto/phaseX.hpp"
#include "opto/rootnode.hpp"
#include "opto/runtime.hpp"
#include "opto/subnode.hpp"
#include "opto/type.hpp"
#include "runtime/sharedRuntime.hpp"
D
duke 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73


//
// Replace any references to "oldref" in inputs to "use" with "newref".
// Returns the number of replacements made.
//
int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  int nreplacements = 0;
  uint req = use->req();
  for (uint j = 0; j < use->len(); j++) {
    Node *uin = use->in(j);
    if (uin == oldref) {
      if (j < req)
        use->set_req(j, newref);
      else
        use->set_prec(j, newref);
      nreplacements++;
    } else if (j >= req && uin == NULL) {
      break;
    }
  }
  return nreplacements;
}

void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  // Copy debug information and adjust JVMState information
  uint old_dbg_start = oldcall->tf()->domain()->cnt();
  uint new_dbg_start = newcall->tf()->domain()->cnt();
  int jvms_adj  = new_dbg_start - old_dbg_start;
  assert (new_dbg_start == newcall->req(), "argument count mismatch");
74

75 76
  // SafePointScalarObject node could be referenced several times in debug info.
  // Use Dict to record cloned nodes.
77
  Dict* sosn_map = new Dict(cmpkey,hashkey);
D
duke 已提交
78
  for (uint i = old_dbg_start; i < oldcall->req(); i++) {
79 80
    Node* old_in = oldcall->in(i);
    // Clone old SafePointScalarObjectNodes, adjusting their field contents.
81
    if (old_in != NULL && old_in->is_SafePointScalarObject()) {
82 83
      SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
      uint old_unique = C->unique();
84 85
      Node* new_in = old_sosn->clone(sosn_map);
      if (old_unique != C->unique()) { // New node?
86
        new_in->set_req(0, C->root()); // reset control edge
87 88 89 90 91
        new_in = transform_later(new_in); // Register new node.
      }
      old_in = new_in;
    }
    newcall->add_req(old_in);
D
duke 已提交
92
  }
93

D
duke 已提交
94 95 96 97 98 99
  newcall->set_jvms(oldcall->jvms());
  for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
    jvms->set_map(newcall);
    jvms->set_locoff(jvms->locoff()+jvms_adj);
    jvms->set_stkoff(jvms->stkoff()+jvms_adj);
    jvms->set_monoff(jvms->monoff()+jvms_adj);
100
    jvms->set_scloff(jvms->scloff()+jvms_adj);
D
duke 已提交
101 102 103 104
    jvms->set_endoff(jvms->endoff()+jvms_adj);
  }
}

105 106 107
Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
  Node* cmp;
  if (mask != 0) {
108 109
    Node* and_node = transform_later(new (C) AndXNode(word, MakeConX(mask)));
    cmp = transform_later(new (C) CmpXNode(and_node, MakeConX(bits)));
110 111 112
  } else {
    cmp = word;
  }
113 114
  Node* bol = transform_later(new (C) BoolNode(cmp, BoolTest::ne));
  IfNode* iff = new (C) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
115
  transform_later(iff);
D
duke 已提交
116

117
  // Fast path taken.
118
  Node *fast_taken = transform_later( new (C) IfFalseNode(iff) );
D
duke 已提交
119 120

  // Fast path not-taken, i.e. slow path
121
  Node *slow_taken = transform_later( new (C) IfTrueNode(iff) );
122 123 124 125 126 127 128 129

  if (return_fast_path) {
    region->init_req(edge, slow_taken); // Capture slow-control
    return fast_taken;
  } else {
    region->init_req(edge, fast_taken); // Capture fast-control
    return slow_taken;
  }
D
duke 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
}

//--------------------copy_predefined_input_for_runtime_call--------------------
void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
  // Set fixed predefined input arguments
  call->init_req( TypeFunc::Control, ctrl );
  call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
  call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
  call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
  call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
}

//------------------------------make_slow_call---------------------------------
CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {

  // Slow-path call
 CallNode *call = leaf_name
147 148
   ? (CallNode*)new (C) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
   : (CallNode*)new (C) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
D
duke 已提交
149 150 151 152 153 154 155

  // Slow path call has no side-effects, uses few values
  copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
  if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
  if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
  copy_call_debug_info(oldcall, call);
  call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
156
  _igvn.replace_node(oldcall, call);
D
duke 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  transform_later(call);

  return call;
}

void PhaseMacroExpand::extract_call_projections(CallNode *call) {
  _fallthroughproj = NULL;
  _fallthroughcatchproj = NULL;
  _ioproj_fallthrough = NULL;
  _ioproj_catchall = NULL;
  _catchallcatchproj = NULL;
  _memproj_fallthrough = NULL;
  _memproj_catchall = NULL;
  _resproj = NULL;
  for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
    ProjNode *pn = call->fast_out(i)->as_Proj();
    switch (pn->_con) {
      case TypeFunc::Control:
      {
        // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
        _fallthroughproj = pn;
        DUIterator_Fast jmax, j = pn->fast_outs(jmax);
        const Node *cn = pn->fast_out(j);
        if (cn->is_Catch()) {
          ProjNode *cpn = NULL;
          for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
            cpn = cn->fast_out(k)->as_Proj();
            assert(cpn->is_CatchProj(), "must be a CatchProjNode");
            if (cpn->_con == CatchProjNode::fall_through_index)
              _fallthroughcatchproj = cpn;
            else {
              assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
              _catchallcatchproj = cpn;
            }
          }
        }
        break;
      }
      case TypeFunc::I_O:
        if (pn->_is_io_use)
          _ioproj_catchall = pn;
        else
          _ioproj_fallthrough = pn;
        break;
      case TypeFunc::Memory:
        if (pn->_is_io_use)
          _memproj_catchall = pn;
        else
          _memproj_fallthrough = pn;
        break;
      case TypeFunc::Parms:
        _resproj = pn;
        break;
      default:
        assert(false, "unexpected projection from allocation node.");
    }
  }

}

217
// Eliminate a card mark sequence.  p2x is a ConvP2XNode
218
void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
219
  assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
220 221 222 223 224
  if (!UseG1GC) {
    // vanilla/CMS post barrier
    Node *shift = p2x->unique_out();
    Node *addp = shift->unique_out();
    for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
225 226 227 228 229 230 231 232 233 234
      Node *mem = addp->last_out(j);
      if (UseCondCardMark && mem->is_Load()) {
        assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
        // The load is checking if the card has been written so
        // replace it with zero to fold the test.
        _igvn.replace_node(mem, intcon(0));
        continue;
      }
      assert(mem->is_Store(), "store required");
      _igvn.replace_node(mem, mem->in(MemNode::Memory));
235 236 237
    }
  } else {
    // G1 pre/post barriers
238
    assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
239 240 241 242
    // It could be only one user, URShift node, in Object.clone() instrinsic
    // but the new allocation is passed to arraycopy stub and it could not
    // be scalar replaced. So we don't check the case.

243 244 245 246 247 248 249 250 251
    // An other case of only one user (Xor) is when the value check for NULL
    // in G1 post barrier is folded after CCP so the code which used URShift
    // is removed.

    // Take Region node before eliminating post barrier since it also
    // eliminates CastP2X node when it has only one user.
    Node* this_region = p2x->in(0);
    assert(this_region != NULL, "");

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    // Remove G1 post barrier.

    // Search for CastP2X->Xor->URShift->Cmp path which
    // checks if the store done to a different from the value's region.
    // And replace Cmp with #0 (false) to collapse G1 post barrier.
    Node* xorx = NULL;
    for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
      Node* u = p2x->fast_out(i);
      if (u->Opcode() == Op_XorX) {
        xorx = u;
        break;
      }
    }
    assert(xorx != NULL, "missing G1 post barrier");
    Node* shift = xorx->unique_out();
    Node* cmpx = shift->unique_out();
    assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
    cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
    "missing region check in G1 post barrier");
    _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));

    // Remove G1 pre barrier.

    // Search "if (marking != 0)" check and set it to "false".
    // There is no G1 pre barrier if previous stored value is NULL
    // (for example, after initialization).
    if (this_region->is_Region() && this_region->req() == 3) {
      int ind = 1;
      if (!this_region->in(ind)->is_IfFalse()) {
        ind = 2;
      }
      if (this_region->in(ind)->is_IfFalse()) {
        Node* bol = this_region->in(ind)->in(0)->in(1);
        assert(bol->is_Bool(), "");
        cmpx = bol->in(1);
        if (bol->as_Bool()->_test._test == BoolTest::ne &&
            cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
            cmpx->in(1)->is_Load()) {
          Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
          const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
                                              PtrQueue::byte_offset_of_active());
          if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
              adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
              adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
            _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
          }
        }
      }
    }
    // Now CastP2X can be removed since it is used only on dead path
    // which currently still alive until igvn optimize it.
303
    assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
304
    _igvn.replace_node(p2x, top());
305 306 307 308
  }
}

// Search for a memory operation for the specified memory slice.
309
static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
310 311
  Node *orig_mem = mem;
  Node *alloc_mem = alloc->in(TypeFunc::Memory);
312
  const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
313 314
  while (true) {
    if (mem == alloc_mem || mem == start_mem ) {
T
twisti 已提交
315
      return mem;  // hit one of our sentinels
316 317 318 319 320 321 322 323
    } else if (mem->is_MergeMem()) {
      mem = mem->as_MergeMem()->memory_at(alias_idx);
    } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
      Node *in = mem->in(0);
      // we can safely skip over safepoints, calls, locks and membars because we
      // already know that the object is safe to eliminate.
      if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
        return in;
324 325 326 327 328 329 330
      } else if (in->is_Call()) {
        CallNode *call = in->as_Call();
        if (!call->may_modify(tinst, phase)) {
          mem = call->in(TypeFunc::Memory);
        }
        mem = in->in(TypeFunc::Memory);
      } else if (in->is_MemBar()) {
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
        mem = in->in(TypeFunc::Memory);
      } else {
        assert(false, "unexpected projection");
      }
    } else if (mem->is_Store()) {
      const TypePtr* atype = mem->as_Store()->adr_type();
      int adr_idx = Compile::current()->get_alias_index(atype);
      if (adr_idx == alias_idx) {
        assert(atype->isa_oopptr(), "address type must be oopptr");
        int adr_offset = atype->offset();
        uint adr_iid = atype->is_oopptr()->instance_id();
        // Array elements references have the same alias_idx
        // but different offset and different instance_id.
        if (adr_offset == offset && adr_iid == alloc->_idx)
          return mem;
      } else {
        assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
      }
      mem = mem->in(MemNode::Memory);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    } else if (mem->is_ClearArray()) {
      if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
        // Can not bypass initialization of the instance
        // we are looking.
        debug_only(intptr_t offset;)
        assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
        InitializeNode* init = alloc->as_Allocate()->initialization();
        // We are looking for stored value, return Initialize node
        // or memory edge from Allocate node.
        if (init != NULL)
          return init;
        else
          return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
      }
      // Otherwise skip it (the call updated 'mem' value).
365
    } else if (mem->Opcode() == Op_SCMemProj) {
366 367 368 369 370 371 372 373 374
      mem = mem->in(0);
      Node* adr = NULL;
      if (mem->is_LoadStore()) {
        adr = mem->in(MemNode::Address);
      } else {
        assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
        adr = mem->in(3); // Destination array
      }
      const TypePtr* atype = adr->bottom_type()->is_ptr();
375 376 377 378 379
      int adr_idx = Compile::current()->get_alias_index(atype);
      if (adr_idx == alias_idx) {
        assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
        return NULL;
      }
380
      mem = mem->in(MemNode::Memory);
381 382 383
    } else {
      return mem;
    }
384
    assert(mem != orig_mem, "dead memory loop");
385 386 387 388 389 390 391 392
  }
}

//
// Given a Memory Phi, compute a value Phi containing the values from stores
// on the input paths.
// Note: this function is recursive, its depth is limied by the "level" argument
// Returns the computed Phi, or NULL if it cannot compute it.
393 394
Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
  assert(mem->is_Phi(), "sanity");
395 396 397 398
  int alias_idx = C->get_alias_index(adr_t);
  int offset = adr_t->offset();
  int instance_id = adr_t->instance_id();

399 400 401 402 403 404 405 406 407 408
  // Check if an appropriate value phi already exists.
  Node* region = mem->in(0);
  for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
    Node* phi = region->fast_out(k);
    if (phi->is_Phi() && phi != mem &&
        phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
      return phi;
    }
  }
  // Check if an appropriate new value phi already exists.
409 410 411
  Node* new_phi = value_phis->find(mem->_idx);
  if (new_phi != NULL)
    return new_phi;
412 413

  if (level <= 0) {
414
    return NULL; // Give up: phi tree too deep
415
  }
416 417 418 419
  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  Node *alloc_mem = alloc->in(TypeFunc::Memory);

  uint length = mem->req();
Z
zgu 已提交
420
  GrowableArray <Node *> values(length, length, NULL, false);
421

422
  // create a new Phi for the value
423
  PhiNode *phi = new (C) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
424 425 426
  transform_later(phi);
  value_phis->push(phi, mem->_idx);

427 428 429 430 431
  for (uint j = 1; j < length; j++) {
    Node *in = mem->in(j);
    if (in == NULL || in->is_top()) {
      values.at_put(j, in);
    } else  {
432
      Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
      if (val == start_mem || val == alloc_mem) {
        // hit a sentinel, return appropriate 0 value
        values.at_put(j, _igvn.zerocon(ft));
        continue;
      }
      if (val->is_Initialize()) {
        val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
      }
      if (val == NULL) {
        return NULL;  // can't find a value on this path
      }
      if (val == mem) {
        values.at_put(j, mem);
      } else if (val->is_Store()) {
        values.at_put(j, val->in(MemNode::ValueIn));
      } else if(val->is_Proj() && val->in(0) == alloc) {
        values.at_put(j, _igvn.zerocon(ft));
      } else if (val->is_Phi()) {
451 452 453
        val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
        if (val == NULL) {
          return NULL;
454
        }
455
        values.at_put(j, val);
456
      } else if (val->Opcode() == Op_SCMemProj) {
457
        assert(val->in(0)->is_LoadStore() || val->in(0)->Opcode() == Op_EncodeISOArray, "sanity");
458 459
        assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
        return NULL;
460
      } else {
461 462
#ifdef ASSERT
        val->dump();
463
        assert(false, "unknown node on this path");
464
#endif
465
        return NULL;  // unknown node on this path
466 467 468
      }
    }
  }
469
  // Set Phi's inputs
470 471 472 473 474 475 476 477 478 479 480 481
  for (uint j = 1; j < length; j++) {
    if (values.at(j) == mem) {
      phi->init_req(j, phi);
    } else {
      phi->init_req(j, values.at(j));
    }
  }
  return phi;
}

// Search the last value stored into the object's field.
Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
482 483 484
  assert(adr_t->is_known_instance_field(), "instance required");
  int instance_id = adr_t->instance_id();
  assert((uint)instance_id == alloc->_idx, "wrong allocation");
485 486 487 488 489 490

  int alias_idx = C->get_alias_index(adr_t);
  int offset = adr_t->offset();
  Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  Node *alloc_ctrl = alloc->in(TypeFunc::Control);
  Node *alloc_mem = alloc->in(TypeFunc::Memory);
491 492
  Arena *a = Thread::current()->resource_area();
  VectorSet visited(a);
493 494 495 496 497 498 499 500


  bool done = sfpt_mem == alloc_mem;
  Node *mem = sfpt_mem;
  while (!done) {
    if (visited.test_set(mem->_idx)) {
      return NULL;  // found a loop, give up
    }
501
    mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    if (mem == start_mem || mem == alloc_mem) {
      done = true;  // hit a sentinel, return appropriate 0 value
    } else if (mem->is_Initialize()) {
      mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
      if (mem == NULL) {
        done = true; // Something go wrong.
      } else if (mem->is_Store()) {
        const TypePtr* atype = mem->as_Store()->adr_type();
        assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
        done = true;
      }
    } else if (mem->is_Store()) {
      const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
      assert(atype != NULL, "address type must be oopptr");
      assert(C->get_alias_index(atype) == alias_idx &&
517
             atype->is_known_instance_field() && atype->offset() == offset &&
518 519 520 521 522 523 524
             atype->instance_id() == instance_id, "store is correct memory slice");
      done = true;
    } else if (mem->is_Phi()) {
      // try to find a phi's unique input
      Node *unique_input = NULL;
      Node *top = C->top();
      for (uint i = 1; i < mem->req(); i++) {
525
        Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
        if (n == NULL || n == top || n == mem) {
          continue;
        } else if (unique_input == NULL) {
          unique_input = n;
        } else if (unique_input != n) {
          unique_input = top;
          break;
        }
      }
      if (unique_input != NULL && unique_input != top) {
        mem = unique_input;
      } else {
        done = true;
      }
    } else {
      assert(false, "unexpected node");
    }
  }
  if (mem != NULL) {
    if (mem == start_mem || mem == alloc_mem) {
      // hit a sentinel, return appropriate 0 value
      return _igvn.zerocon(ft);
    } else if (mem->is_Store()) {
      return mem->in(MemNode::ValueIn);
    } else if (mem->is_Phi()) {
      // attempt to produce a Phi reflecting the values on the input paths of the Phi
552
      Node_Stack value_phis(a, 8);
553
      Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
554 555
      if (phi != NULL) {
        return phi;
556 557 558 559
      } else {
        // Kill all new Phis
        while(value_phis.is_nonempty()) {
          Node* n = value_phis.node();
560
          _igvn.replace_node(n, C->top());
561 562
          value_phis.pop();
        }
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
      }
    }
  }
  // Something go wrong.
  return NULL;
}

// Check the possibility of scalar replacement.
bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
  //  Scan the uses of the allocation to check for anything that would
  //  prevent us from eliminating it.
  NOT_PRODUCT( const char* fail_eliminate = NULL; )
  DEBUG_ONLY( Node* disq_node = NULL; )
  bool  can_eliminate = true;

  Node* res = alloc->result_cast();
  const TypeOopPtr* res_type = NULL;
  if (res == NULL) {
    // All users were eliminated.
  } else if (!res->is_CheckCastPP()) {
    NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
    can_eliminate = false;
  } else {
    res_type = _igvn.type(res)->isa_oopptr();
    if (res_type == NULL) {
      NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
      can_eliminate = false;
    } else if (res_type->isa_aryptr()) {
      int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
      if (length < 0) {
        NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
        can_eliminate = false;
      }
    }
  }

  if (can_eliminate && res != NULL) {
    for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
                               j < jmax && can_eliminate; j++) {
      Node* use = res->fast_out(j);

      if (use->is_AddP()) {
        const TypePtr* addp_type = _igvn.type(use)->is_ptr();
        int offset = addp_type->offset();

        if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
          NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
          can_eliminate = false;
          break;
        }
        for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
                                   k < kmax && can_eliminate; k++) {
          Node* n = use->fast_out(k);
          if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
            DEBUG_ONLY(disq_node = n;)
618
            if (n->is_Load() || n->is_LoadStore()) {
619 620 621 622 623 624 625 626 627
              NOT_PRODUCT(fail_eliminate = "Field load";)
            } else {
              NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
            }
            can_eliminate = false;
          }
        }
      } else if (use->is_SafePoint()) {
        SafePointNode* sfpt = use->as_SafePoint();
628
        if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
          // Object is passed as argument.
          DEBUG_ONLY(disq_node = use;)
          NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
          can_eliminate = false;
        }
        Node* sfptMem = sfpt->memory();
        if (sfptMem == NULL || sfptMem->is_top()) {
          DEBUG_ONLY(disq_node = use;)
          NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
          can_eliminate = false;
        } else {
          safepoints.append_if_missing(sfpt);
        }
      } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
        if (use->is_Phi()) {
          if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
            NOT_PRODUCT(fail_eliminate = "Object is return value";)
          } else {
            NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
          }
          DEBUG_ONLY(disq_node = use;)
        } else {
          if (use->Opcode() == Op_Return) {
            NOT_PRODUCT(fail_eliminate = "Object is return value";)
          }else {
            NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
          }
          DEBUG_ONLY(disq_node = use;)
        }
        can_eliminate = false;
      }
    }
  }

#ifndef PRODUCT
  if (PrintEliminateAllocations) {
    if (can_eliminate) {
      tty->print("Scalar ");
      if (res == NULL)
        alloc->dump();
      else
        res->dump();
671
    } else if (alloc->_is_scalar_replaceable) {
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
      tty->print("NotScalar (%s)", fail_eliminate);
      if (res == NULL)
        alloc->dump();
      else
        res->dump();
#ifdef ASSERT
      if (disq_node != NULL) {
          tty->print("  >>>> ");
          disq_node->dump();
      }
#endif /*ASSERT*/
    }
  }
#endif
  return can_eliminate;
}

// Do scalar replacement.
bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
  GrowableArray <SafePointNode *> safepoints_done;

  ciKlass* klass = NULL;
  ciInstanceKlass* iklass = NULL;
  int nfields = 0;
  int array_base;
  int element_size;
  BasicType basic_elem_type;
  ciType* elem_type;

  Node* res = alloc->result_cast();
  const TypeOopPtr* res_type = NULL;
  if (res != NULL) { // Could be NULL when there are no users
    res_type = _igvn.type(res)->isa_oopptr();
  }

  if (res != NULL) {
    klass = res_type->klass();
    if (res_type->isa_instptr()) {
      // find the fields of the class which will be needed for safepoint debug information
      assert(klass->is_instance_klass(), "must be an instance klass.");
      iklass = klass->as_instance_klass();
      nfields = iklass->nof_nonstatic_fields();
    } else {
      // find the array's elements which will be needed for safepoint debug information
      nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
      assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
      elem_type = klass->as_array_klass()->element_type();
      basic_elem_type = elem_type->basic_type();
      array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
      element_size = type2aelembytes(basic_elem_type);
    }
  }
  //
  // Process the safepoint uses
  //
  while (safepoints.length() > 0) {
    SafePointNode* sfpt = safepoints.pop();
    Node* mem = sfpt->memory();
730 731 732 733 734
    assert(sfpt->jvms() != NULL, "missed JVMS");
    // Fields of scalar objs are referenced only at the end
    // of regular debuginfo at the last (youngest) JVMS.
    // Record relative start index.
    uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
735
    SafePointScalarObjectNode* sobj = new (C) SafePointScalarObjectNode(res_type,
736 737 738 739
#ifdef ASSERT
                                                 alloc,
#endif
                                                 first_ind, nfields);
740
    sobj->init_req(0, C->root());
741 742 743 744
    transform_later(sobj);

    // Scan object's fields adding an input to the safepoint for each field.
    for (int j = 0; j < nfields; j++) {
745
      intptr_t offset;
746 747 748 749 750 751 752
      ciField* field = NULL;
      if (iklass != NULL) {
        field = iklass->nonstatic_field_at(j);
        offset = field->offset();
        elem_type = field->type();
        basic_elem_type = field->layout_type();
      } else {
753
        offset = array_base + j * (intptr_t)element_size;
754 755 756 757
      }

      const Type *field_type;
      // The next code is taken from Parse::do_get_xxx().
758
      if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
759 760
        if (!elem_type->is_loaded()) {
          field_type = TypeInstPtr::BOTTOM;
761
        } else if (field != NULL && field->is_constant() && field->is_static()) {
762 763 764 765 766 767 768 769 770
          // This can happen if the constant oop is non-perm.
          ciObject* con = field->constant_value().as_object();
          // Do not "join" in the previous type; it doesn't add value,
          // and may yield a vacuous result if the field is of interface type.
          field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
          assert(field_type != NULL, "field singleton type must be consistent");
        } else {
          field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
        }
771
        if (UseCompressedOops) {
772
          field_type = field_type->make_narrowoop();
773 774
          basic_elem_type = T_NARROWOOP;
        }
775 776 777 778 779 780 781 782
      } else {
        field_type = Type::get_const_basic_type(basic_elem_type);
      }

      const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();

      Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
      if (field_val == NULL) {
783 784 785 786
        // We weren't able to find a value for this field,
        // give up on eliminating this allocation.

        // Remove any extra entries we added to the safepoint.
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
        uint last = sfpt->req() - 1;
        for (int k = 0;  k < j; k++) {
          sfpt->del_req(last--);
        }
        // rollback processed safepoints
        while (safepoints_done.length() > 0) {
          SafePointNode* sfpt_done = safepoints_done.pop();
          // remove any extra entries we added to the safepoint
          last = sfpt_done->req() - 1;
          for (int k = 0;  k < nfields; k++) {
            sfpt_done->del_req(last--);
          }
          JVMState *jvms = sfpt_done->jvms();
          jvms->set_endoff(sfpt_done->req());
          // Now make a pass over the debug information replacing any references
          // to SafePointScalarObjectNode with the allocated object.
          int start = jvms->debug_start();
          int end   = jvms->debug_end();
          for (int i = start; i < end; i++) {
            if (sfpt_done->in(i)->is_SafePointScalarObject()) {
              SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
808
              if (scobj->first_index(jvms) == sfpt_done->req() &&
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
                  scobj->n_fields() == (uint)nfields) {
                assert(scobj->alloc() == alloc, "sanity");
                sfpt_done->set_req(i, res);
              }
            }
          }
        }
#ifndef PRODUCT
        if (PrintEliminateAllocations) {
          if (field != NULL) {
            tty->print("=== At SafePoint node %d can't find value of Field: ",
                       sfpt->_idx);
            field->print();
            int field_idx = C->get_alias_index(field_addr_type);
            tty->print(" (alias_idx=%d)", field_idx);
          } else { // Array's element
            tty->print("=== At SafePoint node %d can't find value of array element [%d]",
                       sfpt->_idx, j);
          }
          tty->print(", which prevents elimination of: ");
          if (res == NULL)
            alloc->dump();
          else
            res->dump();
        }
#endif
        return false;
      }
837 838 839
      if (UseCompressedOops && field_type->isa_narrowoop()) {
        // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
        // to be able scalar replace the allocation.
840 841 842
        if (field_val->is_EncodeP()) {
          field_val = field_val->in(1);
        } else {
843
          field_val = transform_later(new (C) DecodeNNode(field_val, field_val->get_ptr_type()));
844
        }
845
      }
846 847 848 849 850 851 852 853
      sfpt->add_req(field_val);
    }
    JVMState *jvms = sfpt->jvms();
    jvms->set_endoff(sfpt->req());
    // Now make a pass over the debug information replacing any references
    // to the allocated object with "sobj"
    int start = jvms->debug_start();
    int end   = jvms->debug_end();
854
    sfpt->replace_edges_in_range(res, sobj, start, end);
855 856 857 858 859 860
    safepoints_done.append_if_missing(sfpt); // keep it for rollback
  }
  return true;
}

// Process users of eliminated allocation.
861
void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
862 863 864 865 866 867 868 869 870 871 872
  Node* res = alloc->result_cast();
  if (res != NULL) {
    for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
      Node *use = res->last_out(j);
      uint oc1 = res->outcnt();

      if (use->is_AddP()) {
        for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
          Node *n = use->last_out(k);
          uint oc2 = use->outcnt();
          if (n->is_Store()) {
873 874 875 876 877 878 879 880 881 882 883 884
#ifdef ASSERT
            // Verify that there is no dependent MemBarVolatile nodes,
            // they should be removed during IGVN, see MemBarNode::Ideal().
            for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
                                       p < pmax; p++) {
              Node* mb = n->fast_out(p);
              assert(mb->is_Initialize() || !mb->is_MemBar() ||
                     mb->req() <= MemBarNode::Precedent ||
                     mb->in(MemBarNode::Precedent) != n,
                     "MemBarVolatile should be eliminated for non-escaping object");
            }
#endif
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
            _igvn.replace_node(n, n->in(MemNode::Memory));
          } else {
            eliminate_card_mark(n);
          }
          k -= (oc2 - use->outcnt());
        }
      } else {
        eliminate_card_mark(use);
      }
      j -= (oc1 - res->outcnt());
    }
    assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
    _igvn.remove_dead_node(res);
  }

  //
  // Process other users of allocation's projections
  //
  if (_resproj != NULL && _resproj->outcnt() != 0) {
904 905 906 907 908 909 910 911 912 913 914
    // First disconnect stores captured by Initialize node.
    // If Initialize node is eliminated first in the following code,
    // it will kill such stores and DUIterator_Last will assert.
    for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
      Node *use = _resproj->fast_out(j);
      if (use->is_AddP()) {
        // raw memory addresses used only by the initialization
        _igvn.replace_node(use, C->top());
        --j; --jmax;
      }
    }
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
    for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
      Node *use = _resproj->last_out(j);
      uint oc1 = _resproj->outcnt();
      if (use->is_Initialize()) {
        // Eliminate Initialize node.
        InitializeNode *init = use->as_Initialize();
        assert(init->outcnt() <= 2, "only a control and memory projection expected");
        Node *ctrl_proj = init->proj_out(TypeFunc::Control);
        if (ctrl_proj != NULL) {
           assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
          _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
        }
        Node *mem_proj = init->proj_out(TypeFunc::Memory);
        if (mem_proj != NULL) {
          Node *mem = init->in(TypeFunc::Memory);
#ifdef ASSERT
          if (mem->is_MergeMem()) {
            assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
          } else {
            assert(mem == _memproj_fallthrough, "allocation memory projection");
          }
#endif
          _igvn.replace_node(mem_proj, mem);
        }
      } else  {
        assert(false, "only Initialize or AddP expected");
      }
      j -= (oc1 - _resproj->outcnt());
    }
  }
  if (_fallthroughcatchproj != NULL) {
    _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
  }
  if (_memproj_fallthrough != NULL) {
    _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
  }
  if (_memproj_catchall != NULL) {
    _igvn.replace_node(_memproj_catchall, C->top());
  }
  if (_ioproj_fallthrough != NULL) {
    _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
  }
  if (_ioproj_catchall != NULL) {
    _igvn.replace_node(_ioproj_catchall, C->top());
  }
  if (_catchallcatchproj != NULL) {
    _igvn.replace_node(_catchallcatchproj, C->top());
  }
}

bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
966 967 968 969 970 971 972 973 974 975 976 977
  if (!EliminateAllocations || !alloc->_is_non_escaping) {
    return false;
  }
  Node* klass = alloc->in(AllocateNode::KlassNode);
  const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
  Node* res = alloc->result_cast();
  // Eliminate boxing allocations which are not used
  // regardless scalar replacable status.
  bool boxing_alloc = C->eliminate_boxing() &&
                      tklass->klass()->is_instance_klass()  &&
                      tklass->klass()->as_instance_klass()->is_box_klass();
  if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
978 979 980 981 982 983 984 985 986 987
    return false;
  }

  extract_call_projections(alloc);

  GrowableArray <SafePointNode *> safepoints;
  if (!can_eliminate_allocation(alloc, safepoints)) {
    return false;
  }

988 989 990 991 992 993 994 995 996 997
  if (!alloc->_is_scalar_replaceable) {
    assert(res == NULL, "sanity");
    // We can only eliminate allocation if all debug info references
    // are already replaced with SafePointScalarObject because
    // we can't search for a fields value without instance_id.
    if (safepoints.length() > 0) {
      return false;
    }
  }

998 999 1000 1001
  if (!scalar_replacement(alloc, safepoints)) {
    return false;
  }

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
  CompileLog* log = C->log();
  if (log != NULL) {
    log->head("eliminate_allocation type='%d'",
              log->identify(tklass->klass()));
    JVMState* p = alloc->jvms();
    while (p != NULL) {
      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
      p = p->caller();
    }
    log->tail("eliminate_allocation");
  }

1014 1015 1016
  process_users_of_allocation(alloc);

#ifndef PRODUCT
1017 1018 1019 1020 1021 1022
  if (PrintEliminateAllocations) {
    if (alloc->is_AllocateArray())
      tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
    else
      tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
  }
1023 1024 1025 1026 1027
#endif

  return true;
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
  // EA should remove all uses of non-escaping boxing node.
  if (!C->eliminate_boxing() || boxing->proj_out(TypeFunc::Parms) != NULL) {
    return false;
  }

  extract_call_projections(boxing);

  const TypeTuple* r = boxing->tf()->range();
  assert(r->cnt() > TypeFunc::Parms, "sanity");
  const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
  assert(t != NULL, "sanity");

  CompileLog* log = C->log();
  if (log != NULL) {
    log->head("eliminate_boxing type='%d'",
              log->identify(t->klass()));
    JVMState* p = boxing->jvms();
    while (p != NULL) {
      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
      p = p->caller();
    }
    log->tail("eliminate_boxing");
  }

  process_users_of_allocation(boxing);

#ifndef PRODUCT
  if (PrintEliminateAllocations) {
    tty->print("++++ Eliminated: %d ", boxing->_idx);
    boxing->method()->print_short_name(tty);
    tty->cr();
  }
#endif

  return true;
}
D
duke 已提交
1065 1066 1067 1068

//---------------------------set_eden_pointers-------------------------
void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
  if (UseTLAB) {                // Private allocation: load from TLS
1069
    Node* thread = transform_later(new (C) ThreadLocalNode());
D
duke 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
    int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
    int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
    eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
    eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
  } else {                      // Shared allocation: load from globals
    CollectedHeap* ch = Universe::heap();
    address top_adr = (address)ch->top_addr();
    address end_adr = (address)ch->end_addr();
    eden_top_adr = makecon(TypeRawPtr::make(top_adr));
    eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
  }
}


Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
  Node* adr = basic_plus_adr(base, offset);
1086
  const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1087
  Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
D
duke 已提交
1088 1089 1090 1091 1092 1093 1094
  transform_later(value);
  return value;
}


Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
  Node* adr = basic_plus_adr(base, offset);
1095
  mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
D
duke 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
  transform_later(mem);
  return mem;
}

//=============================================================================
//
//                              A L L O C A T I O N
//
// Allocation attempts to be fast in the case of frequent small objects.
// It breaks down like this:
//
// 1) Size in doublewords is computed.  This is a constant for objects and
// variable for most arrays.  Doubleword units are used to avoid size
// overflow of huge doubleword arrays.  We need doublewords in the end for
// rounding.
//
// 2) Size is checked for being 'too large'.  Too-large allocations will go
// the slow path into the VM.  The slow path can throw any required
// exceptions, and does all the special checks for very large arrays.  The
// size test can constant-fold away for objects.  For objects with
// finalizers it constant-folds the otherway: you always go slow with
// finalizers.
//
// 3) If NOT using TLABs, this is the contended loop-back point.
// Load-Locked the heap top.  If using TLABs normal-load the heap top.
//
// 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
// NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
// "size*8" we always enter the VM, where "largish" is a constant picked small
// enough that there's always space between the eden max and 4Gig (old space is
// there so it's quite large) and large enough that the cost of entering the VM
// is dwarfed by the cost to initialize the space.
//
// 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
// down.  If contended, repeat at step 3.  If using TLABs normal-store
// adjusted heap top back down; there is no contention.
//
// 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
// fields.
//
// 7) Merge with the slow-path; cast the raw memory pointer to the correct
// oop flavor.
//
//=============================================================================
// FastAllocateSizeLimit value is in DOUBLEWORDS.
// Allocations bigger than this always go the slow route.
// This value must be small enough that allocation attempts that need to
// trigger exceptions go the slow route.  Also, it must be small enough so
// that heap_top + size_in_bytes does not wrap around the 4Gig limit.
//=============================================================================j//
// %%% Here is an old comment from parseHelper.cpp; is it outdated?
// The allocator will coalesce int->oop copies away.  See comment in
// coalesce.cpp about how this works.  It depends critically on the exact
// code shape produced here, so if you are changing this code shape
// make sure the GC info for the heap-top is correct in and around the
// slow-path call.
//

void PhaseMacroExpand::expand_allocate_common(
            AllocateNode* alloc, // allocation node to be expanded
            Node* length,  // array length for an array allocation
            const TypeFunc* slow_call_type, // Type of slow call
            address slow_call_address  // Address of slow call
    )
{

  Node* ctrl = alloc->in(TypeFunc::Control);
  Node* mem  = alloc->in(TypeFunc::Memory);
  Node* i_o  = alloc->in(TypeFunc::I_O);
  Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
  Node* klass_node        = alloc->in(AllocateNode::KlassNode);
  Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);

  assert(ctrl != NULL, "must have control");
  // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
  // they will not be used if "always_slow" is set
  enum { slow_result_path = 1, fast_result_path = 2 };
  Node *result_region;
  Node *result_phi_rawmem;
  Node *result_phi_rawoop;
  Node *result_phi_i_o;

  // The initial slow comparison is a size check, the comparison
  // we want to do is a BoolTest::gt
  bool always_slow = false;
  int tv = _igvn.find_int_con(initial_slow_test, -1);
  if (tv >= 0) {
    always_slow = (tv == 1);
    initial_slow_test = NULL;
  } else {
    initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
  }

1189
  if (C->env()->dtrace_alloc_probes() ||
1190 1191
      !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
                   (UseConcMarkSweepGC && CMSIncrementalMode))) {
D
duke 已提交
1192 1193 1194 1195 1196
    // Force slow-path allocation
    always_slow = true;
    initial_slow_test = NULL;
  }

1197

D
duke 已提交
1198 1199 1200 1201 1202 1203 1204
  enum { too_big_or_final_path = 1, need_gc_path = 2 };
  Node *slow_region = NULL;
  Node *toobig_false = ctrl;

  assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
  // generate the initial test if necessary
  if (initial_slow_test != NULL ) {
1205
    slow_region = new (C) RegionNode(3);
D
duke 已提交
1206 1207 1208 1209

    // Now make the initial failure test.  Usually a too-big test but
    // might be a TRUE for finalizers or a fancy class check for
    // newInstance0.
1210
    IfNode *toobig_iff = new (C) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
D
duke 已提交
1211 1212
    transform_later(toobig_iff);
    // Plug the failing-too-big test into the slow-path region
1213
    Node *toobig_true = new (C) IfTrueNode( toobig_iff );
D
duke 已提交
1214 1215
    transform_later(toobig_true);
    slow_region    ->init_req( too_big_or_final_path, toobig_true );
1216
    toobig_false = new (C) IfFalseNode( toobig_iff );
D
duke 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225
    transform_later(toobig_false);
  } else {         // No initial test, just fall into next case
    toobig_false = ctrl;
    debug_only(slow_region = NodeSentinel);
  }

  Node *slow_mem = mem;  // save the current memory state for slow path
  // generate the fast allocation code unless we know that the initial test will always go slow
  if (!always_slow) {
1226 1227 1228 1229 1230
    // Fast path modifies only raw memory.
    if (mem->is_MergeMem()) {
      mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
    }

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    Node* eden_top_adr;
    Node* eden_end_adr;

    set_eden_pointers(eden_top_adr, eden_end_adr);

    // Load Eden::end.  Loop invariant and hoisted.
    //
    // Note: We set the control input on "eden_end" and "old_eden_top" when using
    //       a TLAB to work around a bug where these values were being moved across
    //       a safepoint.  These are not oops, so they cannot be include in the oop
1241
    //       map, but they can be changed by a GC.   The proper way to fix this would
1242 1243 1244 1245 1246 1247
    //       be to set the raw memory state when generating a  SafepointNode.  However
    //       this will require extensive changes to the loop optimization in order to
    //       prevent a degradation of the optimization.
    //       See comment in memnode.hpp, around line 227 in class LoadPNode.
    Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);

D
duke 已提交
1248
    // allocate the Region and Phi nodes for the result
1249 1250 1251 1252
    result_region = new (C) RegionNode(3);
    result_phi_rawmem = new (C) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
    result_phi_rawoop = new (C) PhiNode(result_region, TypeRawPtr::BOTTOM);
    result_phi_i_o    = new (C) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
D
duke 已提交
1253 1254 1255 1256 1257

    // We need a Region for the loop-back contended case.
    enum { fall_in_path = 1, contended_loopback_path = 2 };
    Node *contended_region;
    Node *contended_phi_rawmem;
1258
    if (UseTLAB) {
D
duke 已提交
1259 1260 1261
      contended_region = toobig_false;
      contended_phi_rawmem = mem;
    } else {
1262 1263
      contended_region = new (C) RegionNode(3);
      contended_phi_rawmem = new (C) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
D
duke 已提交
1264 1265
      // Now handle the passing-too-big test.  We fall into the contended
      // loop-back merge point.
1266 1267
      contended_region    ->init_req(fall_in_path, toobig_false);
      contended_phi_rawmem->init_req(fall_in_path, mem);
D
duke 已提交
1268 1269 1270 1271 1272 1273 1274
      transform_later(contended_region);
      transform_later(contended_phi_rawmem);
    }

    // Load(-locked) the heap top.
    // See note above concerning the control input when using a TLAB
    Node *old_eden_top = UseTLAB
1275 1276
      ? new (C) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered)
      : new (C) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire);
D
duke 已提交
1277 1278 1279

    transform_later(old_eden_top);
    // Add to heap top to get a new heap top
1280
    Node *new_eden_top = new (C) AddPNode(top(), old_eden_top, size_in_bytes);
D
duke 已提交
1281 1282
    transform_later(new_eden_top);
    // Check for needing a GC; compare against heap end
1283
    Node *needgc_cmp = new (C) CmpPNode(new_eden_top, eden_end);
D
duke 已提交
1284
    transform_later(needgc_cmp);
1285
    Node *needgc_bol = new (C) BoolNode(needgc_cmp, BoolTest::ge);
D
duke 已提交
1286
    transform_later(needgc_bol);
1287
    IfNode *needgc_iff = new (C) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
D
duke 已提交
1288 1289 1290
    transform_later(needgc_iff);

    // Plug the failing-heap-space-need-gc test into the slow-path region
1291
    Node *needgc_true = new (C) IfTrueNode(needgc_iff);
D
duke 已提交
1292
    transform_later(needgc_true);
1293 1294
    if (initial_slow_test) {
      slow_region->init_req(need_gc_path, needgc_true);
D
duke 已提交
1295 1296 1297 1298
      // This completes all paths into the slow merge point
      transform_later(slow_region);
    } else {                      // No initial slow path needed!
      // Just fall from the need-GC path straight into the VM call.
1299
      slow_region = needgc_true;
D
duke 已提交
1300 1301
    }
    // No need for a GC.  Setup for the Store-Conditional
1302
    Node *needgc_false = new (C) IfFalseNode(needgc_iff);
D
duke 已提交
1303 1304 1305 1306
    transform_later(needgc_false);

    // Grab regular I/O before optional prefetch may change it.
    // Slow-path does no I/O so just set it to the original I/O.
1307
    result_phi_i_o->init_req(slow_result_path, i_o);
D
duke 已提交
1308 1309 1310 1311

    i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
                              old_eden_top, new_eden_top, length);

1312 1313 1314 1315 1316
    // Name successful fast-path variables
    Node* fast_oop = old_eden_top;
    Node* fast_oop_ctrl;
    Node* fast_oop_rawmem;

D
duke 已提交
1317 1318 1319
    // Store (-conditional) the modified eden top back down.
    // StorePConditional produces flags for a test PLUS a modified raw
    // memory state.
1320 1321
    if (UseTLAB) {
      Node* store_eden_top =
1322
        new (C) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1323
                              TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered);
D
duke 已提交
1324 1325
      transform_later(store_eden_top);
      fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1326
      fast_oop_rawmem = store_eden_top;
D
duke 已提交
1327
    } else {
1328
      Node* store_eden_top =
1329
        new (C) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1330
                                         new_eden_top, fast_oop/*old_eden_top*/);
D
duke 已提交
1331
      transform_later(store_eden_top);
1332
      Node *contention_check = new (C) BoolNode(store_eden_top, BoolTest::ne);
D
duke 已提交
1333
      transform_later(contention_check);
1334
      store_eden_top = new (C) SCMemProjNode(store_eden_top);
D
duke 已提交
1335 1336 1337
      transform_later(store_eden_top);

      // If not using TLABs, check to see if there was contention.
1338
      IfNode *contention_iff = new (C) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
D
duke 已提交
1339
      transform_later(contention_iff);
1340
      Node *contention_true = new (C) IfTrueNode(contention_iff);
D
duke 已提交
1341 1342
      transform_later(contention_true);
      // If contention, loopback and try again.
1343 1344
      contended_region->init_req(contended_loopback_path, contention_true);
      contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
D
duke 已提交
1345 1346

      // Fast-path succeeded with no contention!
1347
      Node *contention_false = new (C) IfFalseNode(contention_iff);
D
duke 已提交
1348 1349
      transform_later(contention_false);
      fast_oop_ctrl = contention_false;
1350 1351

      // Bump total allocated bytes for this thread
1352
      Node* thread = new (C) ThreadLocalNode();
1353 1354 1355 1356 1357 1358 1359 1360
      transform_later(thread);
      Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
                                             in_bytes(JavaThread::allocated_bytes_offset()));
      Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
                                    0, TypeLong::LONG, T_LONG);
#ifdef _LP64
      Node* alloc_size = size_in_bytes;
#else
1361
      Node* alloc_size = new (C) ConvI2LNode(size_in_bytes);
1362 1363
      transform_later(alloc_size);
#endif
1364
      Node* new_alloc_bytes = new (C) AddLNode(alloc_bytes, alloc_size);
1365 1366 1367
      transform_later(new_alloc_bytes);
      fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
                                   0, new_alloc_bytes, T_LONG);
D
duke 已提交
1368 1369
    }

1370
    InitializeNode* init = alloc->initialization();
D
duke 已提交
1371 1372 1373 1374
    fast_oop_rawmem = initialize_object(alloc,
                                        fast_oop_ctrl, fast_oop_rawmem, fast_oop,
                                        klass_node, length, size_in_bytes);

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
    // If initialization is performed by an array copy, any required
    // MemBarStoreStore was already added. If the object does not
    // escape no need for a MemBarStoreStore. Otherwise we need a
    // MemBarStoreStore so that stores that initialize this object
    // can't be reordered with a subsequent store that makes this
    // object accessible by other threads.
    if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
      if (init == NULL || init->req() < InitializeNode::RawStores) {
        // No InitializeNode or no stores captured by zeroing
        // elimination. Simply add the MemBarStoreStore after object
        // initialization.
1386
        MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1387 1388 1389 1390
        transform_later(mb);

        mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
        mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1391
        fast_oop_ctrl = new (C) ProjNode(mb,TypeFunc::Control);
1392
        transform_later(fast_oop_ctrl);
1393
        fast_oop_rawmem = new (C) ProjNode(mb,TypeFunc::Memory);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
        transform_later(fast_oop_rawmem);
      } else {
        // Add the MemBarStoreStore after the InitializeNode so that
        // all stores performing the initialization that were moved
        // before the InitializeNode happen before the storestore
        // barrier.

        Node* init_ctrl = init->proj_out(TypeFunc::Control);
        Node* init_mem = init->proj_out(TypeFunc::Memory);

        MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
        transform_later(mb);

1407
        Node* ctrl = new (C) ProjNode(init,TypeFunc::Control);
1408
        transform_later(ctrl);
1409
        Node* mem = new (C) ProjNode(init,TypeFunc::Memory);
1410 1411 1412 1413 1414 1415 1416
        transform_later(mem);

        // The MemBarStoreStore depends on control and memory coming
        // from the InitializeNode
        mb->init_req(TypeFunc::Memory, mem);
        mb->init_req(TypeFunc::Control, ctrl);

1417
        ctrl = new (C) ProjNode(mb,TypeFunc::Control);
1418
        transform_later(ctrl);
1419
        mem = new (C) ProjNode(mb,TypeFunc::Memory);
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
        transform_later(mem);

        // All nodes that depended on the InitializeNode for control
        // and memory must now depend on the MemBarNode that itself
        // depends on the InitializeNode
        _igvn.replace_node(init_ctrl, ctrl);
        _igvn.replace_node(init_mem, mem);
      }
    }

1430
    if (C->env()->dtrace_extended_probes()) {
D
duke 已提交
1431 1432
      // Slow-path call
      int size = TypeFunc::Parms + 2;
1433 1434 1435 1436
      CallLeafNode *call = new (C) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
                                                CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
                                                "dtrace_object_alloc",
                                                TypeRawPtr::BOTTOM);
D
duke 已提交
1437 1438

      // Get base of thread-local storage area
1439
      Node* thread = new (C) ThreadLocalNode();
D
duke 已提交
1440 1441 1442 1443
      transform_later(thread);

      call->init_req(TypeFunc::Parms+0, thread);
      call->init_req(TypeFunc::Parms+1, fast_oop);
1444 1445 1446 1447 1448
      call->init_req(TypeFunc::Control, fast_oop_ctrl);
      call->init_req(TypeFunc::I_O    , top()); // does no i/o
      call->init_req(TypeFunc::Memory , fast_oop_rawmem);
      call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
      call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
D
duke 已提交
1449
      transform_later(call);
1450
      fast_oop_ctrl = new (C) ProjNode(call,TypeFunc::Control);
D
duke 已提交
1451
      transform_later(fast_oop_ctrl);
1452
      fast_oop_rawmem = new (C) ProjNode(call,TypeFunc::Memory);
D
duke 已提交
1453 1454 1455 1456
      transform_later(fast_oop_rawmem);
    }

    // Plug in the successful fast-path into the result merge point
1457 1458 1459 1460
    result_region    ->init_req(fast_result_path, fast_oop_ctrl);
    result_phi_rawoop->init_req(fast_result_path, fast_oop);
    result_phi_i_o   ->init_req(fast_result_path, i_o);
    result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
D
duke 已提交
1461 1462
  } else {
    slow_region = ctrl;
K
kvn 已提交
1463
    result_phi_i_o = i_o; // Rename it to use in the following code.
D
duke 已提交
1464 1465 1466
  }

  // Generate slow-path call
1467 1468 1469 1470
  CallNode *call = new (C) CallStaticJavaNode(slow_call_type, slow_call_address,
                               OptoRuntime::stub_name(slow_call_address),
                               alloc->jvms()->bci(),
                               TypePtr::BOTTOM);
D
duke 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
  call->init_req( TypeFunc::Control, slow_region );
  call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
  call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );

  call->init_req(TypeFunc::Parms+0, klass_node);
  if (length != NULL) {
    call->init_req(TypeFunc::Parms+1, length);
  }

  // Copy debug information and adjust JVMState information, then replace
  // allocate node with the call
  copy_call_debug_info((CallNode *) alloc,  call);
  if (!always_slow) {
    call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
K
kvn 已提交
1487 1488 1489 1490
  } else {
    // Hook i_o projection to avoid its elimination during allocation
    // replacement (when only a slow call is generated).
    call->set_req(TypeFunc::I_O, result_phi_i_o);
D
duke 已提交
1491
  }
1492
  _igvn.replace_node(alloc, call);
D
duke 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
  transform_later(call);

  // Identify the output projections from the allocate node and
  // adjust any references to them.
  // The control and io projections look like:
  //
  //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
  //  Allocate                   Catch
  //        ^---Proj(io) <-------+   ^---CatchProj(io)
  //
  //  We are interested in the CatchProj nodes.
  //
  extract_call_projections(call);

K
kvn 已提交
1507 1508 1509 1510
  // An allocate node has separate memory projections for the uses on
  // the control and i_o paths. Replace the control memory projection with
  // result_phi_rawmem (unless we are only generating a slow call when
  // both memory projections are combined)
D
duke 已提交
1511 1512 1513
  if (!always_slow && _memproj_fallthrough != NULL) {
    for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
      Node *use = _memproj_fallthrough->fast_out(i);
1514
      _igvn.rehash_node_delayed(use);
D
duke 已提交
1515 1516 1517 1518 1519
      imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
      // back up iterator
      --i;
    }
  }
K
kvn 已提交
1520 1521
  // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
  // _memproj_catchall so we end up with a call that has only 1 memory projection.
D
duke 已提交
1522 1523
  if (_memproj_catchall != NULL ) {
    if (_memproj_fallthrough == NULL) {
1524
      _memproj_fallthrough = new (C) ProjNode(call, TypeFunc::Memory);
D
duke 已提交
1525 1526 1527 1528
      transform_later(_memproj_fallthrough);
    }
    for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
      Node *use = _memproj_catchall->fast_out(i);
1529
      _igvn.rehash_node_delayed(use);
D
duke 已提交
1530 1531 1532 1533
      imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
      // back up iterator
      --i;
    }
K
kvn 已提交
1534 1535
    assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
    _igvn.remove_dead_node(_memproj_catchall);
D
duke 已提交
1536 1537
  }

K
kvn 已提交
1538 1539 1540 1541 1542 1543
  // An allocate node has separate i_o projections for the uses on the control
  // and i_o paths. Always replace the control i_o projection with result i_o
  // otherwise incoming i_o become dead when only a slow call is generated
  // (it is different from memory projections where both projections are
  // combined in such case).
  if (_ioproj_fallthrough != NULL) {
D
duke 已提交
1544 1545
    for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
      Node *use = _ioproj_fallthrough->fast_out(i);
1546
      _igvn.rehash_node_delayed(use);
D
duke 已提交
1547 1548 1549 1550 1551
      imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
      // back up iterator
      --i;
    }
  }
K
kvn 已提交
1552 1553
  // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
  // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
D
duke 已提交
1554
  if (_ioproj_catchall != NULL ) {
K
kvn 已提交
1555
    if (_ioproj_fallthrough == NULL) {
1556
      _ioproj_fallthrough = new (C) ProjNode(call, TypeFunc::I_O);
K
kvn 已提交
1557 1558
      transform_later(_ioproj_fallthrough);
    }
D
duke 已提交
1559 1560
    for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
      Node *use = _ioproj_catchall->fast_out(i);
1561
      _igvn.rehash_node_delayed(use);
D
duke 已提交
1562 1563 1564 1565
      imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
      // back up iterator
      --i;
    }
K
kvn 已提交
1566 1567
    assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
    _igvn.remove_dead_node(_ioproj_catchall);
D
duke 已提交
1568 1569 1570
  }

  // if we generated only a slow call, we are done
K
kvn 已提交
1571 1572
  if (always_slow) {
    // Now we can unhook i_o.
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
    if (result_phi_i_o->outcnt() > 1) {
      call->set_req(TypeFunc::I_O, top());
    } else {
      assert(result_phi_i_o->unique_ctrl_out() == call, "");
      // Case of new array with negative size known during compilation.
      // AllocateArrayNode::Ideal() optimization disconnect unreachable
      // following code since call to runtime will throw exception.
      // As result there will be no users of i_o after the call.
      // Leave i_o attached to this call to avoid problems in preceding graph.
    }
D
duke 已提交
1583
    return;
K
kvn 已提交
1584
  }
D
duke 已提交
1585 1586 1587 1588 1589


  if (_fallthroughcatchproj != NULL) {
    ctrl = _fallthroughcatchproj->clone();
    transform_later(ctrl);
1590
    _igvn.replace_node(_fallthroughcatchproj, result_region);
D
duke 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
  } else {
    ctrl = top();
  }
  Node *slow_result;
  if (_resproj == NULL) {
    // no uses of the allocation result
    slow_result = top();
  } else {
    slow_result = _resproj->clone();
    transform_later(slow_result);
1601
    _igvn.replace_node(_resproj, result_phi_rawoop);
D
duke 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
  }

  // Plug slow-path into result merge point
  result_region    ->init_req( slow_result_path, ctrl );
  result_phi_rawoop->init_req( slow_result_path, slow_result);
  result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
  transform_later(result_region);
  transform_later(result_phi_rawoop);
  transform_later(result_phi_rawmem);
  transform_later(result_phi_i_o);
  // This completes all paths into the result merge point
}


// Helper for PhaseMacroExpand::expand_allocate_common.
// Initializes the newly-allocated storage.
Node*
PhaseMacroExpand::initialize_object(AllocateNode* alloc,
                                    Node* control, Node* rawmem, Node* object,
                                    Node* klass_node, Node* length,
                                    Node* size_in_bytes) {
  InitializeNode* init = alloc->initialization();
  // Store the klass & mark bits
  Node* mark_node = NULL;
  // For now only enable fast locking for non-array types
  if (UseBiasedLocking && (length == NULL)) {
1628
    mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
D
duke 已提交
1629 1630 1631 1632
  } else {
    mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
  }
  rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1633

1634
  rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
D
duke 已提交
1635 1636 1637 1638 1639 1640
  int header_size = alloc->minimum_header_size();  // conservatively small

  // Array length
  if (length != NULL) {         // Arrays need length field
    rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
    // conservatively small header size:
1641
    header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
D
duke 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
    ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
    if (k->is_array_klass())    // we know the exact header size in most cases:
      header_size = Klass::layout_helper_header_size(k->layout_helper());
  }

  // Clear the object body, if necessary.
  if (init == NULL) {
    // The init has somehow disappeared; be cautious and clear everything.
    //
    // This can happen if a node is allocated but an uncommon trap occurs
    // immediately.  In this case, the Initialize gets associated with the
    // trap, and may be placed in a different (outer) loop, if the Allocate
    // is in a loop.  If (this is rare) the inner loop gets unrolled, then
    // there can be two Allocates to one Initialize.  The answer in all these
    // edge cases is safety first.  It is always safe to clear immediately
    // within an Allocate, and then (maybe or maybe not) clear some more later.
    if (!ZeroTLAB)
      rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
                                            header_size, size_in_bytes,
                                            &_igvn);
  } else {
    if (!init->is_complete()) {
      // Try to win by zeroing only what the init does not store.
      // We can also try to do some peephole optimizations,
      // such as combining some adjacent subword stores.
      rawmem = init->complete_stores(control, rawmem, object,
                                     header_size, size_in_bytes, &_igvn);
    }
    // We have no more use for this link, since the AllocateNode goes away:
    init->set_req(InitializeNode::RawAddress, top());
    // (If we keep the link, it just confuses the register allocator,
    // who thinks he sees a real use of the address by the membar.)
  }

  return rawmem;
}

// Generate prefetch instructions for next allocations.
Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
                                        Node*& contended_phi_rawmem,
                                        Node* old_eden_top, Node* new_eden_top,
                                        Node* length) {
1684
   enum { fall_in_path = 1, pf_path = 2 };
D
duke 已提交
1685 1686 1687 1688 1689
   if( UseTLAB && AllocatePrefetchStyle == 2 ) {
      // Generate prefetch allocation with watermark check.
      // As an allocation hits the watermark, we will prefetch starting
      // at a "distance" away from watermark.

1690 1691
      Node *pf_region = new (C) RegionNode(3);
      Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
D
duke 已提交
1692 1693
                                                TypeRawPtr::BOTTOM );
      // I/O is used for Prefetch
1694
      Node *pf_phi_abio = new (C) PhiNode( pf_region, Type::ABIO );
D
duke 已提交
1695

1696
      Node *thread = new (C) ThreadLocalNode();
D
duke 已提交
1697 1698
      transform_later(thread);

1699
      Node *eden_pf_adr = new (C) AddPNode( top()/*not oop*/, thread,
D
duke 已提交
1700 1701 1702
                   _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
      transform_later(eden_pf_adr);

1703
      Node *old_pf_wm = new (C) LoadPNode(needgc_false,
D
duke 已提交
1704
                                   contended_phi_rawmem, eden_pf_adr,
1705 1706
                                   TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
                                   MemNode::unordered);
D
duke 已提交
1707 1708 1709
      transform_later(old_pf_wm);

      // check against new_eden_top
1710
      Node *need_pf_cmp = new (C) CmpPNode( new_eden_top, old_pf_wm );
D
duke 已提交
1711
      transform_later(need_pf_cmp);
1712
      Node *need_pf_bol = new (C) BoolNode( need_pf_cmp, BoolTest::ge );
D
duke 已提交
1713
      transform_later(need_pf_bol);
1714
      IfNode *need_pf_iff = new (C) IfNode( needgc_false, need_pf_bol,
D
duke 已提交
1715 1716 1717 1718
                                       PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
      transform_later(need_pf_iff);

      // true node, add prefetchdistance
1719
      Node *need_pf_true = new (C) IfTrueNode( need_pf_iff );
D
duke 已提交
1720 1721
      transform_later(need_pf_true);

1722
      Node *need_pf_false = new (C) IfFalseNode( need_pf_iff );
D
duke 已提交
1723 1724
      transform_later(need_pf_false);

1725
      Node *new_pf_wmt = new (C) AddPNode( top(), old_pf_wm,
D
duke 已提交
1726 1727 1728 1729
                                    _igvn.MakeConX(AllocatePrefetchDistance) );
      transform_later(new_pf_wmt );
      new_pf_wmt->set_req(0, need_pf_true);

1730
      Node *store_new_wmt = new (C) StorePNode(need_pf_true,
D
duke 已提交
1731
                                       contended_phi_rawmem, eden_pf_adr,
1732 1733
                                       TypeRawPtr::BOTTOM, new_pf_wmt,
                                       MemNode::unordered);
D
duke 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
      transform_later(store_new_wmt);

      // adding prefetches
      pf_phi_abio->init_req( fall_in_path, i_o );

      Node *prefetch_adr;
      Node *prefetch;
      uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
      uint step_size = AllocatePrefetchStepSize;
      uint distance = 0;

      for ( uint i = 0; i < lines; i++ ) {
1746
        prefetch_adr = new (C) AddPNode( old_pf_wm, new_pf_wmt,
D
duke 已提交
1747 1748
                                            _igvn.MakeConX(distance) );
        transform_later(prefetch_adr);
1749
        prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
D
duke 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
        transform_later(prefetch);
        distance += step_size;
        i_o = prefetch;
      }
      pf_phi_abio->set_req( pf_path, i_o );

      pf_region->init_req( fall_in_path, need_pf_false );
      pf_region->init_req( pf_path, need_pf_true );

      pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
      pf_phi_rawmem->init_req( pf_path, store_new_wmt );

      transform_later(pf_region);
      transform_later(pf_phi_rawmem);
      transform_later(pf_phi_abio);

      needgc_false = pf_region;
      contended_phi_rawmem = pf_phi_rawmem;
      i_o = pf_phi_abio;
1769
   } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1770 1771
      // Insert a prefetch for each allocation.
      // This code is used for Sparc with BIS.
1772 1773 1774
      Node *pf_region = new (C) RegionNode(3);
      Node *pf_phi_rawmem = new (C) PhiNode( pf_region, Type::MEMORY,
                                             TypeRawPtr::BOTTOM );
1775

1776 1777
      // Generate several prefetch instructions.
      uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1778 1779 1780 1781
      uint step_size = AllocatePrefetchStepSize;
      uint distance = AllocatePrefetchDistance;

      // Next cache address.
1782
      Node *cache_adr = new (C) AddPNode(old_eden_top, old_eden_top,
1783 1784
                                            _igvn.MakeConX(distance));
      transform_later(cache_adr);
1785
      cache_adr = new (C) CastP2XNode(needgc_false, cache_adr);
1786 1787
      transform_later(cache_adr);
      Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1788
      cache_adr = new (C) AndXNode(cache_adr, mask);
1789
      transform_later(cache_adr);
1790
      cache_adr = new (C) CastX2PNode(cache_adr);
1791 1792 1793
      transform_later(cache_adr);

      // Prefetch
1794
      Node *prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
1795 1796 1797 1798 1799 1800
      prefetch->set_req(0, needgc_false);
      transform_later(prefetch);
      contended_phi_rawmem = prefetch;
      Node *prefetch_adr;
      distance = step_size;
      for ( uint i = 1; i < lines; i++ ) {
1801
        prefetch_adr = new (C) AddPNode( cache_adr, cache_adr,
1802 1803
                                            _igvn.MakeConX(distance) );
        transform_later(prefetch_adr);
1804
        prefetch = new (C) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
1805 1806 1807 1808
        transform_later(prefetch);
        distance += step_size;
        contended_phi_rawmem = prefetch;
      }
D
duke 已提交
1809 1810 1811 1812
   } else if( AllocatePrefetchStyle > 0 ) {
      // Insert a prefetch for each allocation only on the fast-path
      Node *prefetch_adr;
      Node *prefetch;
1813 1814
      // Generate several prefetch instructions.
      uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
D
duke 已提交
1815 1816 1817
      uint step_size = AllocatePrefetchStepSize;
      uint distance = AllocatePrefetchDistance;
      for ( uint i = 0; i < lines; i++ ) {
1818
        prefetch_adr = new (C) AddPNode( old_eden_top, new_eden_top,
D
duke 已提交
1819 1820
                                            _igvn.MakeConX(distance) );
        transform_later(prefetch_adr);
1821
        prefetch = new (C) PrefetchAllocationNode( i_o, prefetch_adr );
D
duke 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
        // Do not let it float too high, since if eden_top == eden_end,
        // both might be null.
        if( i == 0 ) { // Set control for first prefetch, next follows it
          prefetch->init_req(0, needgc_false);
        }
        transform_later(prefetch);
        distance += step_size;
        i_o = prefetch;
      }
   }
   return i_o;
}


void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
  expand_allocate_common(alloc, NULL,
                         OptoRuntime::new_instance_Type(),
                         OptoRuntime::new_instance_Java());
}

void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
  Node* length = alloc->in(AllocateNode::ALength);
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
  InitializeNode* init = alloc->initialization();
  Node* klass_node = alloc->in(AllocateNode::KlassNode);
  ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  address slow_call_address;  // Address of slow call
  if (init != NULL && init->is_complete_with_arraycopy() &&
      k->is_type_array_klass()) {
    // Don't zero type array during slow allocation in VM since
    // it will be initialized later by arraycopy in compiled code.
    slow_call_address = OptoRuntime::new_array_nozero_Java();
  } else {
    slow_call_address = OptoRuntime::new_array_Java();
  }
D
duke 已提交
1856 1857
  expand_allocate_common(alloc, length,
                         OptoRuntime::new_array_Type(),
1858
                         slow_call_address);
D
duke 已提交
1859 1860
}

K
kvn 已提交
1861 1862
//-------------------mark_eliminated_box----------------------------------
//
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
// During EA obj may point to several objects but after few ideal graph
// transformations (CCP) it may point to only one non escaping object
// (but still using phi), corresponding locks and unlocks will be marked
// for elimination. Later obj could be replaced with a new node (new phi)
// and which does not have escape information. And later after some graph
// reshape other locks and unlocks (which were not marked for elimination
// before) are connected to this new obj (phi) but they still will not be
// marked for elimination since new obj has no escape information.
// Mark all associated (same box and obj) lock and unlock nodes for
// elimination if some of them marked already.
K
kvn 已提交
1873
void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
1874 1875 1876 1877 1878 1879 1880 1881
  if (oldbox->as_BoxLock()->is_eliminated())
    return; // This BoxLock node was processed already.

  // New implementation (EliminateNestedLocks) has separate BoxLock
  // node for each locked region so mark all associated locks/unlocks as
  // eliminated even if different objects are referenced in one locked region
  // (for example, OSR compilation of nested loop inside locked scope).
  if (EliminateNestedLocks ||
K
kvn 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
      oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
    // Box is used only in one lock region. Mark this box as eliminated.
    _igvn.hash_delete(oldbox);
    oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
    _igvn.hash_insert(oldbox);

    for (uint i = 0; i < oldbox->outcnt(); i++) {
      Node* u = oldbox->raw_out(i);
      if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
        AbstractLockNode* alock = u->as_AbstractLock();
        // Check lock's box since box could be referenced by Lock's debug info.
        if (alock->box_node() == oldbox) {
          // Mark eliminated all related locks and unlocks.
          alock->set_non_esc_obj();
        }
      }
    }
1899
    return;
1900
  }
K
kvn 已提交
1901 1902 1903

  // Create new "eliminated" BoxLock node and use it in monitor debug info
  // instead of oldbox for the same object.
1904
  BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
K
kvn 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918

  // Note: BoxLock node is marked eliminated only here and it is used
  // to indicate that all associated lock and unlock nodes are marked
  // for elimination.
  newbox->set_eliminated();
  transform_later(newbox);

  // Replace old box node with new box for all users of the same object.
  for (uint i = 0; i < oldbox->outcnt();) {
    bool next_edge = true;

    Node* u = oldbox->raw_out(i);
    if (u->is_AbstractLock()) {
      AbstractLockNode* alock = u->as_AbstractLock();
K
kvn 已提交
1919
      if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
K
kvn 已提交
1920 1921
        // Replace Box and mark eliminated all related locks and unlocks.
        alock->set_non_esc_obj();
1922
        _igvn.rehash_node_delayed(alock);
K
kvn 已提交
1923 1924 1925 1926
        alock->set_box_node(newbox);
        next_edge = false;
      }
    }
K
kvn 已提交
1927
    if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
K
kvn 已提交
1928 1929
      FastLockNode* flock = u->as_FastLock();
      assert(flock->box_node() == oldbox, "sanity");
1930
      _igvn.rehash_node_delayed(flock);
K
kvn 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
      flock->set_box_node(newbox);
      next_edge = false;
    }

    // Replace old box in monitor debug info.
    if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
      SafePointNode* sfn = u->as_SafePoint();
      JVMState* youngest_jvms = sfn->jvms();
      int max_depth = youngest_jvms->depth();
      for (int depth = 1; depth <= max_depth; depth++) {
        JVMState* jvms = youngest_jvms->of_depth(depth);
        int num_mon  = jvms->nof_monitors();
        // Loop over monitors
        for (int idx = 0; idx < num_mon; idx++) {
          Node* obj_node = sfn->monitor_obj(jvms, idx);
          Node* box_node = sfn->monitor_box(jvms, idx);
K
kvn 已提交
1947
          if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
K
kvn 已提交
1948
            int j = jvms->monitor_box_offset(idx);
1949
            _igvn.replace_input_of(u, j, newbox);
K
kvn 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
            next_edge = false;
          }
        }
      }
    }
    if (next_edge) i++;
  }
}

//-----------------------mark_eliminated_locking_nodes-----------------------
void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
  if (EliminateNestedLocks) {
    if (alock->is_nested()) {
       assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
       return;
    } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
      // Only Lock node has JVMState needed here.
      if (alock->jvms() != NULL && alock->as_Lock()->is_nested_lock_region()) {
        // Mark eliminated related nested locks and unlocks.
        Node* obj = alock->obj_node();
        BoxLockNode* box_node = alock->box_node()->as_BoxLock();
        assert(!box_node->is_eliminated(), "should not be marked yet");
1972 1973 1974
        // Note: BoxLock node is marked eliminated only here
        // and it is used to indicate that all associated lock
        // and unlock nodes are marked for elimination.
K
kvn 已提交
1975 1976 1977 1978 1979 1980 1981
        box_node->set_eliminated(); // Box's hash is always NO_HASH here
        for (uint i = 0; i < box_node->outcnt(); i++) {
          Node* u = box_node->raw_out(i);
          if (u->is_AbstractLock()) {
            alock = u->as_AbstractLock();
            if (alock->box_node() == box_node) {
              // Verify that this Box is referenced only by related locks.
K
kvn 已提交
1982
              assert(alock->obj_node()->eqv_uncast(obj), "");
K
kvn 已提交
1983 1984 1985
              // Mark all related locks and unlocks.
              alock->set_nested();
            }
1986
          }
K
kvn 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
        }
      }
      return;
    }
    // Process locks for non escaping object
    assert(alock->is_non_esc_obj(), "");
  } // EliminateNestedLocks

  if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
    // Look for all locks of this object and mark them and
    // corresponding BoxLock nodes as eliminated.
    Node* obj = alock->obj_node();
    for (uint j = 0; j < obj->outcnt(); j++) {
      Node* o = obj->raw_out(j);
K
kvn 已提交
2001 2002
      if (o->is_AbstractLock() &&
          o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
K
kvn 已提交
2003 2004 2005 2006 2007 2008 2009 2010
        alock = o->as_AbstractLock();
        Node* box = alock->box_node();
        // Replace old box node with new eliminated box for all users
        // of the same object and mark related locks as eliminated.
        mark_eliminated_box(box, obj);
      }
    }
  }
2011
}
2012

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
// we have determined that this lock/unlock can be eliminated, we simply
// eliminate the node without expanding it.
//
// Note:  The membar's associated with the lock/unlock are currently not
//        eliminated.  This should be investigated as a future enhancement.
//
bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {

  if (!alock->is_eliminated()) {
    return false;
  }
#ifdef ASSERT
K
kvn 已提交
2025
  if (!alock->is_coarsened()) {
2026 2027 2028 2029 2030
    // Check that new "eliminated" BoxLock node is created.
    BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
    assert(oldbox->is_eliminated(), "should be done already");
  }
#endif
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
  CompileLog* log = C->log();
  if (log != NULL) {
    log->head("eliminate_lock lock='%d'",
              alock->is_Lock());
    JVMState* p = alock->jvms();
    while (p != NULL) {
      log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
      p = p->caller();
    }
    log->tail("eliminate_lock");
  }

2043 2044 2045
  #ifndef PRODUCT
  if (PrintEliminateLocks) {
    if (alock->is_Lock()) {
2046
      tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
2047
    } else {
2048
      tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
    }
  }
  #endif

  Node* mem  = alock->in(TypeFunc::Memory);
  Node* ctrl = alock->in(TypeFunc::Control);

  extract_call_projections(alock);
  // There are 2 projections from the lock.  The lock node will
  // be deleted when its last use is subsumed below.
  assert(alock->outcnt() == 2 &&
         _fallthroughproj != NULL &&
         _memproj_fallthrough != NULL,
         "Unexpected projections from Lock/Unlock");

  Node* fallthroughproj = _fallthroughproj;
  Node* memproj_fallthrough = _memproj_fallthrough;
D
duke 已提交
2066 2067 2068 2069 2070

  // The memory projection from a lock/unlock is RawMem
  // The input to a Lock is merged memory, so extract its RawMem input
  // (unless the MergeMem has been optimized away.)
  if (alock->is_Lock()) {
2071
    // Seach for MemBarAcquireLock node and delete it also.
2072
    MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2073
    assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
2074 2075
    Node* ctrlproj = membar->proj_out(TypeFunc::Control);
    Node* memproj = membar->proj_out(TypeFunc::Memory);
2076 2077
    _igvn.replace_node(ctrlproj, fallthroughproj);
    _igvn.replace_node(memproj, memproj_fallthrough);
2078 2079 2080 2081 2082 2083

    // Delete FastLock node also if this Lock node is unique user
    // (a loop peeling may clone a Lock node).
    Node* flock = alock->as_Lock()->fastlock_node();
    if (flock->outcnt() == 1) {
      assert(flock->unique_out() == alock, "sanity");
2084
      _igvn.replace_node(flock, top());
2085
    }
D
duke 已提交
2086 2087
  }

2088
  // Seach for MemBarReleaseLock node and delete it also.
2089 2090 2091
  if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
      ctrl->in(0)->is_MemBar()) {
    MemBarNode* membar = ctrl->in(0)->as_MemBar();
2092
    assert(membar->Opcode() == Op_MemBarReleaseLock &&
2093
           mem->is_Proj() && membar == mem->in(0), "");
2094 2095
    _igvn.replace_node(fallthroughproj, ctrl);
    _igvn.replace_node(memproj_fallthrough, mem);
2096 2097 2098 2099 2100 2101
    fallthroughproj = ctrl;
    memproj_fallthrough = mem;
    ctrl = membar->in(TypeFunc::Control);
    mem  = membar->in(TypeFunc::Memory);
  }

2102 2103
  _igvn.replace_node(fallthroughproj, ctrl);
  _igvn.replace_node(memproj_fallthrough, mem);
2104
  return true;
D
duke 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
}


//------------------------------expand_lock_node----------------------
void PhaseMacroExpand::expand_lock_node(LockNode *lock) {

  Node* ctrl = lock->in(TypeFunc::Control);
  Node* mem = lock->in(TypeFunc::Memory);
  Node* obj = lock->obj_node();
  Node* box = lock->box_node();
2115
  Node* flock = lock->fastlock_node();
D
duke 已提交
2116

2117
  assert(!box->as_BoxLock()->is_eliminated(), "sanity");
K
kvn 已提交
2118

D
duke 已提交
2119
  // Make the merge point
2120 2121 2122 2123 2124 2125
  Node *region;
  Node *mem_phi;
  Node *slow_path;

  if (UseOptoBiasInlining) {
    /*
T
twisti 已提交
2126
     *  See the full description in MacroAssembler::biased_locking_enter().
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
     *
     *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
     *    // The object is biased.
     *    proto_node = klass->prototype_header;
     *    o_node = thread | proto_node;
     *    x_node = o_node ^ mark_word;
     *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
     *      // Done.
     *    } else {
     *      if( (x_node & biased_lock_mask) != 0 ) {
     *        // The klass's prototype header is no longer biased.
     *        cas(&mark_word, mark_word, proto_node)
     *        goto cas_lock;
     *      } else {
     *        // The klass's prototype header is still biased.
     *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
     *          old = mark_word;
     *          new = o_node;
     *        } else {
     *          // Different thread or anonymous biased.
     *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
     *          new = thread | old;
     *        }
     *        // Try to rebias.
     *        if( cas(&mark_word, old, new) == 0 ) {
     *          // Done.
     *        } else {
     *          goto slow_path; // Failed.
     *        }
     *      }
     *    }
     *  } else {
     *    // The object is not biased.
     *    cas_lock:
     *    if( FastLock(obj) == 0 ) {
     *      // Done.
     *    } else {
     *      slow_path:
     *      OptoRuntime::complete_monitor_locking_Java(obj);
     *    }
     *  }
     */

2170
    region  = new (C) RegionNode(5);
2171
    // create a Phi for the memory state
2172
    mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2173

2174 2175
    Node* fast_lock_region  = new (C) RegionNode(3);
    Node* fast_lock_mem_phi = new (C) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

    // First, check mark word for the biased lock pattern.
    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());

    // Get fast path - mark word has the biased lock pattern.
    ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
                         markOopDesc::biased_lock_mask_in_place,
                         markOopDesc::biased_lock_pattern, true);
    // fast_lock_region->in(1) is set to slow path.
    fast_lock_mem_phi->init_req(1, mem);

    // Now check that the lock is biased to the current thread and has
    // the same epoch and bias as Klass::_prototype_header.

    // Special-case a fresh allocation to avoid building nodes:
    Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
    if (klass_node == NULL) {
      Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
      klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
2195
#ifdef _LP64
2196
      if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
2197 2198 2199 2200 2201
        assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
        klass_node->in(1)->init_req(0, ctrl);
      } else
#endif
      klass_node->init_req(0, ctrl);
2202
    }
2203
    Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
D
duke 已提交
2204

2205 2206 2207 2208
    Node* thread = transform_later(new (C) ThreadLocalNode());
    Node* cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
    Node* o_node = transform_later(new (C) OrXNode(cast_thread, proto_node));
    Node* x_node = transform_later(new (C) XorXNode(o_node, mark_node));
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

    // Get slow path - mark word does NOT match the value.
    Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
                                      (~markOopDesc::age_mask_in_place), 0);
    // region->in(3) is set to fast path - the object is biased to the current thread.
    mem_phi->init_req(3, mem);


    // Mark word does NOT match the value (thread | Klass::_prototype_header).


    // First, check biased pattern.
    // Get fast path - _prototype_header has the same biased lock pattern.
    ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
                          markOopDesc::biased_lock_mask_in_place, 0, true);

    not_biased_ctrl = fast_lock_region->in(2); // Slow path
    // fast_lock_region->in(2) - the prototype header is no longer biased
    // and we have to revoke the bias on this object.
    // We are going to try to reset the mark of this object to the prototype
    // value and fall through to the CAS-based locking scheme.
    Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2231 2232
    Node* cas = new (C) StoreXConditionalNode(not_biased_ctrl, mem, adr,
                                              proto_node, mark_node);
2233
    transform_later(cas);
2234
    Node* proj = transform_later( new (C) SCMemProjNode(cas));
2235 2236 2237 2238
    fast_lock_mem_phi->init_req(2, proj);


    // Second, check epoch bits.
2239 2240 2241
    Node* rebiased_region  = new (C) RegionNode(3);
    Node* old_phi = new (C) PhiNode( rebiased_region, TypeX_X);
    Node* new_phi = new (C) PhiNode( rebiased_region, TypeX_X);
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

    // Get slow path - mark word does NOT match epoch bits.
    Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
                                      markOopDesc::epoch_mask_in_place, 0);
    // The epoch of the current bias is not valid, attempt to rebias the object
    // toward the current thread.
    rebiased_region->init_req(2, epoch_ctrl);
    old_phi->init_req(2, mark_node);
    new_phi->init_req(2, o_node);

    // rebiased_region->in(1) is set to fast path.
    // The epoch of the current bias is still valid but we know
    // nothing about the owner; it might be set or it might be clear.
    Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
                             markOopDesc::age_mask_in_place |
                             markOopDesc::epoch_mask_in_place);
2258 2259 2260
    Node* old = transform_later(new (C) AndXNode(mark_node, cmask));
    cast_thread = transform_later(new (C) CastP2XNode(ctrl, thread));
    Node* new_mark = transform_later(new (C) OrXNode(cast_thread, old));
2261 2262 2263 2264 2265 2266 2267 2268 2269
    old_phi->init_req(1, old);
    new_phi->init_req(1, new_mark);

    transform_later(rebiased_region);
    transform_later(old_phi);
    transform_later(new_phi);

    // Try to acquire the bias of the object using an atomic operation.
    // If this fails we will go in to the runtime to revoke the object's bias.
2270
    cas = new (C) StoreXConditionalNode(rebiased_region, mem, adr,
2271 2272
                                           new_phi, old_phi);
    transform_later(cas);
2273
    proj = transform_later( new (C) SCMemProjNode(cas));
2274 2275 2276 2277 2278 2279 2280

    // Get slow path - Failed to CAS.
    not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
    mem_phi->init_req(4, proj);
    // region->in(4) is set to fast path - the object is rebiased to the current thread.

    // Failed to CAS.
2281 2282
    slow_path  = new (C) RegionNode(3);
    Node *slow_mem = new (C) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305

    slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
    slow_mem->init_req(1, proj);

    // Call CAS-based locking scheme (FastLock node).

    transform_later(fast_lock_region);
    transform_later(fast_lock_mem_phi);

    // Get slow path - FastLock failed to lock the object.
    ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
    mem_phi->init_req(2, fast_lock_mem_phi);
    // region->in(2) is set to fast path - the object is locked to the current thread.

    slow_path->init_req(2, ctrl); // Capture slow-control
    slow_mem->init_req(2, fast_lock_mem_phi);

    transform_later(slow_path);
    transform_later(slow_mem);
    // Reset lock's memory edge.
    lock->set_req(TypeFunc::Memory, slow_mem);

  } else {
2306
    region  = new (C) RegionNode(3);
2307
    // create a Phi for the memory state
2308
    mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2309 2310 2311 2312 2313

    // Optimize test; set region slot 2
    slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
    mem_phi->init_req(2, mem);
  }
D
duke 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332

  // Make slow path call
  CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );

  extract_call_projections(call);

  // Slow path can only throw asynchronous exceptions, which are always
  // de-opted.  So the compiler thinks the slow-call can never throw an
  // exception.  If it DOES throw an exception we would need the debug
  // info removed first (since if it throws there is no monitor).
  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");

  // Capture slow path
  // disconnect fall-through projection from call and create a new one
  // hook up users of fall-through projection to region
  Node *slow_ctrl = _fallthroughproj->clone();
  transform_later(slow_ctrl);
  _igvn.hash_delete(_fallthroughproj);
2333
  _fallthroughproj->disconnect_inputs(NULL, C);
D
duke 已提交
2334 2335 2336
  region->init_req(1, slow_ctrl);
  // region inputs are now complete
  transform_later(region);
2337
  _igvn.replace_node(_fallthroughproj, region);
D
duke 已提交
2338

2339
  Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
D
duke 已提交
2340 2341
  mem_phi->init_req(1, memproj );
  transform_later(mem_phi);
2342
  _igvn.replace_node(_memproj_fallthrough, mem_phi);
D
duke 已提交
2343 2344 2345 2346 2347
}

//------------------------------expand_unlock_node----------------------
void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {

2348
  Node* ctrl = unlock->in(TypeFunc::Control);
D
duke 已提交
2349 2350 2351 2352
  Node* mem = unlock->in(TypeFunc::Memory);
  Node* obj = unlock->obj_node();
  Node* box = unlock->box_node();

2353
  assert(!box->as_BoxLock()->is_eliminated(), "sanity");
K
kvn 已提交
2354

D
duke 已提交
2355 2356 2357
  // No need for a null check on unlock

  // Make the merge point
2358 2359 2360 2361 2362
  Node *region;
  Node *mem_phi;

  if (UseOptoBiasInlining) {
    // Check for biased locking unlock case, which is a no-op.
T
twisti 已提交
2363
    // See the full description in MacroAssembler::biased_locking_exit().
2364
    region  = new (C) RegionNode(4);
2365
    // create a Phi for the memory state
2366
    mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2367 2368 2369 2370 2371 2372 2373
    mem_phi->init_req(3, mem);

    Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
    ctrl = opt_bits_test(ctrl, region, 3, mark_node,
                         markOopDesc::biased_lock_mask_in_place,
                         markOopDesc::biased_lock_pattern);
  } else {
2374
    region  = new (C) RegionNode(3);
2375
    // create a Phi for the memory state
2376
    mem_phi = new (C) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2377
  }
D
duke 已提交
2378

2379
  FastUnlockNode *funlock = new (C) FastUnlockNode( ctrl, obj, box );
D
duke 已提交
2380 2381
  funlock = transform_later( funlock )->as_FastUnlock();
  // Optimize test; set region slot 2
2382
  Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
D
duke 已提交
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397

  CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );

  extract_call_projections(call);

  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");

  // No exceptions for unlocking
  // Capture slow path
  // disconnect fall-through projection from call and create a new one
  // hook up users of fall-through projection to region
  Node *slow_ctrl = _fallthroughproj->clone();
  transform_later(slow_ctrl);
  _igvn.hash_delete(_fallthroughproj);
2398
  _fallthroughproj->disconnect_inputs(NULL, C);
D
duke 已提交
2399 2400 2401
  region->init_req(1, slow_ctrl);
  // region inputs are now complete
  transform_later(region);
2402
  _igvn.replace_node(_fallthroughproj, region);
D
duke 已提交
2403

2404
  Node *memproj = transform_later( new(C) ProjNode(call, TypeFunc::Memory) );
D
duke 已提交
2405 2406 2407
  mem_phi->init_req(1, memproj );
  mem_phi->init_req(2, mem);
  transform_later(mem_phi);
2408
  _igvn.replace_node(_memproj_fallthrough, mem_phi);
D
duke 已提交
2409 2410
}

2411 2412 2413
//---------------------------eliminate_macro_nodes----------------------
// Eliminate scalar replaced allocations and associated locks.
void PhaseMacroExpand::eliminate_macro_nodes() {
D
duke 已提交
2414
  if (C->macro_count() == 0)
2415 2416
    return;

2417
  // First, attempt to eliminate locks
2418 2419 2420 2421 2422 2423 2424 2425 2426
  int cnt = C->macro_count();
  for (int i=0; i < cnt; i++) {
    Node *n = C->macro_node(i);
    if (n->is_AbstractLock()) { // Lock and Unlock nodes
      // Before elimination mark all associated (same box and obj)
      // lock and unlock nodes.
      mark_eliminated_locking_nodes(n->as_AbstractLock());
    }
  }
2427
  bool progress = true;
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
  while (progress) {
    progress = false;
    for (int i = C->macro_count(); i > 0; i--) {
      Node * n = C->macro_node(i-1);
      bool success = false;
      debug_only(int old_macro_count = C->macro_count(););
      if (n->is_AbstractLock()) {
        success = eliminate_locking_node(n->as_AbstractLock());
      }
      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
      progress = progress || success;
    }
  }
  // Next, attempt to eliminate allocations
  progress = true;
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
  while (progress) {
    progress = false;
    for (int i = C->macro_count(); i > 0; i--) {
      Node * n = C->macro_node(i-1);
      bool success = false;
      debug_only(int old_macro_count = C->macro_count(););
      switch (n->class_id()) {
      case Node::Class_Allocate:
      case Node::Class_AllocateArray:
        success = eliminate_allocate_node(n->as_Allocate());
        break;
2454 2455 2456
      case Node::Class_CallStaticJava:
        success = eliminate_boxing_node(n->as_CallStaticJava());
        break;
2457 2458
      case Node::Class_Lock:
      case Node::Class_Unlock:
2459
        assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2460 2461
        break;
      default:
2462 2463 2464
        assert(n->Opcode() == Op_LoopLimit ||
               n->Opcode() == Op_Opaque1   ||
               n->Opcode() == Op_Opaque2, "unknown node type in macro list");
2465 2466 2467 2468 2469
      }
      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
      progress = progress || success;
    }
  }
2470 2471 2472 2473 2474 2475 2476 2477
}

//------------------------------expand_macro_nodes----------------------
//  Returns true if a failure occurred.
bool PhaseMacroExpand::expand_macro_nodes() {
  // Last attempt to eliminate macro nodes.
  eliminate_macro_nodes();

2478 2479 2480
  // Make sure expansion will not cause node limit to be exceeded.
  // Worst case is a macro node gets expanded into about 50 nodes.
  // Allow 50% more for optimization.
D
duke 已提交
2481 2482
  if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
    return true;
2483

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
  // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
  bool progress = true;
  while (progress) {
    progress = false;
    for (int i = C->macro_count(); i > 0; i--) {
      Node * n = C->macro_node(i-1);
      bool success = false;
      debug_only(int old_macro_count = C->macro_count(););
      if (n->Opcode() == Op_LoopLimit) {
        // Remove it from macro list and put on IGVN worklist to optimize.
        C->remove_macro_node(n);
        _igvn._worklist.push(n);
        success = true;
2497 2498 2499 2500 2501
      } else if (n->Opcode() == Op_CallStaticJava) {
        // Remove it from macro list and put on IGVN worklist to optimize.
        C->remove_macro_node(n);
        _igvn._worklist.push(n);
        success = true;
2502 2503 2504 2505 2506 2507 2508 2509 2510
      } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
        _igvn.replace_node(n, n->in(1));
        success = true;
      }
      assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
      progress = progress || success;
    }
  }

D
duke 已提交
2511 2512 2513
  // expand "macro" nodes
  // nodes are removed from the macro list as they are processed
  while (C->macro_count() > 0) {
2514 2515
    int macro_count = C->macro_count();
    Node * n = C->macro_node(macro_count-1);
D
duke 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
    assert(n->is_macro(), "only macro nodes expected here");
    if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
      // node is unreachable, so don't try to expand it
      C->remove_macro_node(n);
      continue;
    }
    switch (n->class_id()) {
    case Node::Class_Allocate:
      expand_allocate(n->as_Allocate());
      break;
    case Node::Class_AllocateArray:
      expand_allocate_array(n->as_AllocateArray());
      break;
    case Node::Class_Lock:
      expand_lock_node(n->as_Lock());
      break;
    case Node::Class_Unlock:
      expand_unlock_node(n->as_Unlock());
      break;
    default:
      assert(false, "unknown node type in macro list");
    }
2538
    assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
D
duke 已提交
2539 2540
    if (C->failing())  return true;
  }
2541 2542

  _igvn.set_delay_transform(false);
D
duke 已提交
2543
  _igvn.optimize();
2544
  if (C->failing())  return true;
D
duke 已提交
2545 2546
  return false;
}