os_linux.hpp 12.4 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
 *
 */

// Linux_OS defines the interface to Linux operating systems

/* pthread_getattr_np comes with LinuxThreads-0.9-7 on RedHat 7.1 */
typedef int (*pthread_getattr_func_type) (pthread_t, pthread_attr_t *);

class Linux {
  friend class os;

  // For signal-chaining
#define MAXSIGNUM 32
  static struct sigaction sigact[MAXSIGNUM]; // saved preinstalled sigactions
  static unsigned int sigs;             // mask of signals that have
                                        // preinstalled signal handlers
  static bool libjsig_is_loaded;        // libjsig that interposes sigaction(),
                                        // __sigaction(), signal() is loaded
  static struct sigaction *(*get_signal_action)(int);
  static struct sigaction *get_preinstalled_handler(int);
  static void save_preinstalled_handler(int, struct sigaction&);

  static void check_signal_handler(int sig);

  // For signal flags diagnostics
  static int sigflags[MAXSIGNUM];

  static int (*_clock_gettime)(clockid_t, struct timespec *);
  static int (*_pthread_getcpuclockid)(pthread_t, clockid_t *);

  static address   _initial_thread_stack_bottom;
  static uintptr_t _initial_thread_stack_size;

55 56
  static const char *_glibc_version;
  static const char *_libpthread_version;
D
duke 已提交
57 58 59 60 61

  static bool _is_floating_stack;
  static bool _is_NPTL;
  static bool _supports_fast_thread_cpu_time;

62 63
  static GrowableArray<int>* _cpu_to_node;

D
duke 已提交
64 65 66 67 68 69 70 71 72 73 74
 protected:

  static julong _physical_memory;
  static pthread_t _main_thread;
  static Mutex* _createThread_lock;
  static int _page_size;

  static julong available_memory();
  static julong physical_memory() { return _physical_memory; }
  static void initialize_system_info();

75 76
  static void set_glibc_version(const char *s)      { _glibc_version = s; }
  static void set_libpthread_version(const char *s) { _libpthread_version = s; }
D
duke 已提交
77 78 79 80 81 82 83

  static bool supports_variable_stack_size();

  static void set_is_NPTL()                   { _is_NPTL = true;  }
  static void set_is_LinuxThreads()           { _is_NPTL = false; }
  static void set_is_floating_stack()         { _is_floating_stack = true; }

84 85
  static void rebuild_cpu_to_node_map();
  static GrowableArray<int>* cpu_to_node()    { return _cpu_to_node; }
D
duke 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
 public:
  static void init_thread_fpu_state();
  static int  get_fpu_control_word();
  static void set_fpu_control_word(int fpu_control);
  static pthread_t main_thread(void)                                { return _main_thread; }
  // returns kernel thread id (similar to LWP id on Solaris), which can be
  // used to access /proc
  static pid_t gettid();
  static void set_createThread_lock(Mutex* lk)                      { _createThread_lock = lk; }
  static Mutex* createThread_lock(void)                             { return _createThread_lock; }
  static void hotspot_sigmask(Thread* thread);

  static address   initial_thread_stack_bottom(void)                { return _initial_thread_stack_bottom; }
  static uintptr_t initial_thread_stack_size(void)                  { return _initial_thread_stack_size; }
  static bool is_initial_thread(void);

  static int page_size(void)                                        { return _page_size; }
  static void set_page_size(int val)                                { _page_size = val; }

  static address   ucontext_get_pc(ucontext_t* uc);
  static intptr_t* ucontext_get_sp(ucontext_t* uc);
  static intptr_t* ucontext_get_fp(ucontext_t* uc);

  // For Analyzer Forte AsyncGetCallTrace profiling support:
  //
  // This interface should be declared in os_linux_i486.hpp, but
  // that file provides extensions to the os class and not the
  // Linux class.
  static ExtendedPC fetch_frame_from_ucontext(Thread* thread, ucontext_t* uc,
    intptr_t** ret_sp, intptr_t** ret_fp);

  // This boolean allows users to forward their own non-matching signals
  // to JVM_handle_linux_signal, harmlessly.
  static bool signal_handlers_are_installed;

  static int get_our_sigflags(int);
  static void set_our_sigflags(int, int);
  static void signal_sets_init();
  static void install_signal_handlers();
  static void set_signal_handler(int, bool);
  static bool is_sig_ignored(int sig);

  static sigset_t* unblocked_signals();
  static sigset_t* vm_signals();
  static sigset_t* allowdebug_blocked_signals();

  // For signal-chaining
  static struct sigaction *get_chained_signal_action(int sig);
  static bool chained_handler(int sig, siginfo_t* siginfo, void* context);

  // GNU libc and libpthread version strings
137 138
  static const char *glibc_version()          { return _glibc_version; }
  static const char *libpthread_version()     { return _libpthread_version; }
D
duke 已提交
139 140 141 142 143 144 145 146 147 148

  // NPTL or LinuxThreads?
  static bool is_LinuxThreads()               { return !_is_NPTL; }
  static bool is_NPTL()                       { return _is_NPTL;  }

  // NPTL is always floating stack. LinuxThreads could be using floating
  // stack or fixed stack.
  static bool is_floating_stack()             { return _is_floating_stack; }

  static void libpthread_init();
149
  static bool libnuma_init();
150
  static void* libnuma_dlsym(void* handle, const char* name);
D
duke 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
  // Minimum stack size a thread can be created with (allowing
  // the VM to completely create the thread and enter user code)
  static size_t min_stack_allowed;

  // Return default stack size or guard size for the specified thread type
  static size_t default_stack_size(os::ThreadType thr_type);
  static size_t default_guard_size(os::ThreadType thr_type);

  static void capture_initial_stack(size_t max_size);

  // Stack overflow handling
  static bool manually_expand_stack(JavaThread * t, address addr);
  static int max_register_window_saves_before_flushing();

  // Real-time clock functions
  static void clock_init(void);

  // fast POSIX clocks support
  static void fast_thread_clock_init(void);

  static bool supports_monotonic_clock() {
    return _clock_gettime != NULL;
  }

  static int clock_gettime(clockid_t clock_id, struct timespec *tp) {
    return _clock_gettime ? _clock_gettime(clock_id, tp) : -1;
  }

  static int pthread_getcpuclockid(pthread_t tid, clockid_t *clock_id) {
    return _pthread_getcpuclockid ? _pthread_getcpuclockid(tid, clock_id) : -1;
  }

  static bool supports_fast_thread_cpu_time() {
    return _supports_fast_thread_cpu_time;
  }

  static jlong fast_thread_cpu_time(clockid_t clockid);

  // Stack repair handling

  // none present

  // LinuxThreads work-around for 6292965
  static int safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime);


  // Linux suspend/resume support - this helper is a shadow of its former
  // self now that low-level suspension is barely used, and old workarounds
  // for LinuxThreads are no longer needed.
  class SuspendResume {
  private:
    volatile int _suspend_action;
    // values for suspend_action:
    #define SR_NONE               (0x00)
    #define SR_SUSPEND            (0x01)  // suspend request
    #define SR_CONTINUE           (0x02)  // resume request

    volatile jint _state;
    // values for _state: + SR_NONE
    #define SR_SUSPENDED          (0x20)
  public:
    SuspendResume() { _suspend_action = SR_NONE; _state = SR_NONE; }

    int suspend_action() const     { return _suspend_action; }
    void set_suspend_action(int x) { _suspend_action = x;    }

    // atomic updates for _state
    void set_suspended()           {
      jint temp, temp2;
      do {
        temp = _state;
        temp2 = Atomic::cmpxchg(temp | SR_SUSPENDED, &_state, temp);
      } while (temp2 != temp);
    }
    void clear_suspended()        {
      jint temp, temp2;
      do {
        temp = _state;
        temp2 = Atomic::cmpxchg(temp & ~SR_SUSPENDED, &_state, temp);
      } while (temp2 != temp);
    }
    bool is_suspended()            { return _state & SR_SUSPENDED;       }

    #undef SR_SUSPENDED
  };
236 237 238 239 240 241 242

private:
  typedef int (*sched_getcpu_func_t)(void);
  typedef int (*numa_node_to_cpus_func_t)(int node, unsigned long *buffer, int bufferlen);
  typedef int (*numa_max_node_func_t)(void);
  typedef int (*numa_available_func_t)(void);
  typedef int (*numa_tonode_memory_func_t)(void *start, size_t size, int node);
243
  typedef void (*numa_interleave_memory_func_t)(void *start, size_t size, unsigned long *nodemask);
244 245 246 247 248 249

  static sched_getcpu_func_t _sched_getcpu;
  static numa_node_to_cpus_func_t _numa_node_to_cpus;
  static numa_max_node_func_t _numa_max_node;
  static numa_available_func_t _numa_available;
  static numa_tonode_memory_func_t _numa_tonode_memory;
250 251
  static numa_interleave_memory_func_t _numa_interleave_memory;
  static unsigned long* _numa_all_nodes;
252 253 254 255 256 257

  static void set_sched_getcpu(sched_getcpu_func_t func) { _sched_getcpu = func; }
  static void set_numa_node_to_cpus(numa_node_to_cpus_func_t func) { _numa_node_to_cpus = func; }
  static void set_numa_max_node(numa_max_node_func_t func) { _numa_max_node = func; }
  static void set_numa_available(numa_available_func_t func) { _numa_available = func; }
  static void set_numa_tonode_memory(numa_tonode_memory_func_t func) { _numa_tonode_memory = func; }
258 259
  static void set_numa_interleave_memory(numa_interleave_memory_func_t func) { _numa_interleave_memory = func; }
  static void set_numa_all_nodes(unsigned long* ptr) { _numa_all_nodes = ptr; }
260 261 262 263 264 265 266 267 268 269
public:
  static int sched_getcpu()  { return _sched_getcpu != NULL ? _sched_getcpu() : -1; }
  static int numa_node_to_cpus(int node, unsigned long *buffer, int bufferlen) {
    return _numa_node_to_cpus != NULL ? _numa_node_to_cpus(node, buffer, bufferlen) : -1;
  }
  static int numa_max_node() { return _numa_max_node != NULL ? _numa_max_node() : -1; }
  static int numa_available() { return _numa_available != NULL ? _numa_available() : -1; }
  static int numa_tonode_memory(void *start, size_t size, int node) {
    return _numa_tonode_memory != NULL ? _numa_tonode_memory(start, size, node) : -1;
  }
270 271 272 273 274
  static void numa_interleave_memory(void *start, size_t size) {
    if (_numa_interleave_memory != NULL && _numa_all_nodes != NULL) {
      _numa_interleave_memory(start, size, _numa_all_nodes);
    }
  }
275
  static int get_node_by_cpu(int cpu_id);
D
duke 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
};


class PlatformEvent : public CHeapObj {
  private:
    double CachePad [4] ;   // increase odds that _mutex is sole occupant of cache line
    volatile int _Event ;
    volatile int _nParked ;
    pthread_mutex_t _mutex  [1] ;
    pthread_cond_t  _cond   [1] ;
    double PostPad  [2] ;
    Thread * _Assoc ;

  public:       // TODO-FIXME: make dtor private
    ~PlatformEvent() { guarantee (0, "invariant") ; }

  public:
    PlatformEvent() {
      int status;
      status = pthread_cond_init (_cond, NULL);
      assert_status(status == 0, status, "cond_init");
      status = pthread_mutex_init (_mutex, NULL);
      assert_status(status == 0, status, "mutex_init");
      _Event   = 0 ;
      _nParked = 0 ;
      _Assoc   = NULL ;
    }

    // Use caution with reset() and fired() -- they may require MEMBARs
    void reset() { _Event = 0 ; }
    int  fired() { return _Event; }
    void park () ;
    void unpark () ;
    int  TryPark () ;
    int  park (jlong millis) ;
    void SetAssociation (Thread * a) { _Assoc = a ; }
} ;

class PlatformParker : public CHeapObj {
  protected:
    pthread_mutex_t _mutex [1] ;
    pthread_cond_t  _cond  [1] ;

  public:       // TODO-FIXME: make dtor private
    ~PlatformParker() { guarantee (0, "invariant") ; }

  public:
    PlatformParker() {
      int status;
      status = pthread_cond_init (_cond, NULL);
      assert_status(status == 0, status, "cond_init");
      status = pthread_mutex_init (_mutex, NULL);
      assert_status(status == 0, status, "mutex_init");
    }
} ;