g1CollectedHeap.cpp 199.1 KB
Newer Older
1
/*
2
 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include "precompiled.hpp"
#include "code/icBuffer.hpp"
#include "gc_implementation/g1/bufferingOopClosure.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/concurrentZFThread.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/g1MarkSweep.hpp"
#include "gc_implementation/g1/g1OopClosures.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSeq.inline.hpp"
#include "gc_implementation/g1/vm_operations_g1.hpp"
#include "gc_implementation/shared/isGCActiveMark.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/generationSpec.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.pcgc.inline.hpp"
#include "runtime/aprofiler.hpp"
#include "runtime/vmThread.hpp"
48

49 50
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

51 52 53
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
54
#define YOUNG_LIST_VERBOSE 0
55 56 57 58 59 60
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
61 62 63 64 65
// serialized by acquiring the HeapLock.  This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM.  (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
J
johnc 已提交
81 82 83 84 85 86
    bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    // This path is executed by the concurrent refine or mutator threads,
    // concurrently, and so we do not care if card_ptr contains references
    // that point into the collection set.
    assert(!oops_into_cset, "should be");

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

153 154 155 156 157 158 159 160
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

161 162
YoungList::YoungList(G1CollectedHeap* g1h)
  : _g1h(g1h), _head(NULL),
163
    _length(0),
164
    _last_sampled_rs_lengths(0),
165
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
{
  guarantee( check_list_empty(false), "just making sure..." );
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

  hr->set_young();
  double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
183
  assert(hr->is_survivor(), "should be flagged as survivor region");
184 185 186 187
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
188
    _survivor_tail = hr;
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  }
  _survivor_head = hr;

  ++_survivor_length;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_survivor_head);
  _survivor_head = NULL;
214
  _survivor_tail = NULL;
215 216 217 218 219 220 221 222 223 224 225 226 227 228
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

  size_t length = 0;
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
229
    if (!curr->is_young()) {
230
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
231
                             "incorrectly tagged (y: %d, surv: %d)",
232
                             curr->bottom(), curr->end(),
233
                             curr->is_young(), curr->is_survivor());
234 235 236 237 238 239 240 241 242 243 244 245 246 247
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
    gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
                           length, _length);
  }

248
  return ret;
249 250
}

251
bool YoungList::check_list_empty(bool check_sample) {
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
  bool ret = true;

  if (_length != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

271
  return ret;
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
288 289 290 291 292 293 294 295 296 297 298 299
  size_t rs_length = _curr->rem_set()->occupied();

  _sampled_rs_lengths += rs_length;

  // The current region may not yet have been added to the
  // incremental collection set (it gets added when it is
  // retired as the current allocation region).
  if (_curr->in_collection_set()) {
    // Update the collection set policy information for this region
    _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
  }

300 301 302 303 304 305 306 307 308 309 310 311 312 313
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
314
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
315

316 317 318 319
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    _g1h->g1_policy()->set_region_survivors(curr);
320 321 322 323 324

    // The region is a non-empty survivor so let's add it to
    // the incremental collection set for the next evacuation
    // pause.
    _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
325 326 327
  }
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

328 329
  _head   = _survivor_head;
  _length = _survivor_length;
330
  if (_survivor_head != NULL) {
331 332 333
    assert(_survivor_tail != NULL, "cause it shouldn't be");
    assert(_survivor_length > 0, "invariant");
    _survivor_tail->set_next_young_region(NULL);
334 335
  }

336 337 338 339
  // Don't clear the survivor list handles until the start of
  // the next evacuation pause - we need it in order to re-tag
  // the survivor regions from this evacuation pause as 'young'
  // at the start of the next.
340

341
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
342 343 344 345 346

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
347 348
  HeapRegion* lists[] = {_head,   _survivor_head};
  const char* names[] = {"YOUNG", "SURVIVOR"};
349 350 351 352 353 354 355 356

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
      gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
357
                             "age: %4d, y: %d, surv: %d",
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
                             curr->bottom(), curr->end(),
                             curr->top(),
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
                             curr->top_at_conc_mark_count(),
                             curr->age_in_surv_rate_group_cond(),
                             curr->is_young(),
                             curr->is_survivor());
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

426
void G1CollectedHeap::stop_conc_gc_threads() {
427
  _cg1r->stop();
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
  _czft->stop();
  _cmThread->stop();
}


void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

// Finds a HeapRegion that can be used to allocate a given size of block.


HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
                                                 bool do_expand,
                                                 bool zero_filled) {
  ConcurrentZFThread::note_region_alloc();
  HeapRegion* res = alloc_free_region_from_lists(zero_filled);
  if (res == NULL && do_expand) {
    expand(word_size * HeapWordSize);
    res = alloc_free_region_from_lists(zero_filled);
    assert(res == NULL ||
           (!res->isHumongous() &&
            (!zero_filled ||
             res->zero_fill_state() == HeapRegion::Allocated)),
           "Alloc Regions must be zero filled (and non-H)");
  }
501 502 503 504 505 506 507 508 509 510 511 512
  if (res != NULL) {
    if (res->is_empty()) {
      _free_regions--;
    }
    assert(!res->isHumongous() &&
           (!zero_filled || res->zero_fill_state() == HeapRegion::Allocated),
           err_msg("Non-young alloc Regions must be zero filled (and non-H):"
                   " res->isHumongous()=%d, zero_filled=%d, res->zero_fill_state()=%d",
                   res->isHumongous(), zero_filled, res->zero_fill_state()));
    assert(!res->is_on_unclean_list(),
           "Alloc Regions must not be on the unclean list");
    if (G1PrintHeapRegions) {
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
      gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
                             "top "PTR_FORMAT,
                             res->hrs_index(), res->bottom(), res->end(), res->top());
    }
  }
  return res;
}

HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
                                                         size_t word_size,
                                                         bool zero_filled) {
  HeapRegion* alloc_region = NULL;
  if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
    alloc_region = newAllocRegion_work(word_size, true, zero_filled);
    if (purpose == GCAllocForSurvived && alloc_region != NULL) {
528
      alloc_region->set_survivor();
529 530 531 532 533 534 535 536 537 538 539
    }
    ++_gc_alloc_region_counts[purpose];
  } else {
    g1_policy()->note_alloc_region_limit_reached(purpose);
  }
  return alloc_region;
}

// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
540 541
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
  assert_heap_locked_or_at_safepoint();
542 543
  assert(regions_accounted_for(), "Region leakage!");

544 545 546 547 548
  // We can't allocate humongous regions while cleanupComplete is
  // running, since some of the regions we find to be empty might not
  // yet be added to the unclean list. If we're already at a
  // safepoint, this call is unnecessary, not to mention wrong.
  if (!SafepointSynchronize::is_at_safepoint()) {
549
    wait_for_cleanup_complete();
550
  }
551 552

  size_t num_regions =
553
         round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603

  // Special case if < one region???

  // Remember the ft size.
  size_t x_size = expansion_regions();

  HeapWord* res = NULL;
  bool eliminated_allocated_from_lists = false;

  // Can the allocation potentially fit in the free regions?
  if (free_regions() >= num_regions) {
    res = _hrs->obj_allocate(word_size);
  }
  if (res == NULL) {
    // Try expansion.
    size_t fs = _hrs->free_suffix();
    if (fs + x_size >= num_regions) {
      expand((num_regions - fs) * HeapRegion::GrainBytes);
      res = _hrs->obj_allocate(word_size);
      assert(res != NULL, "This should have worked.");
    } else {
      // Expansion won't help.  Are there enough free regions if we get rid
      // of reservations?
      size_t avail = free_regions();
      if (avail >= num_regions) {
        res = _hrs->obj_allocate(word_size);
        if (res != NULL) {
          remove_allocated_regions_from_lists();
          eliminated_allocated_from_lists = true;
        }
      }
    }
  }
  if (res != NULL) {
    // Increment by the number of regions allocated.
    // FIXME: Assumes regions all of size GrainBytes.
#ifndef PRODUCT
    mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
                                           HeapRegion::GrainWords));
#endif
    if (!eliminated_allocated_from_lists)
      remove_allocated_regions_from_lists();
    _summary_bytes_used += word_size * HeapWordSize;
    _free_regions -= num_regions;
    _num_humongous_regions += (int) num_regions;
  }
  assert(regions_accounted_for(), "Region Leakage");
  return res;
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
void
G1CollectedHeap::retire_cur_alloc_region(HeapRegion* cur_alloc_region) {
  // The cleanup operation might update _summary_bytes_used
  // concurrently with this method. So, right now, if we don't wait
  // for it to complete, updates to _summary_bytes_used might get
  // lost. This will be resolved in the near future when the operation
  // of the free region list is revamped as part of CR 6977804.
  wait_for_cleanup_complete();

  retire_cur_alloc_region_common(cur_alloc_region);
  assert(_cur_alloc_region == NULL, "post-condition");
}

// See the comment in the .hpp file about the locking protocol and
// assumptions of this method (and other related ones).
619
HeapWord*
620 621
G1CollectedHeap::replace_cur_alloc_region_and_allocate(size_t word_size,
                                                       bool at_safepoint,
622 623
                                                       bool do_dirtying,
                                                       bool can_expand) {
624 625 626 627 628 629
  assert_heap_locked_or_at_safepoint();
  assert(_cur_alloc_region == NULL,
         "replace_cur_alloc_region_and_allocate() should only be called "
         "after retiring the previous current alloc region");
  assert(SafepointSynchronize::is_at_safepoint() == at_safepoint,
         "at_safepoint and is_at_safepoint() should be a tautology");
630 631 632
  assert(!can_expand || g1_policy()->can_expand_young_list(),
         "we should not call this method with can_expand == true if "
         "we are not allowed to expand the young gen");
633

634
  if (can_expand || !g1_policy()->is_young_list_full()) {
635 636 637 638 639 640 641 642 643 644
    if (!at_safepoint) {
      // The cleanup operation might update _summary_bytes_used
      // concurrently with this method. So, right now, if we don't
      // wait for it to complete, updates to _summary_bytes_used might
      // get lost. This will be resolved in the near future when the
      // operation of the free region list is revamped as part of
      // CR 6977804. If we're already at a safepoint, this call is
      // unnecessary, not to mention wrong.
      wait_for_cleanup_complete();
    }
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
    HeapRegion* new_cur_alloc_region = newAllocRegion(word_size,
                                                      false /* zero_filled */);
    if (new_cur_alloc_region != NULL) {
      assert(new_cur_alloc_region->is_empty(),
             "the newly-allocated region should be empty, "
             "as right now we only allocate new regions out of the free list");
      g1_policy()->update_region_num(true /* next_is_young */);
      _summary_bytes_used -= new_cur_alloc_region->used();
      set_region_short_lived_locked(new_cur_alloc_region);

      assert(!new_cur_alloc_region->isHumongous(),
             "Catch a regression of this bug.");

      // We need to ensure that the stores to _cur_alloc_region and,
      // subsequently, to top do not float above the setting of the
      // young type.
      OrderAccess::storestore();

      // Now allocate out of the new current alloc region. We could
      // have re-used allocate_from_cur_alloc_region() but its
      // operation is slightly different to what we need here. First,
      // allocate_from_cur_alloc_region() is only called outside a
      // safepoint and will always unlock the Heap_lock if it returns
      // a non-NULL result. Second, it assumes that the current alloc
      // region is what's already assigned in _cur_alloc_region. What
      // we want here is to actually do the allocation first before we
      // assign the new region to _cur_alloc_region. This ordering is
      // not currently important, but it will be essential when we
      // change the code to support CAS allocation in the future (see
      // CR 6994297).
      //
      // This allocate method does BOT updates and we don't need them in
      // the young generation. This will be fixed in the near future by
      // CR 6994297.
      HeapWord* result = new_cur_alloc_region->allocate(word_size);
      assert(result != NULL, "we just allocate out of an empty region "
             "so allocation should have been successful");
      assert(is_in(result), "result should be in the heap");

      _cur_alloc_region = new_cur_alloc_region;

      if (!at_safepoint) {
        Heap_lock->unlock();
      }

      // do the dirtying, if necessary, after we release the Heap_lock
      if (do_dirtying) {
        dirty_young_block(result, word_size);
      }
      return result;
    }
  }

  assert(_cur_alloc_region == NULL, "we failed to allocate a new current "
         "alloc region, it should still be NULL");
  assert_heap_locked_or_at_safepoint();
  return NULL;
}

// See the comment in the .hpp file about the locking protocol and
// assumptions of this method (and other related ones).
HeapWord*
G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
  assert_heap_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "attempt_allocation_slow() should not be "
         "used for humongous allocations");

  // We will loop while succeeded is false, which means that we tried
  // to do a collection, but the VM op did not succeed. So, when we
  // exit the loop, either one of the allocation attempts was
  // successful, or we succeeded in doing the VM op but which was
  // unable to allocate after the collection.
  for (int try_count = 1; /* we'll return or break */; try_count += 1) {
    bool succeeded = true;

    {
      // We may have concurrent cleanup working at the time. Wait for
      // it to complete. In the future we would probably want to make
      // the concurrent cleanup truly concurrent by decoupling it from
      // the allocation. This will happen in the near future as part
      // of CR 6977804 which will revamp the operation of the free
      // region list. The fact that wait_for_cleanup_complete() will
      // do a wait() means that we'll give up the Heap_lock. So, it's
      // possible that when we exit wait_for_cleanup_complete() we
      // might be able to allocate successfully (since somebody else
      // might have done a collection meanwhile). So, we'll attempt to
      // allocate again, just in case. When we make cleanup truly
      // concurrent with allocation, we should remove this allocation
      // attempt as it's redundant (we only reach here after an
      // allocation attempt has been unsuccessful).
736
      wait_for_cleanup_complete();
737 738 739 740
      HeapWord* result = attempt_allocation(word_size);
      if (result != NULL) {
        assert_heap_not_locked();
        return result;
741
      }
742
    }
743 744

    if (GC_locker::is_active_and_needs_gc()) {
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
      // We are locked out of GC because of the GC locker. We can
      // allocate a new region only if we can expand the young gen.

      if (g1_policy()->can_expand_young_list()) {
        // Yes, we are allowed to expand the young gen. Let's try to
        // allocate a new current alloc region.

        HeapWord* result =
          replace_cur_alloc_region_and_allocate(word_size,
                                                false, /* at_safepoint */
                                                true,  /* do_dirtying */
                                                true   /* can_expand */);
        if (result != NULL) {
          assert_heap_not_locked();
          return result;
        }
      }
      // We could not expand the young gen further (or we could but we
      // failed to allocate a new region). We'll stall until the GC
      // locker forces a GC.
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

      // If this thread is not in a jni critical section, we stall
      // the requestor until the critical section has cleared and
      // GC allowed. When the critical section clears, a GC is
      // initiated by the last thread exiting the critical section; so
      // we retry the allocation sequence from the beginning of the loop,
      // rather than causing more, now probably unnecessary, GC attempts.
      JavaThread* jthr = JavaThread::current();
      assert(jthr != NULL, "sanity");
      if (!jthr->in_critical()) {
        MutexUnlocker mul(Heap_lock);
        GC_locker::stall_until_clear();

        // We'll then fall off the end of the ("if GC locker active")
        // if-statement and retry the allocation further down in the
        // loop.
      } else {
        if (CheckJNICalls) {
          fatal("Possible deadlock due to allocating while"
                " in jni critical section");
785
        }
786
        return NULL;
787
      }
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
    } else {
      // We are not locked out. So, let's try to do a GC. The VM op
      // will retry the allocation before it completes.

      // Read the GC count while holding the Heap_lock
      unsigned int gc_count_before = SharedHeap::heap()->total_collections();

      Heap_lock->unlock();

      HeapWord* result =
        do_collection_pause(word_size, gc_count_before, &succeeded);
      assert_heap_not_locked();
      if (result != NULL) {
        assert(succeeded, "the VM op should have succeeded");

        // Allocations that take place on VM operations do not do any
        // card dirtying and we have to do it here.
        dirty_young_block(result, word_size);
        return result;
      }

      Heap_lock->lock();
810
    }
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

    assert_heap_locked();

    // We can reach here when we were unsuccessful in doing a GC,
    // because another thread beat us to it, or because we were locked
    // out of GC due to the GC locker. In either case a new alloc
    // region might be available so we will retry the allocation.
    HeapWord* result = attempt_allocation(word_size);
    if (result != NULL) {
      assert_heap_not_locked();
      return result;
    }

    // So far our attempts to allocate failed. The only time we'll go
    // around the loop and try again is if we tried to do a GC and the
    // VM op that we tried to schedule was not successful because
    // another thread beat us to it. If that happened it's possible
    // that by the time we grabbed the Heap_lock again and tried to
    // allocate other threads filled up the young generation, which
    // means that the allocation attempt after the GC also failed. So,
    // it's worth trying to schedule another GC pause.
    if (succeeded) {
      break;
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
      warning("G1CollectedHeap::attempt_allocation_slow() "
              "retries %d times", try_count);
    }
  }

  assert_heap_locked();
  return NULL;
}

// See the comment in the .hpp file about the locking protocol and
// assumptions of this method (and other related ones).
HeapWord*
G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
                                              bool at_safepoint) {
  // This is the method that will allocate a humongous object. All
  // allocation paths that attempt to allocate a humongous object
  // should eventually reach here. Currently, the only paths are from
  // mem_allocate() and attempt_allocation_at_safepoint().
  assert_heap_locked_or_at_safepoint();
  assert(isHumongous(word_size), "attempt_allocation_humongous() "
         "should only be used for humongous allocations");
  assert(SafepointSynchronize::is_at_safepoint() == at_safepoint,
         "at_safepoint and is_at_safepoint() should be a tautology");

  HeapWord* result = NULL;

  // We will loop while succeeded is false, which means that we tried
  // to do a collection, but the VM op did not succeed. So, when we
  // exit the loop, either one of the allocation attempts was
  // successful, or we succeeded in doing the VM op but which was
  // unable to allocate after the collection.
  for (int try_count = 1; /* we'll return or break */; try_count += 1) {
    bool succeeded = true;

    // Given that humongous objects are not allocated in young
    // regions, we'll first try to do the allocation without doing a
    // collection hoping that there's enough space in the heap.
    result = humongous_obj_allocate(word_size);
877
    assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
878 879 880 881 882
           "catch a regression of this bug.");
    if (result != NULL) {
      if (!at_safepoint) {
        // If we're not at a safepoint, unlock the Heap_lock.
        Heap_lock->unlock();
883
      }
884
      return result;
885 886
    }

887 888 889 890 891 892
    // If we failed to allocate the humongous object, we should try to
    // do a collection pause (if we're allowed) in case it reclaims
    // enough space for the allocation to succeed after the pause.
    if (!at_safepoint) {
      // Read the GC count while holding the Heap_lock
      unsigned int gc_count_before = SharedHeap::heap()->total_collections();
893

894 895
      // If we're allowed to do a collection we're not at a
      // safepoint, so it is safe to unlock the Heap_lock.
896
      Heap_lock->unlock();
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923

      result = do_collection_pause(word_size, gc_count_before, &succeeded);
      assert_heap_not_locked();
      if (result != NULL) {
        assert(succeeded, "the VM op should have succeeded");
        return result;
      }

      // If we get here, the VM operation either did not succeed
      // (i.e., another thread beat us to it) or it succeeded but
      // failed to allocate the object.

      // If we're allowed to do a collection we're not at a
      // safepoint, so it is safe to lock the Heap_lock.
      Heap_lock->lock();
    }

    assert(result == NULL, "otherwise we should have exited the loop earlier");

    // So far our attempts to allocate failed. The only time we'll go
    // around the loop and try again is if we tried to do a GC and the
    // VM op that we tried to schedule was not successful because
    // another thread beat us to it. That way it's possible that some
    // space was freed up by the thread that successfully scheduled a
    // GC. So it's worth trying to allocate again.
    if (succeeded) {
      break;
924 925
    }

926 927 928 929 930
    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
      warning("G1CollectedHeap::attempt_allocation_humongous "
              "retries %d times", try_count);
931 932 933
    }
  }

934 935 936
  assert_heap_locked_or_at_safepoint();
  return NULL;
}
937

938 939 940 941
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
                                           bool expect_null_cur_alloc_region) {
  assert_at_safepoint();
  assert(_cur_alloc_region == NULL || !expect_null_cur_alloc_region,
942 943 944 945
         err_msg("the current alloc region was unexpectedly found "
                 "to be non-NULL, cur alloc region: "PTR_FORMAT" "
                 "expect_null_cur_alloc_region: %d word_size: "SIZE_FORMAT,
                 _cur_alloc_region, expect_null_cur_alloc_region, word_size));
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

  if (!isHumongous(word_size)) {
    if (!expect_null_cur_alloc_region) {
      HeapRegion* cur_alloc_region = _cur_alloc_region;
      if (cur_alloc_region != NULL) {
        // This allocate method does BOT updates and we don't need them in
        // the young generation. This will be fixed in the near future by
        // CR 6994297.
        HeapWord* result = cur_alloc_region->allocate(word_size);
        if (result != NULL) {
          assert(is_in(result), "result should be in the heap");

          // We will not do any dirtying here. This is guaranteed to be
          // called during a safepoint and the thread that scheduled the
          // pause will do the dirtying if we return a non-NULL result.
          return result;
        }

        retire_cur_alloc_region_common(cur_alloc_region);
      }
    }

    assert(_cur_alloc_region == NULL,
           "at this point we should have no cur alloc region");
    return replace_cur_alloc_region_and_allocate(word_size,
                                                 true, /* at_safepoint */
972 973
                                                 false /* do_dirtying */,
                                                 false /* can_expand */);
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
  } else {
    return attempt_allocation_humongous(word_size,
                                        true /* at_safepoint */);
  }

  ShouldNotReachHere();
}

HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!isHumongous(word_size), "we do not allow TLABs of humongous size");

  Heap_lock->lock();

  // First attempt: try allocating out of the current alloc region or
  // after replacing the current alloc region.
  HeapWord* result = attempt_allocation(word_size);
  if (result != NULL) {
    assert_heap_not_locked();
    return result;
  }

  assert_heap_locked();

  // Second attempt: go into the even slower path where we might
  // try to schedule a collection.
  result = attempt_allocation_slow(word_size);
  if (result != NULL) {
    assert_heap_not_locked();
    return result;
  }

  assert_heap_locked();
  Heap_lock->unlock();
  return NULL;
1009 1010 1011 1012 1013 1014
}

HeapWord*
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool   is_noref,
                              bool   is_tlab,
1015 1016 1017 1018
                              bool*  gc_overhead_limit_was_exceeded) {
  assert_heap_not_locked_and_not_at_safepoint();
  assert(!is_tlab, "mem_allocate() this should not be called directly "
         "to allocate TLABs");
1019 1020 1021

  // Loop until the allocation is satisified,
  // or unsatisfied after GC.
1022 1023
  for (int try_count = 1; /* we'll return */; try_count += 1) {
    unsigned int gc_count_before;
1024 1025
    {
      Heap_lock->lock();
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

      if (!isHumongous(word_size)) {
        // First attempt: try allocating out of the current alloc
        // region or after replacing the current alloc region.
        HeapWord* result = attempt_allocation(word_size);
        if (result != NULL) {
          assert_heap_not_locked();
          return result;
        }

        assert_heap_locked();

        // Second attempt: go into the even slower path where we might
        // try to schedule a collection.
        result = attempt_allocation_slow(word_size);
        if (result != NULL) {
          assert_heap_not_locked();
          return result;
        }
      } else {
        HeapWord* result = attempt_allocation_humongous(word_size,
                                                     false /* at_safepoint */);
        if (result != NULL) {
          assert_heap_not_locked();
          return result;
        }
1052
      }
1053 1054

      assert_heap_locked();
1055 1056
      // Read the gc count while the heap lock is held.
      gc_count_before = SharedHeap::heap()->total_collections();
1057
      // We cannot be at a safepoint, so it is safe to unlock the Heap_lock
1058 1059 1060 1061
      Heap_lock->unlock();
    }

    // Create the garbage collection operation...
1062
    VM_G1CollectForAllocation op(gc_count_before, word_size);
1063 1064
    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

    assert_heap_not_locked();
    if (op.prologue_succeeded() && op.pause_succeeded()) {
      // If the operation was successful we'll return the result even
      // if it is NULL. If the allocation attempt failed immediately
      // after a Full GC, it's unlikely we'll be able to allocate now.
      HeapWord* result = op.result();
      if (result != NULL && !isHumongous(word_size)) {
        // Allocations that take place on VM operations do not do any
        // card dirtying and we have to do it here. We only have to do
        // this for non-humongous allocations, though.
        dirty_young_block(result, word_size);
      }
1078
      return result;
1079 1080 1081
    } else {
      assert(op.result() == NULL,
             "the result should be NULL if the VM op did not succeed");
1082 1083 1084 1085 1086
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
1087
      warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
1088 1089
    }
  }
1090 1091

  ShouldNotReachHere();
1092 1093 1094 1095 1096 1097 1098 1099 1100
}

void G1CollectedHeap::abandon_cur_alloc_region() {
  if (_cur_alloc_region != NULL) {
    // We're finished with the _cur_alloc_region.
    if (_cur_alloc_region->is_empty()) {
      _free_regions++;
      free_region(_cur_alloc_region);
    } else {
1101 1102 1103 1104 1105 1106
      // As we're builing (at least the young portion) of the collection
      // set incrementally we'll add the current allocation region to
      // the collection set here.
      if (_cur_alloc_region->is_young()) {
        g1_policy()->add_region_to_incremental_cset_lhs(_cur_alloc_region);
      }
1107 1108 1109 1110 1111 1112
      _summary_bytes_used += _cur_alloc_region->used();
    }
    _cur_alloc_region = NULL;
  }
}

1113 1114 1115 1116 1117 1118
void G1CollectedHeap::abandon_gc_alloc_regions() {
  // first, make sure that the GC alloc region list is empty (it should!)
  assert(_gc_alloc_region_list == NULL, "invariant");
  release_gc_alloc_regions(true /* totally */);
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
class PostMCRemSetClearClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    r->reset_gc_time_stamp();
    if (r->continuesHumongous())
      return false;
    HeapRegionRemSet* hrrs = r->rem_set();
    if (hrrs != NULL) hrrs->clear();
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
    return false;
  }
};


class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->used_region().word_size() != 0) {
      _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
    }
    return false;
  }
};

1153 1154 1155 1156 1157 1158
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1159
    _cl(g1->g1_rem_set(), worker_i),
1160 1161 1162
    _worker_i(worker_i),
    _g1h(g1)
  { }
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

  void work(int i) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
                                         HeapRegion::RebuildRSClaimValue);
  }
};

1188
bool G1CollectedHeap::do_collection(bool explicit_gc,
1189
                                    bool clear_all_soft_refs,
1190
                                    size_t word_size) {
1191
  if (GC_locker::check_active_before_gc()) {
1192
    return false;
1193 1194
  }

1195
  DTraceGCProbeMarker gc_probe_marker(true /* full */);
1196 1197
  ResourceMark rm;

1198 1199 1200 1201
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
  }

1202 1203 1204
  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");

1205 1206 1207 1208 1209
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

1210 1211 1212 1213
  {
    IsGCActiveMark x;

    // Timing
1214 1215
    bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
    assert(!system_gc || explicit_gc, "invariant");
1216 1217
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1218
    TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
1219
                PrintGC, true, gclog_or_tty);
1220

1221 1222
    TraceMemoryManagerStats tms(true /* fullGC */);

1223 1224 1225 1226
    double start = os::elapsedTime();
    g1_policy()->record_full_collection_start();

    gc_prologue(true);
1227
    increment_total_collections(true /* full gc */);
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

    size_t g1h_prev_used = used();
    assert(used() == recalculate_used(), "Should be equal");

    if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      prepare_for_verify();
      gclog_or_tty->print(" VerifyBeforeGC:");
      Universe::verify(true);
    }
    assert(regions_accounted_for(), "Region leakage!");

    COMPILER2_PRESENT(DerivedPointerTable::clear());

    // We want to discover references, but not process them yet.
    // This mode is disabled in
    // instanceRefKlass::process_discovered_references if the
    // generation does some collection work, or
    // instanceRefKlass::enqueue_discovered_references if the
    // generation returns without doing any work.
    ref_processor()->disable_discovery();
    ref_processor()->abandon_partial_discovery();
    ref_processor()->verify_no_references_recorded();

    // Abandon current iterations of concurrent marking and concurrent
    // refinement, if any are in progress.
    concurrent_mark()->abort();

    // Make sure we'll choose a new allocation region afterwards.
    abandon_cur_alloc_region();
1258
    abandon_gc_alloc_regions();
1259
    assert(_cur_alloc_region == NULL, "Invariant.");
1260
    g1_rem_set()->cleanupHRRS();
1261 1262
    tear_down_region_lists();
    set_used_regions_to_need_zero_fill();
1263 1264 1265 1266 1267 1268 1269 1270 1271

    // We may have added regions to the current incremental collection
    // set between the last GC or pause and now. We need to clear the
    // incremental collection set and then start rebuilding it afresh
    // after this full GC.
    abandon_collection_set(g1_policy()->inc_cset_head());
    g1_policy()->clear_incremental_cset();
    g1_policy()->stop_incremental_cset_building();

1272 1273 1274 1275 1276
    if (g1_policy()->in_young_gc_mode()) {
      empty_young_list();
      g1_policy()->set_full_young_gcs(true);
    }

1277 1278 1279
    // See the comment in G1CollectedHeap::ref_processing_init() about
    // how reference processing currently works in G1.

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
    // Temporarily make reference _discovery_ single threaded (non-MT).
    ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);

    // Temporarily make refs discovery atomic
    ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);

    // Temporarily clear _is_alive_non_header
    ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);

    ref_processor()->enable_discovery();
1290
    ref_processor()->setup_policy(do_clear_all_soft_refs);
1291 1292 1293 1294

    // Do collection work
    {
      HandleMark hm;  // Discard invalid handles created during gc
1295
      G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    }
    // Because freeing humongous regions may have added some unclean
    // regions, it is necessary to tear down again before rebuilding.
    tear_down_region_lists();
    rebuild_region_lists();

    _summary_bytes_used = recalculate_used();

    ref_processor()->enqueue_discovered_references();

    COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

1308 1309
    MemoryService::track_memory_usage();

1310 1311 1312
    if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyAfterGC:");
1313
      prepare_for_verify();
1314 1315 1316 1317 1318 1319
      Universe::verify(false);
    }
    NOT_PRODUCT(ref_processor()->verify_no_references_recorded());

    reset_gc_time_stamp();
    // Since everything potentially moved, we will clear all remembered
1320 1321
    // sets, and clear all cards.  Later we will rebuild remebered
    // sets. We will also reset the GC time stamps of the regions.
1322 1323 1324 1325
    PostMCRemSetClearClosure rs_clear(mr_bs());
    heap_region_iterate(&rs_clear);

    // Resize the heap if necessary.
1326
    resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1327 1328 1329 1330 1331 1332

    if (_cg1r->use_cache()) {
      _cg1r->clear_and_record_card_counts();
      _cg1r->clear_hot_cache();
    }

1333
    // Rebuild remembered sets of all regions.
1334 1335

    if (G1CollectedHeap::use_parallel_gc_threads()) {
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
      ParRebuildRSTask rebuild_rs_task(this);
      assert(check_heap_region_claim_values(
             HeapRegion::InitialClaimValue), "sanity check");
      set_par_threads(workers()->total_workers());
      workers()->run_task(&rebuild_rs_task);
      set_par_threads(0);
      assert(check_heap_region_claim_values(
             HeapRegion::RebuildRSClaimValue), "sanity check");
      reset_heap_region_claim_values();
    } else {
      RebuildRSOutOfRegionClosure rebuild_rs(this);
      heap_region_iterate(&rebuild_rs);
    }

1350 1351 1352 1353 1354 1355 1356 1357 1358
    if (PrintGC) {
      print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
    }

    if (true) { // FIXME
      // Ask the permanent generation to adjust size for full collections
      perm()->compute_new_size();
    }

1359 1360 1361 1362 1363 1364 1365 1366 1367
    // Start a new incremental collection set for the next pause
    assert(g1_policy()->collection_set() == NULL, "must be");
    g1_policy()->start_incremental_cset_building();

    // Clear the _cset_fast_test bitmap in anticipation of adding
    // regions to the incremental collection set for the next
    // evacuation pause.
    clear_cset_fast_test();

1368 1369 1370
    double end = os::elapsedTime();
    g1_policy()->record_full_collection_end();

1371 1372 1373 1374
#ifdef TRACESPINNING
    ParallelTaskTerminator::print_termination_counts();
#endif

1375 1376
    gc_epilogue(true);

1377 1378
    // Discard all rset updates
    JavaThread::dirty_card_queue_set().abandon_logs();
1379 1380
    assert(!G1DeferredRSUpdate
           || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1381 1382 1383 1384 1385
    assert(regions_accounted_for(), "Region leakage!");
  }

  if (g1_policy()->in_young_gc_mode()) {
    _young_list->reset_sampled_info();
1386 1387 1388
    // At this point there should be no regions in the
    // entire heap tagged as young.
    assert( check_young_list_empty(true /* check_heap */),
1389 1390
            "young list should be empty at this point");
  }
1391

1392
  // Update the number of full collections that have been completed.
1393
  increment_full_collections_completed(false /* concurrent */);
1394

1395 1396 1397
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }
1398 1399

  return true;
1400 1401 1402
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1403 1404 1405 1406 1407 1408 1409 1410
  // do_collection() will return whether it succeeded in performing
  // the GC. Currently, there is no facility on the
  // do_full_collection() API to notify the caller than the collection
  // did not succeed (e.g., because it was locked out by the GC
  // locker). So, right now, we'll ignore the return value.
  bool dummy = do_collection(true,                /* explicit_gc */
                             clear_all_soft_refs,
                             0                    /* word_size */);
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");

  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

1425 1426 1427 1428
  // This is enforced in arguments.cpp.
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
         "otherwise the code below doesn't make sense");

1429
  // We don't have floating point command-line arguments
1430
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1431
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1432
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1433 1434
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  const size_t max_heap_size = collector_policy()->max_heap_byte_size();

  // We have to be careful here as these two calculations can overflow
  // 32-bit size_t's.
  double used_after_gc_d = (double) used_after_gc;
  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;

  // Let's make sure that they are both under the max heap size, which
  // by default will make them fit into a size_t.
  double desired_capacity_upper_bound = (double) max_heap_size;
  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
                                    desired_capacity_upper_bound);
  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
                                    desired_capacity_upper_bound);

  // We can now safely turn them into size_t's.
  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;

  // This assert only makes sense here, before we adjust them
  // with respect to the min and max heap size.
  assert(minimum_desired_capacity <= maximum_desired_capacity,
         err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
                 "maximum_desired_capacity = "SIZE_FORMAT,
                 minimum_desired_capacity, maximum_desired_capacity));

  // Should not be greater than the heap max size. No need to adjust
  // it with respect to the heap min size as it's a lower bound (i.e.,
  // we'll try to make the capacity larger than it, not smaller).
  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  // Should not be less than the heap min size. No need to adjust it
  // with respect to the heap max size as it's an upper bound (i.e.,
  // we'll try to make the capacity smaller than it, not greater).
  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1471 1472

  if (PrintGC && Verbose) {
1473 1474
    const double free_percentage =
      (double) free_after_gc / (double) capacity_after_gc;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
    gclog_or_tty->print_cr("Computing new size after full GC ");
    gclog_or_tty->print_cr("  "
                           "  minimum_free_percentage: %6.2f",
                           minimum_free_percentage);
    gclog_or_tty->print_cr("  "
                           "  maximum_free_percentage: %6.2f",
                           maximum_free_percentage);
    gclog_or_tty->print_cr("  "
                           "  capacity: %6.1fK"
                           "  minimum_desired_capacity: %6.1fK"
                           "  maximum_desired_capacity: %6.1fK",
1486 1487 1488
                           (double) capacity_after_gc / (double) K,
                           (double) minimum_desired_capacity / (double) K,
                           (double) maximum_desired_capacity / (double) K);
1489
    gclog_or_tty->print_cr("  "
1490 1491 1492 1493
                           "  free_after_gc: %6.1fK"
                           "  used_after_gc: %6.1fK",
                           (double) free_after_gc / (double) K,
                           (double) used_after_gc / (double) K);
1494 1495 1496 1497
    gclog_or_tty->print_cr("  "
                           "   free_percentage: %6.2f",
                           free_percentage);
  }
1498
  if (capacity_after_gc < minimum_desired_capacity) {
1499 1500 1501 1502
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
    expand(expand_bytes);
    if (PrintGC && Verbose) {
1503 1504 1505
      gclog_or_tty->print_cr("  "
                             "  expanding:"
                             "  max_heap_size: %6.1fK"
1506 1507
                             "  minimum_desired_capacity: %6.1fK"
                             "  expand_bytes: %6.1fK",
1508 1509 1510
                             (double) max_heap_size / (double) K,
                             (double) minimum_desired_capacity / (double) K,
                             (double) expand_bytes / (double) K);
1511 1512 1513
    }

    // No expansion, now see if we want to shrink
1514
  } else if (capacity_after_gc > maximum_desired_capacity) {
1515 1516 1517 1518 1519 1520
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
    shrink(shrink_bytes);
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("  "
                             "  shrinking:"
1521 1522 1523 1524 1525 1526
                             "  min_heap_size: %6.1fK"
                             "  maximum_desired_capacity: %6.1fK"
                             "  shrink_bytes: %6.1fK",
                             (double) min_heap_size / (double) K,
                             (double) maximum_desired_capacity / (double) K,
                             (double) shrink_bytes / (double) K);
1527 1528 1529 1530 1531 1532
    }
  }
}


HeapWord*
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
                                           bool* succeeded) {
  assert(SafepointSynchronize::is_at_safepoint(),
         "satisfy_failed_allocation() should only be called at a safepoint");
  assert(Thread::current()->is_VM_thread(),
         "satisfy_failed_allocation() should only be called by the VM thread");

  *succeeded = true;
  // Let's attempt the allocation first.
  HeapWord* result = attempt_allocation_at_safepoint(word_size,
                                     false /* expect_null_cur_alloc_region */);
  if (result != NULL) {
    assert(*succeeded, "sanity");
    return result;
  }
1548 1549 1550 1551 1552 1553 1554

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)
  result = expand_and_allocate(word_size);
  if (result != NULL) {
1555
    assert(*succeeded, "sanity");
1556 1557 1558
    return result;
  }

1559 1560 1561 1562 1563 1564 1565 1566
  // Expansion didn't work, we'll try to do a Full GC.
  bool gc_succeeded = do_collection(false, /* explicit_gc */
                                    false, /* clear_all_soft_refs */
                                    word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }
1567

1568 1569 1570
  // Retry the allocation
  result = attempt_allocation_at_safepoint(word_size,
                                      true /* expect_null_cur_alloc_region */);
1571
  if (result != NULL) {
1572
    assert(*succeeded, "sanity");
1573 1574 1575
    return result;
  }

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
  // Then, try a Full GC that will collect all soft references.
  gc_succeeded = do_collection(false, /* explicit_gc */
                               true,  /* clear_all_soft_refs */
                               word_size);
  if (!gc_succeeded) {
    *succeeded = false;
    return NULL;
  }

  // Retry the allocation once more
  result = attempt_allocation_at_safepoint(word_size,
                                      true /* expect_null_cur_alloc_region */);
1588
  if (result != NULL) {
1589
    assert(*succeeded, "sanity");
1590 1591 1592
    return result;
  }

1593
  assert(!collector_policy()->should_clear_all_soft_refs(),
1594
         "Flag should have been handled and cleared prior to this point");
1595

1596 1597 1598 1599
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
1600
  assert(*succeeded, "sanity");
1601 1602 1603 1604 1605 1606 1607 1608 1609
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1610 1611 1612 1613 1614
  assert(SafepointSynchronize::is_at_safepoint(),
         "expand_and_allocate() should only be called at a safepoint");
  assert(Thread::current()->is_VM_thread(),
         "expand_and_allocate() should only be called by the VM thread");

1615 1616 1617 1618 1619 1620
  size_t expand_bytes = word_size * HeapWordSize;
  if (expand_bytes < MinHeapDeltaBytes) {
    expand_bytes = MinHeapDeltaBytes;
  }
  expand(expand_bytes);
  assert(regions_accounted_for(), "Region leakage!");
1621 1622

  return attempt_allocation_at_safepoint(word_size,
1623
                                     false /* expect_null_cur_alloc_region */);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
}

size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
  size_t pre_used = 0;
  size_t cleared_h_regions = 0;
  size_t freed_regions = 0;
  UncleanRegionList local_list;
  free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
                                    freed_regions, &local_list);

  finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
                          &local_list);
  return pre_used;
}

void
G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
                                                   size_t& pre_used,
                                                   size_t& cleared_h,
                                                   size_t& freed_regions,
                                                   UncleanRegionList* list,
                                                   bool par) {
  assert(!hr->continuesHumongous(), "should have filtered these out");
  size_t res = 0;
1648 1649 1650 1651 1652 1653
  if (hr->used() > 0 && hr->garbage_bytes() == hr->used() &&
      !hr->is_young()) {
    if (G1PolicyVerbose > 0)
      gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
                                                                               " during cleanup", hr, hr->used());
    free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
  }
}

// FIXME: both this and shrink could probably be more efficient by
// doing one "VirtualSpace::expand_by" call rather than several.
void G1CollectedHeap::expand(size_t expand_bytes) {
  size_t old_mem_size = _g1_storage.committed_size();
  // We expand by a minimum of 1K.
  expand_bytes = MAX2(expand_bytes, (size_t)K);
  size_t aligned_expand_bytes =
    ReservedSpace::page_align_size_up(expand_bytes);
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
  expand_bytes = aligned_expand_bytes;
  while (expand_bytes > 0) {
    HeapWord* base = (HeapWord*)_g1_storage.high();
    // Commit more storage.
    bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
    if (!successful) {
        expand_bytes = 0;
    } else {
      expand_bytes -= HeapRegion::GrainBytes;
      // Expand the committed region.
      HeapWord* high = (HeapWord*) _g1_storage.high();
      _g1_committed.set_end(high);
      // Create a new HeapRegion.
      MemRegion mr(base, high);
      bool is_zeroed = !_g1_max_committed.contains(base);
      HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);

      // Now update max_committed if necessary.
      _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));

      // Add it to the HeapRegionSeq.
      _hrs->insert(hr);
      // Set the zero-fill state, according to whether it's already
      // zeroed.
      {
        MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
        if (is_zeroed) {
          hr->set_zero_fill_complete();
          put_free_region_on_list_locked(hr);
        } else {
          hr->set_zero_fill_needed();
          put_region_on_unclean_list_locked(hr);
        }
      }
      _free_regions++;
      // And we used up an expansion region to create it.
      _expansion_regions--;
      // Tell the cardtable about it.
      Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
      // And the offset table as well.
      _bot_shared->resize(_g1_committed.word_size());
    }
  }
  if (Verbose && PrintGC) {
    size_t new_mem_size = _g1_storage.committed_size();
    gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
                           old_mem_size/K, aligned_expand_bytes/K,
                           new_mem_size/K);
  }
}

void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
{
  size_t old_mem_size = _g1_storage.committed_size();
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
  size_t num_regions_deleted = 0;
  MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);

  assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  if (mr.byte_size() > 0)
    _g1_storage.shrink_by(mr.byte_size());
  assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");

  _g1_committed.set_end(mr.start());
  _free_regions -= num_regions_deleted;
  _expansion_regions += num_regions_deleted;

  // Tell the cardtable about it.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);

  // And the offset table as well.
  _bot_shared->resize(_g1_committed.word_size());

  HeapRegionRemSet::shrink_heap(n_regions());

  if (Verbose && PrintGC) {
    size_t new_mem_size = _g1_storage.committed_size();
    gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
                           old_mem_size/K, aligned_shrink_bytes/K,
                           new_mem_size/K);
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1754
  release_gc_alloc_regions(true /* totally */);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
  tear_down_region_lists();  // We will rebuild them in a moment.
  shrink_helper(shrink_bytes);
  rebuild_region_lists();
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1770
  _dirty_card_queue_set(false),
J
johnc 已提交
1771
  _into_cset_dirty_card_queue_set(false),
1772
  _is_alive_closure(this),
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
  _ref_processor(NULL),
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
  _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
  _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  _evac_failure_scan_stack(NULL) ,
  _mark_in_progress(false),
  _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
  _cur_alloc_region(NULL),
  _refine_cte_cl(NULL),
  _free_region_list(NULL), _free_region_list_size(0),
  _free_regions(0),
  _full_collection(false),
  _unclean_region_list(),
  _unclean_regions_coming(false),
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1790
  _surviving_young_words(NULL),
1791
  _full_collections_completed(0),
1792
  _in_cset_fast_test(NULL),
1793 1794
  _in_cset_fast_test_base(NULL),
  _dirty_cards_region_list(NULL) {
1795 1796 1797 1798
  _g1h = this; // To catch bugs.
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1799 1800 1801

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

  int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

  HeapRegionRemSetIterator** iter_arr =
    NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  for (int i = 0; i < n_queues; i++) {
    iter_arr[i] = new HeapRegionRemSetIterator();
  }
  _rem_set_iterator = iter_arr;

  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
  }

  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1822 1823 1824 1825 1826 1827
    _gc_alloc_regions[ap]          = NULL;
    _gc_alloc_region_counts[ap]    = 0;
    _retained_gc_alloc_regions[ap] = NULL;
    // by default, we do not retain a GC alloc region for each ap;
    // we'll override this, when appropriate, below
    _retain_gc_alloc_region[ap]    = false;
1828
  }
1829 1830 1831 1832 1833 1834

  // We will try to remember the last half-full tenured region we
  // allocated to at the end of a collection so that we can re-use it
  // during the next collection.
  _retain_gc_alloc_region[GCAllocForTenured]  = true;

1835 1836 1837 1838
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1839
  CollectedHeap::pre_initialize();
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
  os::enable_vtime();

  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");

  _cg1r = new ConcurrentG1Refine();

  // Reserve the maximum.
  PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  // Includes the perm-gen.
1865 1866 1867 1868

  const size_t total_reserved = max_byte_size + pgs->max_size();
  char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);

1869 1870
  ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
                        HeapRegion::GrainBytes,
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
                        false /*ism*/, addr);

  if (UseCompressedOops) {
    if (addr != NULL && !heap_rs.is_reserved()) {
      // Failed to reserve at specified address - the requested memory
      // region is taken already, for example, by 'java' launcher.
      // Try again to reserver heap higher.
      addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
      ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
                             false /*ism*/, addr);
      if (addr != NULL && !heap_rs0.is_reserved()) {
        // Failed to reserve at specified address again - give up.
        addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
        assert(addr == NULL, "");
        ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
                               false /*ism*/, addr);
        heap_rs = heap_rs1;
      } else {
        heap_rs = heap_rs0;
      }
    }
  }
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

  if (!heap_rs.is_reserved()) {
    vm_exit_during_initialization("Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }

  // It is important to do this in a way such that concurrent readers can't
  // temporarily think somethings in the heap.  (I've actually seen this
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

  _expansion_regions = max_byte_size/HeapRegion::GrainBytes;

  _num_humongous_regions = 0;

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
  if (barrier_set()->is_a(BarrierSet::ModRef)) {
    _mr_bs = (ModRefBarrierSet*)_barrier_set;
  } else {
    vm_exit_during_initialization("G1 requires a mod ref bs.");
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
1921 1922
  if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
    _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
1923
  } else {
1924 1925
    vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
    return JNI_ENOMEM;
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
  }

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);
  ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);

  _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  _g1_max_committed = _g1_committed;
I
iveresov 已提交
1940
  _hrs = new HeapRegionSeq(_expansion_regions);
1941 1942 1943
  guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  guarantee(_cur_alloc_region == NULL, "from constructor");

1944 1945 1946 1947 1948 1949
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
  const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1950 1951 1952
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
            "too many cards per region");
1953

1954 1955 1956 1957 1958
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
   _in_cset_fast_test_length = max_regions();
   _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);

   // We're biasing _in_cset_fast_test to avoid subtracting the
   // beginning of the heap every time we want to index; basically
   // it's the same with what we do with the card table.
   _in_cset_fast_test = _in_cset_fast_test_base -
                ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);

   // Clear the _cset_fast_test bitmap in anticipation of adding
   // regions to the incremental collection set for the first
   // evacuation pause.
   clear_cset_fast_test();

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
  _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  _cmThread = _cm->cmThread();

  // ...and the concurrent zero-fill thread, if necessary.
  if (G1ConcZeroFill) {
    _czft = new ConcurrentZFThread();
  }

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

1986 1987
  // Now expand into the initial heap size.
  expand(init_byte_size);
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  g1_policy()->note_start_of_mark_thread();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
2002
                                               G1SATBProcessCompletedThreshold,
2003
                                               Shared_SATB_Q_lock);
2004 2005 2006

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
2007 2008
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
2009 2010
                                                Shared_DirtyCardQ_lock);

2011 2012 2013
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
2014 2015
                                      -1, // never trigger processing
                                      -1, // no limit on length
2016 2017 2018
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
J
johnc 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

  // Initialize the card queue set used to hold cards containing
  // references into the collection set.
  _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
                                             DirtyCardQ_FL_lock,
                                             -1, // never trigger processing
                                             -1, // no limit on length
                                             Shared_DirtyCardQ_lock,
                                             &JavaThread::dirty_card_queue_set());

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

  _gc_alloc_region_list = NULL;

  // Do later initialization work for concurrent refinement.
  _cg1r->init();

  return JNI_OK;
}

void G1CollectedHeap::ref_processing_init() {
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
  // Reference processing in G1 currently works as follows:
  //
  // * There is only one reference processor instance that
  //   'spans' the entire heap. It is created by the code
  //   below.
  // * Reference discovery is not enabled during an incremental
  //   pause (see 6484982).
  // * Discoverered refs are not enqueued nor are they processed
  //   during an incremental pause (see 6484982).
  // * Reference discovery is enabled at initial marking.
  // * Reference discovery is disabled and the discovered
  //   references processed etc during remarking.
  // * Reference discovery is MT (see below).
  // * Reference discovery requires a barrier (see below).
  // * Reference processing is currently not MT (see 6608385).
  // * A full GC enables (non-MT) reference discovery and
  //   processes any discovered references.

2060 2061 2062 2063 2064 2065
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
  _ref_processor = ReferenceProcessor::create_ref_processor(
                                         mr,    // span
                                         false, // Reference discovery is not atomic
                                         true,  // mt_discovery
2066 2067
                                         &_is_alive_closure, // is alive closure
                                                             // for efficiency
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
                                         ParallelGCThreads,
                                         ParallelRefProcEnabled,
                                         true); // Setting next fields of discovered
                                                // lists requires a barrier.
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

J
johnc 已提交
2078 2079 2080
void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
                                                 DirtyCardQueue* into_cset_dcq,
                                                 bool concurrent,
2081
                                                 int worker_i) {
2082
  // Clean cards in the hot card cache
J
johnc 已提交
2083
  concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2084

2085 2086
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
J
johnc 已提交
2087
  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
    n_completed_buffers++;
  }
  g1_policy()->record_update_rs_processed_buffers(worker_i,
                                                  (double) n_completed_buffers);
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
2100 2101
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
2102
  size_t result = _summary_bytes_used;
2103 2104 2105 2106
  // Read only once in case it is set to NULL concurrently
  HeapRegion* hr = _cur_alloc_region;
  if (hr != NULL)
    result += hr->used();
2107 2108 2109
  return result;
}

2110 2111 2112 2113 2114
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  SumUsedClosure blk;
  _hrs->iterate(&blk);
  return blk.result();
}

#ifndef PRODUCT
class SumUsedRegionsClosure: public HeapRegionClosure {
  size_t _num;
public:
2138
  SumUsedRegionsClosure() : _num(0) {}
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
      _num += 1;
    }
    return false;
  }
  size_t result() { return _num; }
};

size_t G1CollectedHeap::recalculate_used_regions() const {
  SumUsedRegionsClosure blk;
  _hrs->iterate(&blk);
  return blk.result();
}
#endif // PRODUCT

size_t G1CollectedHeap::unsafe_max_alloc() {
  if (_free_regions > 0) return HeapRegion::GrainBytes;
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
  HeapRegion* car = _cur_alloc_region;

  // FIXME: should iterate over all regions?
  if (car == NULL) {
    return 0;
  }
  return car->free();
}

2176 2177 2178 2179 2180 2181
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  return
    ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
     (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
}

2182
void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2183 2184
  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);

2185 2186 2187 2188 2189
  // We assume that if concurrent == true, then the caller is a
  // concurrent thread that was joined the Suspendible Thread
  // Set. If there's ever a cheap way to check this, we should add an
  // assert here.

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
  // We have already incremented _total_full_collections at the start
  // of the GC, so total_full_collections() represents how many full
  // collections have been started.
  unsigned int full_collections_started = total_full_collections();

  // Given that this method is called at the end of a Full GC or of a
  // concurrent cycle, and those can be nested (i.e., a Full GC can
  // interrupt a concurrent cycle), the number of full collections
  // completed should be either one (in the case where there was no
  // nesting) or two (when a Full GC interrupted a concurrent cycle)
  // behind the number of full collections started.

  // This is the case for the inner caller, i.e. a Full GC.
2203
  assert(concurrent ||
2204 2205
         (full_collections_started == _full_collections_completed + 1) ||
         (full_collections_started == _full_collections_completed + 2),
2206
         err_msg("for inner caller (Full GC): full_collections_started = %u "
2207 2208 2209 2210
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  // This is the case for the outer caller, i.e. the concurrent cycle.
2211
  assert(!concurrent ||
2212
         (full_collections_started == _full_collections_completed + 1),
2213 2214
         err_msg("for outer caller (concurrent cycle): "
                 "full_collections_started = %u "
2215 2216 2217 2218 2219
                 "is inconsistent with _full_collections_completed = %u",
                 full_collections_started, _full_collections_completed));

  _full_collections_completed += 1;

2220 2221 2222 2223
  // We need to clear the "in_progress" flag in the CM thread before
  // we wake up any waiters (especially when ExplicitInvokesConcurrent
  // is set) so that if a waiter requests another System.gc() it doesn't
  // incorrectly see that a marking cyle is still in progress.
2224
  if (concurrent) {
2225 2226 2227
    _cmThread->clear_in_progress();
  }

2228 2229 2230 2231 2232 2233 2234
  // This notify_all() will ensure that a thread that called
  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  // and it's waiting for a full GC to finish will be woken up. It is
  // waiting in VM_G1IncCollectionPause::doit_epilogue().
  FullGCCount_lock->notify_all();
}

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  assert(Thread::current()->is_VM_thread(), "Precondition#1");
  assert(Heap_lock->is_locked(), "Precondition#2");
  GCCauseSetter gcs(this, cause);
  switch (cause) {
    case GCCause::_heap_inspection:
    case GCCause::_heap_dump: {
      HandleMark hm;
      do_full_collection(false);         // don't clear all soft refs
      break;
    }
    default: // XXX FIX ME
      ShouldNotReachHere(); // Unexpected use of this function
  }
}

2251 2252 2253
void G1CollectedHeap::collect(GCCause::Cause cause) {
  // The caller doesn't have the Heap_lock
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
2254

2255 2256
  unsigned int gc_count_before;
  unsigned int full_gc_count_before;
2257
  {
2258 2259
    MutexLocker ml(Heap_lock);

2260 2261 2262 2263
    // Don't want to do a GC until cleanup is completed. This
    // limitation will be removed in the near future when the
    // operation of the free region list is revamped as part of
    // CR 6977804.
2264
    wait_for_cleanup_complete();
2265

2266 2267 2268
    // Read the GC count while holding the Heap_lock
    gc_count_before = SharedHeap::heap()->total_collections();
    full_gc_count_before = SharedHeap::heap()->total_full_collections();
2269 2270 2271 2272
  }

  if (should_do_concurrent_full_gc(cause)) {
    // Schedule an initial-mark evacuation pause that will start a
2273 2274
    // concurrent cycle. We're setting word_size to 0 which means that
    // we are not requesting a post-GC allocation.
2275
    VM_G1IncCollectionPause op(gc_count_before,
2276 2277
                               0,     /* word_size */
                               true,  /* should_initiate_conc_mark */
2278 2279 2280 2281 2282 2283 2284
                               g1_policy()->max_pause_time_ms(),
                               cause);
    VMThread::execute(&op);
  } else {
    if (cause == GCCause::_gc_locker
        DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {

2285 2286
      // Schedule a standard evacuation pause. We're setting word_size
      // to 0 which means that we are not requesting a post-GC allocation.
2287
      VM_G1IncCollectionPause op(gc_count_before,
2288
                                 0,     /* word_size */
2289 2290 2291
                                 false, /* should_initiate_conc_mark */
                                 g1_policy()->max_pause_time_ms(),
                                 cause);
2292
      VMThread::execute(&op);
2293 2294 2295
    } else {
      // Schedule a Full GC.
      VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2296 2297
      VMThread::execute(&op);
    }
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
  }
}

bool G1CollectedHeap::is_in(const void* p) const {
  if (_g1_committed.contains(p)) {
    HeapRegion* hr = _hrs->addr_to_region(p);
    return hr->is_in(p);
  } else {
    return _perm_gen->as_gen()->is_in(p);
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
  OopClosure* _cl;
public:
  IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->oop_iterate(_cl);
    }
    return false;
  }
};

2329
void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2330 2331
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
  _hrs->iterate(&blk);
2332 2333 2334
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2335 2336
}

2337
void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2338 2339
  IterateOopClosureRegionClosure blk(mr, cl);
  _hrs->iterate(&blk);
2340 2341 2342
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

2359
void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2360 2361
  IterateObjectClosureRegionClosure blk(cl);
  _hrs->iterate(&blk);
2362 2363 2364
  if (do_perm) {
    perm_gen()->object_iterate(cl);
  }
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
}

void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  // FIXME: is this right?
  guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
  _hrs->iterate(&blk);
}

void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  _hrs->iterate(cl);
}

void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
                                               HeapRegionClosure* cl) {
  _hrs->iterate_from(r, cl);
}

void
G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  _hrs->iterate_from(idx, cl);
}

HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
                                                 int worker,
                                                 jint claim_value) {
2409
  const size_t regions = n_regions();
2410
  const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
  // try to spread out the starting points of the workers
  const size_t start_index = regions / worker_num * (size_t) worker;

  // each worker will actually look at all regions
  for (size_t count = 0; count < regions; ++count) {
    const size_t index = (start_index + count) % regions;
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
2426
    if (r->claimHeapRegion(claim_value)) {
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
        for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

          // Noone should have claimed it directly. We can given
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
            // we should always be able to claim it; noone else should
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
2470
      }
2471 2472 2473 2474

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
2475 2476 2477 2478
    }
  }
}

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

void
G1CollectedHeap::reset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
  size_t _failures;
  HeapRegion* _sh_region;
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                             "claim value = %d, should be %d",
                             r->bottom(), r->end(), r->claim_value(),
                             _claim_value);
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
        gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
                               r->bottom(), r->end(),
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
  size_t failures() {
    return _failures;
  }
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
#endif // ASSERT

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
2557 2558 2559 2560 2561
  if (r == NULL) {
    // The CSet is empty so there's nothing to do.
    return;
  }

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  return _hrs->length() > 0 ? _hrs->at(0) : NULL;
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  if (res == NULL)
    res = perm_gen()->space_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  return HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2627 2628 2629 2630 2631 2632
  // Also, this value can be at most the humongous object threshold,
  // since we can't allow tlabs to grow big enough to accomodate
  // humongous objects.

  // We need to store the cur alloc region locally, since it might change
  // between when we test for NULL and when we use it later.
2633
  ContiguousSpace* cur_alloc_space = _cur_alloc_region;
2634 2635
  size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;

2636
  if (cur_alloc_space == NULL) {
2637
    return max_tlab_size;
2638
  } else {
2639 2640
    return MIN2(MAX2(cur_alloc_space->free(), (size_t)MinTLABSize),
                max_tlab_size);
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
  }
}

bool G1CollectedHeap::allocs_are_zero_filled() {
  return false;
}

size_t G1CollectedHeap::large_typearray_limit() {
  // FIXME
  return HeapRegion::GrainBytes/HeapWordSize;
}

size_t G1CollectedHeap::max_capacity() const {
2654
  return g1_reserved_obj_bytes();
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}


void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

class VerifyLivenessOopClosure: public OopClosure {
  G1CollectedHeap* g1h;
public:
  VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
    g1h = _g1h;
  }
2676 2677 2678 2679 2680 2681 2682
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    guarantee(obj == NULL || !g1h->is_obj_dead(obj),
              "Dead object referenced by a not dead object");
2683 2684 2685 2686
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
2687
private:
2688 2689 2690
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
2691
  bool _use_prev_marking;
2692
public:
2693 2694 2695 2696
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
    : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
2697 2698 2699 2700 2701
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
    VerifyLivenessOopClosure isLive(_g1h);
    assert(o != NULL, "Huh?");
2702
    if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
2703
      o->oop_iterate(&isLive);
2704 2705 2706 2707
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
2743
private:
2744
  bool _allow_dirty;
2745
  bool _par;
2746
  bool _use_prev_marking;
2747
  bool _failures;
2748 2749 2750 2751
public:
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
2752 2753
    : _allow_dirty(allow_dirty),
      _par(par),
2754 2755 2756 2757 2758 2759
      _use_prev_marking(use_prev_marking),
      _failures(false) {}

  bool failures() {
    return _failures;
  }
2760

2761
  bool doHeapRegion(HeapRegion* r) {
2762 2763
    guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
              "Should be unclaimed at verify points.");
2764
    if (!r->continuesHumongous()) {
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
      bool failures = false;
      r->verify(_allow_dirty, _use_prev_marking, &failures);
      if (failures) {
        _failures = true;
      } else {
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
        r->object_iterate(&not_dead_yet_cl);
        if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
          gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                 "max_live_bytes "SIZE_FORMAT" "
                                 "< calculated "SIZE_FORMAT,
                                 r->bottom(), r->end(),
                                 r->max_live_bytes(),
                                 not_dead_yet_cl.live_bytes());
          _failures = true;
        }
      }
2782
    }
2783
    return false; // stop the region iteration if we hit a failure
2784 2785 2786 2787 2788 2789
  }
};

class VerifyRootsClosure: public OopsInGenClosure {
private:
  G1CollectedHeap* _g1h;
2790
  bool             _use_prev_marking;
2791
  bool             _failures;
2792
public:
2793 2794 2795
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyRootsClosure(bool use_prev_marking) :
2796
    _g1h(G1CollectedHeap::heap()),
2797 2798
    _use_prev_marking(use_prev_marking),
    _failures(false) { }
2799 2800 2801

  bool failures() { return _failures; }

2802 2803 2804 2805
  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2806
      if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
2807
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2808
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
2809 2810 2811 2812 2813
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }
2814 2815 2816

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
2817 2818
};

2819 2820 2821 2822 2823 2824
// This is the task used for parallel heap verification.

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
  bool _allow_dirty;
2825
  bool _use_prev_marking;
2826
  bool _failures;
2827 2828

public:
2829 2830 2831 2832
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
                  bool use_prev_marking) :
2833
    AbstractGangTask("Parallel verify task"),
2834 2835
    _g1h(g1h),
    _allow_dirty(allow_dirty),
2836 2837 2838 2839 2840 2841
    _use_prev_marking(use_prev_marking),
    _failures(false) { }

  bool failures() {
    return _failures;
  }
2842 2843

  void work(int worker_i) {
2844
    HandleMark hm;
2845
    VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
2846 2847
    _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
                                          HeapRegion::ParVerifyClaimValue);
2848 2849 2850
    if (blk.failures()) {
      _failures = true;
    }
2851 2852 2853
  }
};

2854
void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2855 2856 2857 2858 2859 2860
  verify(allow_dirty, silent, /* use_prev_marking */ true);
}

void G1CollectedHeap::verify(bool allow_dirty,
                             bool silent,
                             bool use_prev_marking) {
2861 2862
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    if (!silent) { gclog_or_tty->print("roots "); }
2863
    VerifyRootsClosure rootsCl(use_prev_marking);
2864 2865 2866
    CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
    process_strong_roots(true,  // activate StrongRootsScope
                         false,
2867 2868
                         SharedHeap::SO_AllClasses,
                         &rootsCl,
2869
                         &blobsCl,
2870
                         &rootsCl);
2871
    bool failures = rootsCl.failures();
2872 2873
    rem_set()->invalidate(perm_gen()->used_region(), false);
    if (!silent) { gclog_or_tty->print("heapRegions "); }
2874 2875 2876 2877
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

2878
      G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
2879 2880 2881 2882
      int n_workers = workers()->total_workers();
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
2883 2884 2885
      if (task.failures()) {
        failures = true;
      }
2886 2887 2888 2889 2890 2891 2892 2893 2894

      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
2895
      VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
2896
      _hrs->iterate(&blk);
2897 2898 2899
      if (blk.failures()) {
        failures = true;
      }
2900
    }
2901 2902
    if (!silent) gclog_or_tty->print("remset ");
    rem_set()->verify();
2903 2904 2905 2906 2907

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
      print_on(gclog_or_tty, true /* extended */);
      gclog_or_tty->print_cr("");
2908
#ifndef PRODUCT
2909
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
2910 2911
        concurrent_mark()->print_reachable("at-verification-failure",
                                           use_prev_marking, false /* all */);
2912
      }
2913
#endif
2914 2915 2916
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
  } else {
    if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  }
}

class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

2932
void G1CollectedHeap::print() const { print_on(tty); }
2933 2934

void G1CollectedHeap::print_on(outputStream* st) const {
2935 2936 2937 2938 2939 2940
  print_on(st, PrintHeapAtGCExtended);
}

void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2941
            capacity()/K, used_unlocked()/K);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
  st->print("  region size " SIZE_FORMAT "K, ",
            HeapRegion::GrainBytes/K);
  size_t young_regions = _young_list->length();
  st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
            young_regions, young_regions * HeapRegion::GrainBytes / K);
  size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
            survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  st->cr();
  perm()->as_gen()->print_on(st);
  if (extended) {
2958
    st->cr();
2959 2960 2961 2962 2963
    print_on_extended(st);
  }
}

void G1CollectedHeap::print_on_extended(outputStream* st) const {
2964 2965 2966 2967 2968
  PrintRegionClosure blk(st);
  _hrs->iterate(&blk);
}

void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2969
  if (G1CollectedHeap::use_parallel_gc_threads()) {
T
tonyp 已提交
2970
    workers()->print_worker_threads_on(st);
2971
  }
T
tonyp 已提交
2972 2973

  _cmThread->print_on(st);
2974
  st->cr();
T
tonyp 已提交
2975 2976 2977 2978 2979

  _cm->print_worker_threads_on(st);

  _cg1r->print_worker_threads_on(st);

2980 2981 2982 2983 2984
  _czft->print_on(st);
  st->cr();
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2985
  if (G1CollectedHeap::use_parallel_gc_threads()) {
2986 2987 2988
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
2989
  _cg1r->threads_do(tc);
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
  tc->do_thread(_czft);
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
3000
  if (G1SummarizeRSetStats) {
3001 3002
    g1_rem_set()->print_summary_info();
  }
3003
  if (G1SummarizeConcMark) {
3004 3005
    concurrent_mark()->print_summary_info();
  }
J
johnc 已提交
3006
  if (G1SummarizeZFStats) {
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
    ConcurrentZFThread::print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();

  SpecializationStats::print();
}


int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  HeapRegion* hr = heap_region_containing(addr);
  if (hr == NULL) {
    return 0;
  } else {
    return 1;
  }
}

G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3031
  // always_do_update_barrier = false;
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Call allocation profiler
  AllocationProfiler::iterate_since_last_gc();
  // Fill TLAB's and such
  ensure_parsability(true);
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
3045
  // always_do_update_barrier = true;
3046 3047
}

3048 3049 3050 3051
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
                                               unsigned int gc_count_before,
                                               bool* succeeded) {
  assert_heap_not_locked_and_not_at_safepoint();
3052
  g1_policy()->record_stop_world_start();
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
  VM_G1IncCollectionPause op(gc_count_before,
                             word_size,
                             false, /* should_initiate_conc_mark */
                             g1_policy()->max_pause_time_ms(),
                             GCCause::_g1_inc_collection_pause);
  VMThread::execute(&op);

  HeapWord* result = op.result();
  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  assert(result == NULL || ret_succeeded,
         "the result should be NULL if the VM did not succeed");
  *succeeded = ret_succeeded;

  assert_heap_not_locked();
  return result;
3068 3069 3070 3071
}

void
G1CollectedHeap::doConcurrentMark() {
3072 3073 3074 3075
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
  }
}

class VerifyMarkedObjsClosure: public ObjectClosure {
    G1CollectedHeap* _g1h;
    public:
    VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
    void do_object(oop obj) {
      assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
             "markandsweep mark should agree with concurrent deadness");
    }
};

void
G1CollectedHeap::checkConcurrentMark() {
    VerifyMarkedObjsClosure verifycl(this);
    //    MutexLockerEx x(getMarkBitMapLock(),
    //              Mutex::_no_safepoint_check_flag);
3094
    object_iterate(&verifycl, false);
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
}

void G1CollectedHeap::do_sync_mark() {
  _cm->checkpointRootsInitial();
  _cm->markFromRoots();
  _cm->checkpointRootsFinal(false);
}

// <NEW PREDICTION>

double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
                                                       bool young) {
  return _g1_policy->predict_region_elapsed_time_ms(hr, young);
}

void G1CollectedHeap::check_if_region_is_too_expensive(double
                                                           predicted_time_ms) {
  _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();
  return buffer_size * buffer_num + extra_cards;
}

size_t G1CollectedHeap::max_pending_card_num() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num  = dcqs.completed_buffers_num();
  int thread_num  = Threads::number_of_threads();
  return (buffer_num + thread_num) * buffer_size;
}

size_t G1CollectedHeap::cards_scanned() {
3138
  return g1_rem_set()->cardsScanned();
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
}

void
G1CollectedHeap::setup_surviving_young_words() {
  guarantee( _surviving_young_words == NULL, "pre-condition" );
  size_t array_length = g1_policy()->young_cset_length();
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words == NULL) {
    vm_exit_out_of_memory(sizeof(size_t) * array_length,
                          "Not enough space for young surv words summary.");
  }
  memset(_surviving_young_words, 0, array_length * sizeof(size_t));
3151
#ifdef ASSERT
3152
  for (size_t i = 0;  i < array_length; ++i) {
3153
    assert( _surviving_young_words[i] == 0, "memset above" );
3154
  }
3155
#endif // !ASSERT
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  size_t array_length = g1_policy()->young_cset_length();
  for (size_t i = 0; i < array_length; ++i)
    _surviving_young_words[i] += surv_young_words[i];
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  _surviving_young_words = NULL;
}

// </NEW PREDICTION>

3175 3176 3177 3178 3179 3180 3181
struct PrepareForRSScanningClosure : public HeapRegionClosure {
  bool doHeapRegion(HeapRegion *r) {
    r->rem_set()->set_iter_claimed(0);
    return false;
  }
};

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  st->print_raw_cr("GC Task Stats");
  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}

void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  print_taskqueue_stats_hdr(st);

  TaskQueueStats totals;
3193
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
  for (int i = 0; i < n; ++i) {
    st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
    totals += task_queue(i)->stats;
  }
  st->print_raw("tot "); totals.print(st); st->cr();

  DEBUG_ONLY(totals.verify());
}

void G1CollectedHeap::reset_taskqueue_stats() {
3204
  const int n = workers() != NULL ? workers()->total_workers() : 1;
3205 3206 3207 3208 3209 3210
  for (int i = 0; i < n; ++i) {
    task_queue(i)->stats.reset();
  }
}
#endif // TASKQUEUE_STATS

3211
bool
3212
G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3213
  if (GC_locker::check_active_before_gc()) {
3214
    return false;
3215 3216
  }

3217 3218 3219
  DTraceGCProbeMarker gc_probe_marker(false /* full */);
  ResourceMark rm;

3220 3221
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
3222 3223
  }

3224
  {
3225 3226 3227 3228 3229
    // This call will decide whether this pause is an initial-mark
    // pause. If it is, during_initial_mark_pause() will return true
    // for the duration of this pause.
    g1_policy()->decide_on_conc_mark_initiation();

3230 3231 3232 3233 3234 3235 3236 3237
    char verbose_str[128];
    sprintf(verbose_str, "GC pause ");
    if (g1_policy()->in_young_gc_mode()) {
      if (g1_policy()->full_young_gcs())
        strcat(verbose_str, "(young)");
      else
        strcat(verbose_str, "(partial)");
    }
3238
    if (g1_policy()->during_initial_mark_pause()) {
3239
      strcat(verbose_str, " (initial-mark)");
3240 3241 3242 3243
      // We are about to start a marking cycle, so we increment the
      // full collection counter.
      increment_total_full_collections();
    }
3244

3245 3246 3247 3248 3249 3250
    // if PrintGCDetails is on, we'll print long statistics information
    // in the collector policy code, so let's not print this as the output
    // is messy if we do.
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
3251

3252 3253
    TraceMemoryManagerStats tms(false /* fullGC */);

3254 3255 3256 3257
    assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
    assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
    guarantee(!is_gc_active(), "collection is not reentrant");
    assert(regions_accounted_for(), "Region leakage!");
3258

3259
    increment_gc_time_stamp();
3260

3261 3262 3263 3264
    if (g1_policy()->in_young_gc_mode()) {
      assert(check_young_list_well_formed(),
             "young list should be well formed");
    }
3265

3266 3267 3268 3269 3270
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
3271 3272

#if G1_REM_SET_LOGGING
3273 3274
      gclog_or_tty->print_cr("\nJust chose CS, heap:");
      print();
3275 3276
#endif

3277 3278 3279 3280 3281 3282
      if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        prepare_for_verify();
        gclog_or_tty->print(" VerifyBeforeGC:");
        Universe::verify(false);
      }
3283

3284
      COMPILER2_PRESENT(DerivedPointerTable::clear());
3285

3286 3287 3288
      // Please see comment in G1CollectedHeap::ref_processing_init()
      // to see how reference processing currently works in G1.
      //
3289
      // We want to turn off ref discovery, if necessary, and turn it back on
3290
      // on again later if we do. XXX Dubious: why is discovery disabled?
3291 3292
      bool was_enabled = ref_processor()->discovery_enabled();
      if (was_enabled) ref_processor()->disable_discovery();
3293

3294 3295 3296
      // Forget the current alloc region (we might even choose it to be part
      // of the collection set!).
      abandon_cur_alloc_region();
3297

3298 3299 3300 3301
      // The elapsed time induced by the start time below deliberately elides
      // the possible verification above.
      double start_time_sec = os::elapsedTime();
      size_t start_used_bytes = used();
3302

3303 3304 3305 3306 3307 3308
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
      _young_list->print();
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE

3309 3310
      g1_policy()->record_collection_pause_start(start_time_sec,
                                                 start_used_bytes);
3311

3312 3313
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3314
      _young_list->print();
3315
#endif // YOUNG_LIST_VERBOSE
3316

3317
      if (g1_policy()->during_initial_mark_pause()) {
3318 3319 3320
        concurrent_mark()->checkpointRootsInitialPre();
      }
      save_marks();
3321

3322 3323 3324 3325
      // We must do this before any possible evacuation that should propagate
      // marks.
      if (mark_in_progress()) {
        double start_time_sec = os::elapsedTime();
3326

3327 3328 3329 3330 3331 3332 3333 3334 3335
        _cm->drainAllSATBBuffers();
        double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
        g1_policy()->record_satb_drain_time(finish_mark_ms);
      }
      // Record the number of elements currently on the mark stack, so we
      // only iterate over these.  (Since evacuation may add to the mark
      // stack, doing more exposes race conditions.)  If no mark is in
      // progress, this will be zero.
      _cm->set_oops_do_bound();
3336

3337
      assert(regions_accounted_for(), "Region leakage.");
3338

3339 3340
      if (mark_in_progress())
        concurrent_mark()->newCSet();
3341

3342 3343 3344 3345 3346
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
      _young_list->print();
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE
3347

3348
      g1_policy()->choose_collection_set(target_pause_time_ms);
3349

3350
      // Nothing to do if we were unable to choose a collection set.
3351
#if G1_REM_SET_LOGGING
3352 3353
      gclog_or_tty->print_cr("\nAfter pause, heap:");
      print();
3354
#endif
3355 3356
      PrepareForRSScanningClosure prepare_for_rs_scan;
      collection_set_iterate(&prepare_for_rs_scan);
3357

3358
      setup_surviving_young_words();
3359

3360 3361
      // Set up the gc allocation regions.
      get_gc_alloc_regions();
3362

3363 3364
      // Actually do the work...
      evacuate_collection_set();
3365

3366 3367
      free_collection_set(g1_policy()->collection_set());
      g1_policy()->clear_collection_set();
3368

3369
      cleanup_surviving_young_words();
3370

3371 3372
      // Start a new incremental collection set for the next pause.
      g1_policy()->start_incremental_cset_building();
3373

3374 3375 3376 3377
      // Clear the _cset_fast_test bitmap in anticipation of adding
      // regions to the incremental collection set for the next
      // evacuation pause.
      clear_cset_fast_test();
3378

3379 3380
      if (g1_policy()->in_young_gc_mode()) {
        _young_list->reset_sampled_info();
3381

3382 3383 3384 3385 3386 3387
        // Don't check the whole heap at this point as the
        // GC alloc regions from this pause have been tagged
        // as survivors and moved on to the survivor list.
        // Survivor regions will fail the !is_young() check.
        assert(check_young_list_empty(false /* check_heap */),
               "young list should be empty");
3388 3389

#if YOUNG_LIST_VERBOSE
3390 3391
        gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
        _young_list->print();
3392
#endif // YOUNG_LIST_VERBOSE
3393

3394
        g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3395 3396
                                          _young_list->first_survivor_region(),
                                          _young_list->last_survivor_region());
3397

3398
        _young_list->reset_auxilary_lists();
3399 3400
      }

3401 3402 3403 3404 3405 3406 3407
      if (evacuation_failed()) {
        _summary_bytes_used = recalculate_used();
      } else {
        // The "used" of the the collection set have already been subtracted
        // when they were freed.  Add in the bytes evacuated.
        _summary_bytes_used += g1_policy()->bytes_in_to_space();
      }
3408

3409
      if (g1_policy()->in_young_gc_mode() &&
3410
          g1_policy()->during_initial_mark_pause()) {
3411 3412
        concurrent_mark()->checkpointRootsInitialPost();
        set_marking_started();
3413 3414 3415 3416 3417 3418 3419
        // CAUTION: after the doConcurrentMark() call below,
        // the concurrent marking thread(s) could be running
        // concurrently with us. Make sure that anything after
        // this point does not assume that we are the only GC thread
        // running. Note: of course, the actual marking work will
        // not start until the safepoint itself is released in
        // ConcurrentGCThread::safepoint_desynchronize().
3420 3421
        doConcurrentMark();
      }
3422

3423 3424
#if YOUNG_LIST_VERBOSE
      gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3425
      _young_list->print();
3426 3427
      g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
#endif // YOUNG_LIST_VERBOSE
3428

3429 3430 3431
      double end_time_sec = os::elapsedTime();
      double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
      g1_policy()->record_pause_time_ms(pause_time_ms);
3432
      g1_policy()->record_collection_pause_end();
3433

3434
      assert(regions_accounted_for(), "Region leakage.");
3435

3436 3437
      MemoryService::track_memory_usage();

3438 3439 3440 3441 3442 3443
      if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        gclog_or_tty->print(" VerifyAfterGC:");
        prepare_for_verify();
        Universe::verify(false);
      }
3444

3445
      if (was_enabled) ref_processor()->enable_discovery();
3446

3447 3448 3449 3450 3451 3452
      {
        size_t expand_bytes = g1_policy()->expansion_amount();
        if (expand_bytes > 0) {
          size_t bytes_before = capacity();
          expand(expand_bytes);
        }
3453 3454
      }

3455 3456 3457
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
3458 3459

#ifdef TRACESPINNING
3460
      ParallelTaskTerminator::print_termination_counts();
3461
#endif
3462

3463 3464 3465 3466
      gc_epilogue(false);
    }

    assert(verify_region_lists(), "Bad region lists.");
3467

3468 3469 3470 3471 3472 3473
    if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
      gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
      print_tracing_info();
      vm_exit(-1);
    }
  }
3474

3475 3476 3477
  TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());

3478 3479
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
3480
  }
3481 3482 3483 3484 3485
  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_summary_info();
  }
3486 3487

  return true;
3488 3489
}

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
      gclab_word_size = YoungPLABSize;
      break;
    case GCAllocForTenured:
      gclab_word_size = OldPLABSize;
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
      gclab_word_size = OldPLABSize;
      break;
  }
  return gclab_word_size;
}


3509 3510
void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
3511 3512 3513 3514
  // make sure we don't call set_gc_alloc_region() multiple times on
  // the same region
  assert(r == NULL || !r->is_gc_alloc_region(),
         "shouldn't already be a GC alloc region");
3515 3516 3517
  assert(r == NULL || !r->isHumongous(),
         "humongous regions shouldn't be used as GC alloc regions");

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
  HeapWord* original_top = NULL;
  if (r != NULL)
    original_top = r->top();

  // We will want to record the used space in r as being there before gc.
  // One we install it as a GC alloc region it's eligible for allocation.
  // So record it now and use it later.
  size_t r_used = 0;
  if (r != NULL) {
    r_used = r->used();

3529
    if (G1CollectedHeap::use_parallel_gc_threads()) {
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
      // need to take the lock to guard against two threads calling
      // get_gc_alloc_region concurrently (very unlikely but...)
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      r->save_marks();
    }
  }
  HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  _gc_alloc_regions[purpose] = r;
  if (old_alloc_region != NULL) {
    // Replace aliases too.
    for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
      if (_gc_alloc_regions[ap] == old_alloc_region) {
        _gc_alloc_regions[ap] = r;
      }
    }
  }
  if (r != NULL) {
    push_gc_alloc_region(r);
    if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
      // We are using a region as a GC alloc region after it has been used
      // as a mutator allocation region during the current marking cycle.
      // The mutator-allocated objects are currently implicitly marked, but
      // when we move hr->next_top_at_mark_start() forward at the the end
      // of the GC pause, they won't be.  We therefore mark all objects in
      // the "gap".  We do this object-by-object, since marking densely
      // does not currently work right with marking bitmap iteration.  This
      // means we rely on TLAB filling at the start of pauses, and no
      // "resuscitation" of filled TLAB's.  If we want to do this, we need
      // to fix the marking bitmap iteration.
      HeapWord* curhw = r->next_top_at_mark_start();
      HeapWord* t = original_top;

      while (curhw < t) {
        oop cur = (oop)curhw;
        // We'll assume parallel for generality.  This is rare code.
        concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
        curhw = curhw + cur->size();
      }
      assert(curhw == t, "Should have parsed correctly.");
    }
    if (G1PolicyVerbose > 1) {
      gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
                          "for survivors:", r->bottom(), original_top, r->end());
      r->print();
    }
    g1_policy()->record_before_bytes(r_used);
  }
}

void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  assert(Thread::current()->is_VM_thread() ||
         par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
  assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
         "Precondition.");
  hr->set_is_gc_alloc_region(true);
  hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  _gc_alloc_region_list = hr;
}

#ifdef G1_DEBUG
class FindGCAllocRegion: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_gc_alloc_region()) {
      gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
                             r->hrs_index(), r->bottom());
    }
    return false;
  }
};
#endif // G1_DEBUG

void G1CollectedHeap::forget_alloc_region_list() {
  assert(Thread::current()->is_VM_thread(), "Precondition");
  while (_gc_alloc_region_list != NULL) {
    HeapRegion* r = _gc_alloc_region_list;
    assert(r->is_gc_alloc_region(), "Invariant.");
3607 3608 3609 3610 3611 3612
    // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
    // newly allocated data in order to be able to apply deferred updates
    // before the GC is done for verification purposes (i.e to allow
    // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
    // collection.
    r->ContiguousSpace::set_saved_mark();
3613 3614 3615
    _gc_alloc_region_list = r->next_gc_alloc_region();
    r->set_next_gc_alloc_region(NULL);
    r->set_is_gc_alloc_region(false);
3616 3617 3618 3619 3620 3621 3622
    if (r->is_survivor()) {
      if (r->is_empty()) {
        r->set_not_young();
      } else {
        _young_list->add_survivor_region(r);
      }
    }
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
    if (r->is_empty()) {
      ++_free_regions;
    }
  }
#ifdef G1_DEBUG
  FindGCAllocRegion fa;
  heap_region_iterate(&fa);
#endif // G1_DEBUG
}


bool G1CollectedHeap::check_gc_alloc_regions() {
  // TODO: allocation regions check
  return true;
}

void G1CollectedHeap::get_gc_alloc_regions() {
3640 3641 3642
  // First, let's check that the GC alloc region list is empty (it should)
  assert(_gc_alloc_region_list == NULL, "invariant");

3643
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3644
    assert(_gc_alloc_regions[ap] == NULL, "invariant");
3645
    assert(_gc_alloc_region_counts[ap] == 0, "invariant");
3646

3647
    // Create new GC alloc regions.
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
    HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
    _retained_gc_alloc_regions[ap] = NULL;

    if (alloc_region != NULL) {
      assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");

      // let's make sure that the GC alloc region is not tagged as such
      // outside a GC operation
      assert(!alloc_region->is_gc_alloc_region(), "sanity");

      if (alloc_region->in_collection_set() ||
          alloc_region->top() == alloc_region->end() ||
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
          alloc_region->top() == alloc_region->bottom() ||
          alloc_region->isHumongous()) {
        // we will discard the current GC alloc region if
        // * it's in the collection set (it can happen!),
        // * it's already full (no point in using it),
        // * it's empty (this means that it was emptied during
        // a cleanup and it should be on the free list now), or
        // * it's humongous (this means that it was emptied
        // during a cleanup and was added to the free list, but
        // has been subseqently used to allocate a humongous
        // object that may be less than the region size).
3671 3672 3673 3674 3675 3676 3677

        alloc_region = NULL;
      }
    }

    if (alloc_region == NULL) {
      // we will get a new GC alloc region
3678
      alloc_region = newAllocRegionWithExpansion(ap, 0);
3679 3680 3681
    } else {
      // the region was retained from the last collection
      ++_gc_alloc_region_counts[ap];
3682 3683 3684 3685 3686
      if (G1PrintHeapRegions) {
        gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
                               "top "PTR_FORMAT,
                               alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
      }
3687
    }
3688

3689
    if (alloc_region != NULL) {
3690
      assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
3691 3692
      set_gc_alloc_region(ap, alloc_region);
    }
3693 3694 3695 3696 3697 3698 3699

    assert(_gc_alloc_regions[ap] == NULL ||
           _gc_alloc_regions[ap]->is_gc_alloc_region(),
           "the GC alloc region should be tagged as such");
    assert(_gc_alloc_regions[ap] == NULL ||
           _gc_alloc_regions[ap] == _gc_alloc_region_list,
           "the GC alloc region should be the same as the GC alloc list head");
3700 3701
  }
  // Set alternative regions for allocation purposes that have reached
3702
  // their limit.
3703 3704 3705 3706 3707 3708 3709 3710 3711
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
    if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
      _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
    }
  }
  assert(check_gc_alloc_regions(), "alloc regions messed up");
}

3712
void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
3713
  // We keep a separate list of all regions that have been alloc regions in
3714 3715 3716 3717
  // the current collection pause. Forget that now. This method will
  // untag the GC alloc regions and tear down the GC alloc region
  // list. It's desirable that no regions are tagged as GC alloc
  // outside GCs.
3718

3719 3720 3721 3722 3723 3724
  forget_alloc_region_list();

  // The current alloc regions contain objs that have survived
  // collection. Make them no longer GC alloc regions.
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
3725
    _retained_gc_alloc_regions[ap] = NULL;
3726
    _gc_alloc_region_counts[ap] = 0;
3727 3728 3729 3730 3731 3732 3733 3734

    if (r != NULL) {
      // we retain nothing on _gc_alloc_regions between GCs
      set_gc_alloc_region(ap, NULL);

      if (r->is_empty()) {
        // we didn't actually allocate anything in it; let's just put
        // it on the free list
3735 3736 3737
        MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
        r->set_zero_fill_complete();
        put_free_region_on_list_locked(r);
3738 3739 3740
      } else if (_retain_gc_alloc_region[ap] && !totally) {
        // retain it so that we can use it at the beginning of the next GC
        _retained_gc_alloc_regions[ap] = r;
3741 3742 3743 3744 3745
      }
    }
  }
}

3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
#ifndef PRODUCT
// Useful for debugging

void G1CollectedHeap::print_gc_alloc_regions() {
  gclog_or_tty->print_cr("GC alloc regions");
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    if (r == NULL) {
      gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
    } else {
      gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
                             ap, r->bottom(), r->used());
    }
  }
}
#endif // PRODUCT

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
3774
  delete _evac_failure_scan_stack;
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
  _evac_failure_scan_stack = NULL;
}



// *** Sequential G1 Evacuation

class G1IsAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_object(oop p) { assert(false, "Do not call."); }
  bool do_object_b(oop p) {
    // It is reachable if it is outside the collection set, or is inside
    // and forwarded.

#ifdef G1_DEBUG
    gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
                           (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
                           !_g1->obj_in_cs(p) || p->is_forwarded());
#endif // G1_DEBUG

    return !_g1->obj_in_cs(p) || p->is_forwarded();
  }
};

class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3805 3806
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
    oop obj = *p;
#ifdef G1_DEBUG
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
                             p, (void*) obj, (void*) *p);
    }
#endif // G1_DEBUG

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
#ifdef G1_DEBUG
      gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
                             (void*) obj, (void*) *p);
#endif // G1_DEBUG
    }
  }
};

3826 3827 3828 3829 3830 3831 3832 3833 3834
class UpdateRSetDeferred : public OopsInHeapRegionClosure {
private:
  G1CollectedHeap* _g1;
  DirtyCardQueue *_dcq;
  CardTableModRefBS* _ct_bs;

public:
  UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
    _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3835

3836 3837 3838
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
  template <class T> void do_oop_work(T* p) {
3839
    assert(_from->is_in_reserved(p), "paranoia");
3840 3841
    if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
        !_from->is_survivor()) {
3842 3843 3844 3845
      size_t card_index = _ct_bs->index_for(p);
      if (_ct_bs->mark_card_deferred(card_index)) {
        _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
      }
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
    }
  }
};

class RemoveSelfPointerClosure: public ObjectClosure {
private:
  G1CollectedHeap* _g1;
  ConcurrentMark* _cm;
  HeapRegion* _hr;
  size_t _prev_marked_bytes;
  size_t _next_marked_bytes;
3857
  OopsInHeapRegionClosure *_cl;
3858
public:
3859 3860 3861
  RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
    _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
    _next_marked_bytes(0), _cl(cl) {}
3862 3863 3864 3865

  size_t prev_marked_bytes() { return _prev_marked_bytes; }
  size_t next_marked_bytes() { return _next_marked_bytes; }

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
  // The original idea here was to coalesce evacuated and dead objects.
  // However that caused complications with the block offset table (BOT).
  // In particular if there were two TLABs, one of them partially refined.
  // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  // The BOT entries of the unrefined part of TLAB_2 point to the start
  // of TLAB_2. If the last object of the TLAB_1 and the first object
  // of TLAB_2 are coalesced, then the cards of the unrefined part
  // would point into middle of the filler object.
  //
  // The current approach is to not coalesce and leave the BOT contents intact.
3876
  void do_object(oop obj) {
3877 3878 3879 3880 3881 3882 3883 3884
    if (obj->is_forwarded() && obj->forwardee() == obj) {
      // The object failed to move.
      assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
      _cm->markPrev(obj);
      assert(_cm->isPrevMarked(obj), "Should be marked!");
      _prev_marked_bytes += (obj->size() * HeapWordSize);
      if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
        _cm->markAndGrayObjectIfNecessary(obj);
3885
      }
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
      obj->set_mark(markOopDesc::prototype());
      // While we were processing RSet buffers during the
      // collection, we actually didn't scan any cards on the
      // collection set, since we didn't want to update remebered
      // sets with entries that point into the collection set, given
      // that live objects fromthe collection set are about to move
      // and such entries will be stale very soon. This change also
      // dealt with a reliability issue which involved scanning a
      // card in the collection set and coming across an array that
      // was being chunked and looking malformed. The problem is
      // that, if evacuation fails, we might have remembered set
      // entries missing given that we skipped cards on the
      // collection set. So, we'll recreate such entries now.
3899
      obj->oop_iterate(_cl);
3900 3901 3902 3903 3904
      assert(_cm->isPrevMarked(obj), "Should be marked!");
    } else {
      // The object has been either evacuated or is dead. Fill it with a
      // dummy object.
      MemRegion mr((HeapWord*)obj, obj->size());
3905
      CollectedHeap::fill_with_object(mr);
3906
      _cm->clearRangeBothMaps(mr);
3907 3908 3909 3910 3911
    }
  }
};

void G1CollectedHeap::remove_self_forwarding_pointers() {
J
johnc 已提交
3912
  UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
3913 3914 3915 3916 3917 3918 3919 3920
  DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  UpdateRSetDeferred deferred_update(_g1h, &dcq);
  OopsInHeapRegionClosure *cl;
  if (G1DeferredRSUpdate) {
    cl = &deferred_update;
  } else {
    cl = &immediate_update;
  }
3921 3922 3923 3924
  HeapRegion* cur = g1_policy()->collection_set();
  while (cur != NULL) {
    assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");

3925
    RemoveSelfPointerClosure rspc(_g1h, cl);
3926 3927
    if (cur->evacuation_failed()) {
      assert(cur->in_collection_set(), "bad CS");
3928
      cl->set_region(cur);
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
      cur->object_iterate(&rspc);

      // A number of manipulations to make the TAMS be the current top,
      // and the marked bytes be the ones observed in the iteration.
      if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
        // The comments below are the postconditions achieved by the
        // calls.  Note especially the last such condition, which says that
        // the count of marked bytes has been properly restored.
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        cur->add_to_marked_bytes(rspc.prev_marked_bytes());
        // _next_marked_bytes == prev_marked_bytes.
        cur->note_end_of_marking();
        // _prev_top_at_mark_start == top(),
        // _prev_marked_bytes == prev_marked_bytes
      }
      // If there is no mark in progress, we modified the _next variables
      // above needlessly, but harmlessly.
      if (_g1h->mark_in_progress()) {
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        // _next_marked_bytes == next_marked_bytes.
      }

      // Now make sure the region has the right index in the sorted array.
      g1_policy()->note_change_in_marked_bytes(cur);
    }
    cur = cur->next_in_collection_set();
  }
  assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");

  // Now restore saved marks, if any.
  if (_objs_with_preserved_marks != NULL) {
    assert(_preserved_marks_of_objs != NULL, "Both or none.");
    guarantee(_objs_with_preserved_marks->length() ==
              _preserved_marks_of_objs->length(), "Both or none.");
    for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
      oop obj   = _objs_with_preserved_marks->at(i);
      markOop m = _preserved_marks_of_objs->at(i);
      obj->set_mark(m);
    }
    // Delete the preserved marks growable arrays (allocated on the C heap).
    delete _objs_with_preserved_marks;
    delete _preserved_marks_of_objs;
    _objs_with_preserved_marks = NULL;
    _preserved_marks_of_objs = NULL;
  }
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

void G1CollectedHeap::handle_evacuation_failure(oop old) {
  markOop m = old->mark();
  // forward to self
  assert(!old->is_forwarded(), "precondition");

  old->forward_to(old);
  handle_evacuation_failure_common(old, m);
}

oop
G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
                                               oop old) {
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
    // Someone else had a place to copy it.
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  set_evacuation_failed(true);

  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
4039
    if (G1PrintHeapRegions) {
4040
      gclog_or_tty->print("overflow in heap region "PTR_FORMAT" "
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
                          "["PTR_FORMAT","PTR_FORMAT")\n",
                          r, r->bottom(), r->end());
    }
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4057 4058 4059 4060
  assert(evacuation_failed(), "Oversaving!");
  // We want to call the "for_promotion_failure" version only in the
  // case of a promotion failure.
  if (m->must_be_preserved_for_promotion_failure(obj)) {
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
    if (_objs_with_preserved_marks == NULL) {
      assert(_preserved_marks_of_objs == NULL, "Both or none.");
      _objs_with_preserved_marks =
        new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
      _preserved_marks_of_objs =
        new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
    }
    _objs_with_preserved_marks->push(obj);
    _preserved_marks_of_objs->push(m);
  }
}

// *** Parallel G1 Evacuation

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
4077 4078 4079 4080
  assert(!isHumongous(word_size),
         err_msg("we should not be seeing humongous allocation requests "
                 "during GC, word_size = "SIZE_FORMAT, word_size));

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
  HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  // let the caller handle alloc failure
  if (alloc_region == NULL) return NULL;

  HeapWord* block = alloc_region->par_allocate(word_size);
  if (block == NULL) {
    MutexLockerEx x(par_alloc_during_gc_lock(),
                    Mutex::_no_safepoint_check_flag);
    block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  }
  return block;
}

4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
                                            bool par) {
  // Another thread might have obtained alloc_region for the given
  // purpose, and might be attempting to allocate in it, and might
  // succeed.  Therefore, we can't do the "finalization" stuff on the
  // region below until we're sure the last allocation has happened.
  // We ensure this by allocating the remaining space with a garbage
  // object.
  if (par) par_allocate_remaining_space(alloc_region);
  // Now we can do the post-GC stuff on the region.
  alloc_region->note_end_of_copying();
  g1_policy()->record_after_bytes(alloc_region->used());
}

4108 4109 4110 4111 4112
HeapWord*
G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
                                         HeapRegion*    alloc_region,
                                         bool           par,
                                         size_t         word_size) {
4113 4114 4115 4116
  assert(!isHumongous(word_size),
         err_msg("we should not be seeing humongous allocation requests "
                 "during GC, word_size = "SIZE_FORMAT, word_size));

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
  HeapWord* block = NULL;
  // In the parallel case, a previous thread to obtain the lock may have
  // already assigned a new gc_alloc_region.
  if (alloc_region != _gc_alloc_regions[purpose]) {
    assert(par, "But should only happen in parallel case.");
    alloc_region = _gc_alloc_regions[purpose];
    if (alloc_region == NULL) return NULL;
    block = alloc_region->par_allocate(word_size);
    if (block != NULL) return block;
    // Otherwise, continue; this new region is empty, too.
  }
  assert(alloc_region != NULL, "We better have an allocation region");
4129
  retire_alloc_region(alloc_region, par);
4130 4131 4132 4133 4134 4135 4136 4137

  if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
    // Cannot allocate more regions for the given purpose.
    GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
    // Is there an alternative?
    if (purpose != alt_purpose) {
      HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
      // Has not the alternative region been aliased?
4138
      if (alloc_region != alt_region && alt_region != NULL) {
4139 4140 4141 4142 4143 4144 4145 4146
        // Try to allocate in the alternative region.
        if (par) {
          block = alt_region->par_allocate(word_size);
        } else {
          block = alt_region->allocate(word_size);
        }
        // Make an alias.
        _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
4147 4148 4149 4150
        if (block != NULL) {
          return block;
        }
        retire_alloc_region(alt_region, par);
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
      }
      // Both the allocation region and the alternative one are full
      // and aliased, replace them with a new allocation region.
      purpose = alt_purpose;
    } else {
      set_gc_alloc_region(purpose, NULL);
      return NULL;
    }
  }

  // Now allocate a new region for allocation.
  alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);

  // let the caller handle alloc failure
  if (alloc_region != NULL) {

    assert(check_gc_alloc_regions(), "alloc regions messed up");
    assert(alloc_region->saved_mark_at_top(),
           "Mark should have been saved already.");
    // We used to assert that the region was zero-filled here, but no
    // longer.

    // This must be done last: once it's installed, other regions may
    // allocate in it (without holding the lock.)
    set_gc_alloc_region(purpose, alloc_region);

    if (par) {
      block = alloc_region->par_allocate(word_size);
    } else {
      block = alloc_region->allocate(word_size);
    }
    // Caller handles alloc failure.
  } else {
    // This sets other apis using the same old alloc region to NULL, also.
    set_gc_alloc_region(purpose, NULL);
  }
  return block;  // May be NULL.
}

void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  HeapWord* block = NULL;
  size_t free_words;
  do {
    free_words = r->free()/HeapWordSize;
    // If there's too little space, no one can allocate, so we're done.
4196
    if (free_words < CollectedHeap::min_fill_size()) return;
4197 4198 4199
    // Otherwise, try to claim it.
    block = r->par_allocate(free_words);
  } while (block == NULL);
4200
  fill_with_object(block, free_words);
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
}

#ifndef PRODUCT
bool GCLabBitMapClosure::do_bit(size_t offset) {
  HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  guarantee(_cm->isMarked(oop(addr)), "it should be!");
  return true;
}
#endif // PRODUCT

4211 4212 4213 4214 4215 4216 4217 4218
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
    _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
4219 4220
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
    _age_table(false),
    _strong_roots_time(0), _term_time(0),
    _alloc_buffer_waste(0), _undo_waste(0)
{
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
  size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  size_t array_length = PADDING_ELEM_NUM +
                        real_length +
                        PADDING_ELEM_NUM;
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words_base == NULL)
    vm_exit_out_of_memory(array_length * sizeof(size_t),
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  memset(_surviving_young_words, 0, real_length * sizeof(size_t));

4241 4242 4243
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

4244 4245
  _start = os::elapsedTime();
}
4246

4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
void
G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
{
  st->print_raw_cr("GC Termination Stats");
  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
                   " ------waste (KiB)------");
  st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
                   "  total   alloc    undo");
  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
                   " ------- ------- -------");
}

void
G1ParScanThreadState::print_termination_stats(int i,
                                              outputStream* const st) const
{
  const double elapsed_ms = elapsed_time() * 1000.0;
  const double s_roots_ms = strong_roots_time() * 1000.0;
  const double term_ms    = term_time() * 1000.0;
  st->print_cr("%3d %9.2f %9.2f %6.2f "
               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
               i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
               term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
               (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
               alloc_buffer_waste() * HeapWordSize / K,
               undo_waste() * HeapWordSize / K);
}

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
#ifdef ASSERT
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  assert(ref != NULL, "invariant");
  assert(UseCompressedOops, "sanity");
  assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  oop p = oopDesc::load_decode_heap_oop(ref);
  assert(_g1h->is_in_g1_reserved(p),
         err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  return true;
}

bool G1ParScanThreadState::verify_ref(oop* ref) const {
  assert(ref != NULL, "invariant");
  if (has_partial_array_mask(ref)) {
    // Must be in the collection set--it's already been copied.
    oop p = clear_partial_array_mask(ref);
    assert(_g1h->obj_in_cs(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  } else {
    oop p = oopDesc::load_decode_heap_oop(ref);
    assert(_g1h->is_in_g1_reserved(p),
           err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  }
  return true;
}

bool G1ParScanThreadState::verify_task(StarTask ref) const {
  if (ref.is_narrow()) {
    return verify_ref((narrowOop*) ref);
  } else {
    return verify_ref((oop*) ref);
  }
}
#endif // ASSERT

void G1ParScanThreadState::trim_queue() {
  StarTask ref;
  do {
    // Drain the overflow stack first, so other threads can steal.
    while (refs()->pop_overflow(ref)) {
      deal_with_reference(ref);
    }
    while (refs()->pop_local(ref)) {
      deal_with_reference(ref);
    }
  } while (!refs()->is_empty());
}

4324 4325 4326 4327
G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  _par_scan_state(par_scan_state) { }

4328
template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
4329 4330 4331 4332
  // This is called _after_ do_oop_work has been called, hence after
  // the object has been relocated to its new location and *p points
  // to its new location.

4333 4334 4335 4336
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj = oopDesc::decode_heap_oop(heap_oop);
    assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)),
4337
           "shouldn't still be in the CSet if evacuation didn't fail.");
4338
    HeapWord* addr = (HeapWord*)obj;
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
    if (_g1->is_in_g1_reserved(addr))
      _cm->grayRoot(oop(addr));
  }
}

oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  size_t    word_sz = old->size();
  HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
  assert( (from_region->is_young() && young_index > 0) ||
          (!from_region->is_young() && young_index == 0), "invariant" );
  G1CollectorPolicy* g1p = _g1->g1_policy();
  markOop m = old->mark();
4353 4354 4355
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
                                                             word_sz);
  HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  oop       obj     = oop(obj_ptr);

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    return _g1->handle_evacuation_failure_par(cl, old);
  }

4367 4368 4369
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

4370 4371 4372 4373
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
    if (g1p->track_object_age(alloc_purpose)) {
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
4393
        obj->set_mark(m);
4394
      }
4395 4396 4397
      _par_scan_state->age_table()->add(obj, word_sz);
    } else {
      obj->set_mark(m);
4398
    }
4399

4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
    // preserve "next" mark bit
    if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
      if (!use_local_bitmaps ||
          !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
        // if we couldn't mark it on the local bitmap (this happens when
        // the object was not allocated in the GCLab), we have to bite
        // the bullet and do the standard parallel mark
        _cm->markAndGrayObjectIfNecessary(obj);
      }
#if 1
      if (_g1->isMarkedNext(old)) {
        _cm->nextMarkBitMap()->parClear((HeapWord*)old);
      }
#endif
    }

    size_t* surv_young_words = _par_scan_state->surviving_young_words();
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
      arrayOop(old)->set_length(0);
4421 4422
      oop* old_p = set_partial_array_mask(old);
      _par_scan_state->push_on_queue(old_p);
4423
    } else {
4424 4425 4426
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
      _scanner->set_region(_g1->heap_region_containing_raw(obj));
4427 4428 4429 4430 4431 4432 4433 4434 4435
      obj->oop_iterate_backwards(_scanner);
    }
  } else {
    _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
    obj = forward_ptr;
  }
  return obj;
}

4436
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
4437
template <class T>
4438
void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
4439 4440
::do_oop_work(T* p) {
  oop obj = oopDesc::load_decode_heap_oop(p);
4441 4442 4443
  assert(barrier != G1BarrierRS || obj != NULL,
         "Precondition: G1BarrierRS implies obj is nonNull");

4444
  // here the null check is implicit in the cset_fast_test() test
4445
  if (_g1->in_cset_fast_test(obj)) {
4446
#if G1_REM_SET_LOGGING
4447 4448
    gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
                           "into CS.", p, (void*) obj);
4449
#endif
4450
    if (obj->is_forwarded()) {
4451
      oopDesc::encode_store_heap_oop(p, obj->forwardee());
4452
    } else {
4453 4454
      oop copy_oop = copy_to_survivor_space(obj);
      oopDesc::encode_store_heap_oop(p, copy_oop);
4455
    }
4456 4457
    // When scanning the RS, we only care about objs in CS.
    if (barrier == G1BarrierRS) {
4458
      _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4459
    }
4460
  }
4461

4462
  if (barrier == G1BarrierEvac && obj != NULL) {
4463
    _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4464 4465 4466 4467
  }

  if (do_gen_barrier && obj != NULL) {
    par_do_barrier(p);
4468 4469 4470
  }
}

4471 4472
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4473

4474
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4475 4476
  assert(has_partial_array_mask(p), "invariant");
  oop old = clear_partial_array_mask(p);
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
  assert(old->is_objArray(), "must be obj array");
  assert(old->is_forwarded(), "must be forwarded");
  assert(Universe::heap()->is_in_reserved(old), "must be in heap.");

  objArrayOop obj = objArrayOop(old->forwardee());
  assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  // Process ParGCArrayScanChunk elements now
  // and push the remainder back onto queue
  int start     = arrayOop(old)->length();
  int end       = obj->length();
  int remainder = end - start;
  assert(start <= end, "just checking");
  if (remainder > 2 * ParGCArrayScanChunk) {
    // Test above combines last partial chunk with a full chunk
    end = start + ParGCArrayScanChunk;
    arrayOop(old)->set_length(end);
    // Push remainder.
4494 4495 4496
    oop* old_p = set_partial_array_mask(old);
    assert(arrayOop(old)->length() < obj->length(), "Empty push?");
    _par_scan_state->push_on_queue(old_p);
4497 4498 4499 4500 4501
  } else {
    // Restore length so that the heap remains parsable in
    // case of evacuation failure.
    arrayOop(old)->set_length(end);
  }
4502
  _scanner.set_region(_g1->heap_region_containing_raw(obj));
4503
  // process our set of indices (include header in first chunk)
4504
  obj->oop_iterate_range(&_scanner, start, end);
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

4526
  void do_void();
4527

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
private:
  inline bool offer_termination();
};

bool G1ParEvacuateFollowersClosure::offer_termination() {
  G1ParScanThreadState* const pss = par_scan_state();
  pss->start_term_time();
  const bool res = terminator()->offer_termination();
  pss->end_term_time();
  return res;
}

void G1ParEvacuateFollowersClosure::do_void() {
  StarTask stolen_task;
  G1ParScanThreadState* const pss = par_scan_state();
  pss->trim_queue();

  do {
    while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
      assert(pss->verify_task(stolen_task), "sanity");
      if (stolen_task.is_narrow()) {
4549
        pss->deal_with_reference((narrowOop*) stolen_task);
4550
      } else {
4551
        pss->deal_with_reference((oop*) stolen_task);
4552
      }
4553 4554 4555 4556

      // We've just processed a reference and we might have made
      // available new entries on the queues. So we have to make sure
      // we drain the queues as necessary.
4557
      pss->trim_queue();
4558
    }
4559 4560 4561 4562
  } while (!offer_termination());

  pss->retire_alloc_buffers();
}
4563 4564 4565 4566 4567 4568

class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
4569
  int _n_workers;
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
  G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
      _terminator(workers, _queues),
4585 4586
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
      _n_workers(workers)
4587 4588 4589 4590 4591 4592 4593 4594 4595
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

  void work(int i) {
4596
    if (i >= _n_workers) return;  // no work needed this round
4597 4598 4599 4600

    double start_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);

4601 4602 4603
    ResourceMark rm;
    HandleMark   hm;

4604 4605 4606 4607
    G1ParScanThreadState            pss(_g1h, i);
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4608 4609 4610 4611 4612 4613 4614 4615

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
    G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
    G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4616
    G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4617

4618 4619 4620 4621 4622 4623 4624
    G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
    G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
    G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);

    OopsInHeapRegionClosure        *scan_root_cl;
    OopsInHeapRegionClosure        *scan_perm_cl;

4625
    if (_g1h->g1_policy()->during_initial_mark_pause()) {
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
      scan_root_cl = &scan_mark_root_cl;
      scan_perm_cl = &scan_mark_perm_cl;
    } else {
      scan_root_cl = &only_scan_root_cl;
      scan_perm_cl = &only_scan_perm_cl;
    }

    pss.start_strong_roots();
    _g1h->g1_process_strong_roots(/* not collecting perm */ false,
                                  SharedHeap::SO_AllClasses,
                                  scan_root_cl,
4637
                                  &push_heap_rs_cl,
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
                                  scan_perm_cl,
                                  i);
    pss.end_strong_roots();
    {
      double start = os::elapsedTime();
      G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
      evac.do_void();
      double elapsed_ms = (os::elapsedTime()-start)*1000.0;
      double term_ms = pss.term_time()*1000.0;
      _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4648
      _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
4649
    }
4650
    _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4651 4652 4653 4654 4655 4656
    _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

    // Clean up any par-expanded rem sets.
    HeapRegionRemSet::par_cleanup();

    if (ParallelGCVerbose) {
4657 4658
      MutexLocker x(stats_lock());
      pss.print_termination_stats(i);
4659 4660
    }

4661
    assert(pss.refs()->is_empty(), "should be empty");
4662 4663
    double end_time_ms = os::elapsedTime() * 1000.0;
    _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
4664 4665 4666 4667 4668
  }
};

// *** Common G1 Evacuation Stuff

4669 4670
// This method is run in a GC worker.

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
void
G1CollectedHeap::
g1_process_strong_roots(bool collecting_perm_gen,
                        SharedHeap::ScanningOption so,
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
                        OopsInGenClosure* scan_perm,
                        int worker_i) {
  // First scan the strong roots, including the perm gen.
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  buf_scan_perm.set_generation(perm_gen());

4687 4688 4689 4690 4691 4692
  // Walk the code cache w/o buffering, because StarTask cannot handle
  // unaligned oop locations.
  CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);

  process_strong_roots(false, // no scoping; this is parallel code
                       collecting_perm_gen, so,
4693
                       &buf_scan_non_heap_roots,
4694
                       &eager_scan_code_roots,
4695
                       &buf_scan_perm);
4696

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
  // Finish up any enqueued closure apps.
  buf_scan_non_heap_roots.done();
  buf_scan_perm.done();
  double ext_roots_end = os::elapsedTime();
  g1_policy()->reset_obj_copy_time(worker_i);
  double obj_copy_time_sec =
    buf_scan_non_heap_roots.closure_app_seconds() +
    buf_scan_perm.closure_app_seconds();
  g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  double ext_root_time_ms =
    ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);

  // Scan strong roots in mark stack.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
    concurrent_mark()->oops_do(scan_non_heap_roots);
  }
  double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);

  // XXX What should this be doing in the parallel case?
  g1_policy()->record_collection_pause_end_CH_strong_roots();
  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
    g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  }
  // Finish with the ref_processor roots.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4725 4726 4727 4728
    // We need to treat the discovered reference lists as roots and
    // keep entries (which are added by the marking threads) on them
    // live until they can be processed at the end of marking.
    ref_processor()->weak_oops_do(scan_non_heap_roots);
4729 4730 4731 4732 4733 4734 4735 4736 4737
    ref_processor()->oops_do(scan_non_heap_roots);
  }
  g1_policy()->record_collection_pause_end_G1_strong_roots();
  _process_strong_tasks->all_tasks_completed();
}

void
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
                                       OopClosure* non_root_closure) {
4738 4739
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
}


class SaveMarksClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->save_marks();
    return false;
  }
};

void G1CollectedHeap::save_marks() {
4752
  if (!CollectedHeap::use_parallel_gc_threads()) {
4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
    SaveMarksClosure sm;
    heap_region_iterate(&sm);
  }
  // We do this even in the parallel case
  perm_gen()->save_marks();
}

void G1CollectedHeap::evacuate_collection_set() {
  set_evacuation_failed(false);

  g1_rem_set()->prepare_for_oops_into_collection_set_do();
  concurrent_g1_refine()->set_use_cache(false);
4765 4766
  concurrent_g1_refine()->clear_hot_cache_claimed_index();

4767 4768 4769 4770 4771 4772 4773 4774
  int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  set_par_threads(n_workers);
  G1ParTask g1_par_task(this, n_workers, _task_queues);

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

4775 4776
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  double start_par = os::elapsedTime();
4777
  if (G1CollectedHeap::use_parallel_gc_threads()) {
4778
    // The individual threads will set their evac-failure closures.
4779
    StrongRootsScope srs(this);
4780
    if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
4781 4782
    workers()->run_task(&g1_par_task);
  } else {
4783
    StrongRootsScope srs(this);
4784 4785 4786 4787 4788 4789 4790 4791 4792
    g1_par_task.work(0);
  }

  double par_time = (os::elapsedTime() - start_par) * 1000.0;
  g1_policy()->record_par_time(par_time);
  set_par_threads(0);
  // Is this the right thing to do here?  We don't save marks
  // on individual heap regions when we allocate from
  // them in parallel, so this seems like the correct place for this.
4793
  retire_all_alloc_regions();
4794 4795 4796 4797 4798

  // Weak root processing.
  // Note: when JSR 292 is enabled and code blobs can contain
  // non-perm oops then we will need to process the code blobs
  // here too.
4799 4800 4801 4802 4803
  {
    G1IsAliveClosure is_alive(this);
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  }
4804
  release_gc_alloc_regions(false /* totally */);
4805
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4806

4807
  concurrent_g1_refine()->clear_hot_cache();
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
  concurrent_g1_refine()->set_use_cache(true);

  finalize_for_evac_failure();

  // Must do this before removing self-forwarding pointers, which clears
  // the per-region evac-failure flags.
  concurrent_mark()->complete_marking_in_collection_set();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
    if (PrintGCDetails) {
4819
      gclog_or_tty->print(" (to-space overflow)");
4820 4821 4822 4823 4824
    } else if (PrintGC) {
      gclog_or_tty->print("--");
    }
  }

4825 4826 4827 4828
  if (G1DeferredRSUpdate) {
    RedirtyLoggedCardTableEntryFastClosure redirty;
    dirty_card_queue_set().set_closure(&redirty);
    dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4829 4830 4831

    DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
    dcq.merge_bufferlists(&dirty_card_queue_set());
4832 4833
    assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  }
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

void G1CollectedHeap::free_region(HeapRegion* hr) {
  size_t pre_used = 0;
  size_t cleared_h_regions = 0;
  size_t freed_regions = 0;
  UncleanRegionList local_list;

  HeapWord* start = hr->bottom();
  HeapWord* end   = hr->prev_top_at_mark_start();
  size_t used_bytes = hr->used();
  size_t live_bytes = hr->max_live_bytes();
  if (used_bytes > 0) {
    guarantee( live_bytes <= used_bytes, "invariant" );
  } else {
    guarantee( live_bytes == 0, "invariant" );
  }

  size_t garbage_bytes = used_bytes - live_bytes;
  if (garbage_bytes > 0)
    g1_policy()->decrease_known_garbage_bytes(garbage_bytes);

  free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
                   &local_list);
  finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
                          &local_list);
}

void
G1CollectedHeap::free_region_work(HeapRegion* hr,
                                  size_t& pre_used,
                                  size_t& cleared_h_regions,
                                  size_t& freed_regions,
                                  UncleanRegionList* list,
                                  bool par) {
  pre_used += hr->used();
  if (hr->isHumongous()) {
    assert(hr->startsHumongous(),
           "Only the start of a humongous region should be freed.");
    int ind = _hrs->find(hr);
    assert(ind != -1, "Should have an index.");
    // Clear the start region.
    hr->hr_clear(par, true /*clear_space*/);
    list->insert_before_head(hr);
    cleared_h_regions++;
    freed_regions++;
    // Clear any continued regions.
    ind++;
    while ((size_t)ind < n_regions()) {
      HeapRegion* hrc = _hrs->at(ind);
      if (!hrc->continuesHumongous()) break;
      // Otherwise, does continue the H region.
      assert(hrc->humongous_start_region() == hr, "Huh?");
      hrc->hr_clear(par, true /*clear_space*/);
      cleared_h_regions++;
      freed_regions++;
      list->insert_before_head(hrc);
      ind++;
    }
  } else {
    hr->hr_clear(par, true /*clear_space*/);
    list->insert_before_head(hr);
    freed_regions++;
    // If we're using clear2, this should not be enabled.
    // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
  }
}

void G1CollectedHeap::finish_free_region_work(size_t pre_used,
                                              size_t cleared_h_regions,
                                              size_t freed_regions,
                                              UncleanRegionList* list) {
  if (list != NULL && list->sz() > 0) {
    prepend_region_list_on_unclean_list(list);
  }
  // Acquire a lock, if we're parallel, to update possibly-shared
  // variables.
  Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
  {
    MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
    _summary_bytes_used -= pre_used;
    _num_humongous_regions -= (int) cleared_h_regions;
    _free_regions += freed_regions;
  }
}


void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  while (list != NULL) {
    guarantee( list->is_young(), "invariant" );

    HeapWord* bottom = list->bottom();
    HeapWord* end = list->end();
    MemRegion mr(bottom, end);
    ct_bs->dirty(mr);

    list = list->get_next_young_region();
  }
}

4935 4936 4937 4938

class G1ParCleanupCTTask : public AbstractGangTask {
  CardTableModRefBS* _ct_bs;
  G1CollectedHeap* _g1h;
4939
  HeapRegion* volatile _su_head;
4940 4941
public:
  G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
4942 4943
                     G1CollectedHeap* g1h,
                     HeapRegion* survivor_list) :
4944 4945
    AbstractGangTask("G1 Par Cleanup CT Task"),
    _ct_bs(ct_bs),
4946 4947
    _g1h(g1h),
    _su_head(survivor_list)
4948 4949 4950 4951 4952 4953 4954
  { }

  void work(int i) {
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
4955
    // Redirty the cards of the survivor regions.
4956
    dirty_list(&this->_su_head);
4957
  }
4958

4959
  void clear_cards(HeapRegion* r) {
4960 4961
    // Cards for Survivor regions will be dirtied later.
    if (!r->is_survivor()) {
4962 4963 4964
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980

  void dirty_list(HeapRegion* volatile * head_ptr) {
    HeapRegion* head;
    do {
      // Pop region off the list.
      head = *head_ptr;
      if (head != NULL) {
        HeapRegion* r = (HeapRegion*)
          Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
        if (r == head) {
          assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
          _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
        }
      }
    } while (*head_ptr != NULL);
  }
4981 4982 4983
};


4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
  CardTableModRefBS* _ct_bs;
public:
  G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs)
    : _ct_bs(ct_bs)
  { }
  virtual bool doHeapRegion(HeapRegion* r)
  {
    MemRegion mr(r->bottom(), r->end());
4994
    if (r->is_survivor()) {
4995 4996 4997 4998 4999 5000 5001 5002 5003
      _ct_bs->verify_dirty_region(mr);
    } else {
      _ct_bs->verify_clean_region(mr);
    }
    return false;
  }
};
#endif

5004 5005 5006 5007
void G1CollectedHeap::cleanUpCardTable() {
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  double start = os::elapsedTime();

5008
  // Iterate over the dirty cards region list.
5009 5010
  G1ParCleanupCTTask cleanup_task(ct_bs, this,
                                  _young_list->first_survivor_region());
5011

5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
  if (ParallelGCThreads > 0) {
    set_par_threads(workers()->total_workers());
    workers()->run_task(&cleanup_task);
    set_par_threads(0);
  } else {
    while (_dirty_cards_region_list) {
      HeapRegion* r = _dirty_cards_region_list;
      cleanup_task.clear_cards(r);
      _dirty_cards_region_list = r->get_next_dirty_cards_region();
      if (_dirty_cards_region_list == r) {
        // The last region.
        _dirty_cards_region_list = NULL;
      }
      r->set_next_dirty_cards_region(NULL);
    }
5027
    // now, redirty the cards of the survivor regions
5028 5029 5030
    // (it seemed faster to do it this way, instead of iterating over
    // all regions and then clearing / dirtying as appropriate)
    dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
5031
  }
5032

5033 5034
  double elapsed = os::elapsedTime() - start;
  g1_policy()->record_clear_ct_time( elapsed * 1000.0);
5035 5036 5037 5038 5039 5040
#ifndef PRODUCT
  if (G1VerifyCTCleanup || VerifyAfterGC) {
    G1VerifyCardTableCleanup cleanup_verifier(ct_bs);
    heap_region_iterate(&cleanup_verifier);
  }
#endif
5041 5042 5043 5044 5045 5046
}

void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

5047 5048 5049 5050 5051
  // Since the collection set is a superset of the the young list,
  // all we need to do to clear the young list is clear its
  // head and length, and unlink any young regions in the code below
  _young_list->clear();

5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
      if (!cur->is_on_free_list()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = true;
      }
    }

    rs_lengths += cur->rem_set()->occupied();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
      guarantee( index != -1, "invariant" );
      guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
5095 5096 5097 5098 5099 5100

      // At this point the we have 'popped' cur from the collection set
      // (linked via next_in_collection_set()) but it is still in the
      // young list (linked via next_young_region()). Clear the
      // _next_young_region field.
      cur->set_next_young_region(NULL);
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
    } else {
      int index = cur->young_index_in_cset();
      guarantee( index == -1, "invariant" );
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
      // And the region is empty.
      assert(!cur->is_empty(),
             "Should not have empty regions in a CS.");
      free_region(cur);
    } else {
      cur->uninstall_surv_rate_group();
      if (cur->is_young())
        cur->set_young_index_in_cset(-1);
      cur->set_not_young();
      cur->set_evacuation_failed(false);
    }
    cur = next;
  }

  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
  if (non_young)
    non_young_time_ms += elapsed_ms;
  else
    young_time_ms += elapsed_ms;

  policy->record_young_free_cset_time_ms(young_time_ms);
  policy->record_non_young_free_cset_time_ms(non_young_time_ms);
}

5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
// This routine is similar to the above but does not record
// any policy statistics or update free lists; we are abandoning
// the current incremental collection set in preparation of a
// full collection. After the full GC we will start to build up
// the incremental collection set again.
// This is only called when we're doing a full collection
// and is immediately followed by the tearing down of the young list.

void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  HeapRegion* cur = cs_head;

  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);
    cur->set_young_index_in_cset(-1);
    cur = next;
  }
}

5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
HeapRegion*
G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
  assert(ZF_mon->owned_by_self(), "Precondition");
  HeapRegion* res = pop_unclean_region_list_locked();
  if (res != NULL) {
    assert(!res->continuesHumongous() &&
           res->zero_fill_state() != HeapRegion::Allocated,
           "Only free regions on unclean list.");
    if (zero_filled) {
      res->ensure_zero_filled_locked();
      res->set_zero_fill_allocated();
    }
  }
  return res;
}

HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
  MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
  return alloc_region_from_unclean_list_locked(zero_filled);
}

void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  put_region_on_unclean_list_locked(r);
  if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
}

void G1CollectedHeap::set_unclean_regions_coming(bool b) {
  MutexLockerEx x(Cleanup_mon);
  set_unclean_regions_coming_locked(b);
}

void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
  assert(Cleanup_mon->owned_by_self(), "Precondition");
  _unclean_regions_coming = b;
  // Wake up mutator threads that might be waiting for completeCleanup to
  // finish.
  if (!b) Cleanup_mon->notify_all();
}

void G1CollectedHeap::wait_for_cleanup_complete() {
5201
  assert_not_at_safepoint();
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
  MutexLockerEx x(Cleanup_mon);
  wait_for_cleanup_complete_locked();
}

void G1CollectedHeap::wait_for_cleanup_complete_locked() {
  assert(Cleanup_mon->owned_by_self(), "precondition");
  while (_unclean_regions_coming) {
    Cleanup_mon->wait();
  }
}

void
G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
  assert(ZF_mon->owned_by_self(), "precondition.");
5216 5217 5218 5219 5220 5221 5222 5223 5224
#ifdef ASSERT
  if (r->is_gc_alloc_region()) {
    ResourceMark rm;
    stringStream region_str;
    print_on(&region_str);
    assert(!r->is_gc_alloc_region(), err_msg("Unexpected GC allocation region: %s",
                                             region_str.as_string()));
  }
#endif
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
  _unclean_region_list.insert_before_head(r);
}

void
G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  prepend_region_list_on_unclean_list_locked(list);
  if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
}

void
G1CollectedHeap::
prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
  assert(ZF_mon->owned_by_self(), "precondition.");
  _unclean_region_list.prepend_list(list);
}

HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
  assert(ZF_mon->owned_by_self(), "precondition.");
  HeapRegion* res = _unclean_region_list.pop();
  if (res != NULL) {
    // Inform ZF thread that there's a new unclean head.
    if (_unclean_region_list.hd() != NULL && should_zf())
      ZF_mon->notify_all();
  }
  return res;
}

HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
  assert(ZF_mon->owned_by_self(), "precondition.");
  return _unclean_region_list.hd();
}


bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
  assert(ZF_mon->owned_by_self(), "Precondition");
  HeapRegion* r = peek_unclean_region_list_locked();
  if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
    // Result of below must be equal to "r", since we hold the lock.
    (void)pop_unclean_region_list_locked();
    put_free_region_on_list_locked(r);
    return true;
  } else {
    return false;
  }
}

bool G1CollectedHeap::move_cleaned_region_to_free_list() {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  return move_cleaned_region_to_free_list_locked();
}


void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
  assert(ZF_mon->owned_by_self(), "precondition.");
  assert(_free_region_list_size == free_region_list_length(), "Inv");
  assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
        "Regions on free list must be zero filled");
  assert(!r->isHumongous(), "Must not be humongous.");
  assert(r->is_empty(), "Better be empty");
  assert(!r->is_on_free_list(),
         "Better not already be on free list");
  assert(!r->is_on_unclean_list(),
         "Better not already be on unclean list");
  r->set_on_free_list(true);
  r->set_next_on_free_list(_free_region_list);
  _free_region_list = r;
  _free_region_list_size++;
  assert(_free_region_list_size == free_region_list_length(), "Inv");
}

void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  put_free_region_on_list_locked(r);
}

HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
  assert(ZF_mon->owned_by_self(), "precondition.");
  assert(_free_region_list_size == free_region_list_length(), "Inv");
  HeapRegion* res = _free_region_list;
  if (res != NULL) {
    _free_region_list = res->next_from_free_list();
    _free_region_list_size--;
    res->set_on_free_list(false);
    res->set_next_on_free_list(NULL);
    assert(_free_region_list_size == free_region_list_length(), "Inv");
  }
  return res;
}


HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
  // By self, or on behalf of self.
  assert(Heap_lock->is_locked(), "Precondition");
  HeapRegion* res = NULL;
  bool first = true;
  while (res == NULL) {
    if (zero_filled || !first) {
      MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
      res = pop_free_region_list_locked();
      if (res != NULL) {
        assert(!res->zero_fill_is_allocated(),
               "No allocated regions on free list.");
        res->set_zero_fill_allocated();
      } else if (!first) {
        break;  // We tried both, time to return NULL.
      }
    }

    if (res == NULL) {
      res = alloc_region_from_unclean_list(zero_filled);
    }
    assert(res == NULL ||
           !zero_filled ||
           res->zero_fill_is_allocated(),
           "We must have allocated the region we're returning");
    first = false;
  }
  return res;
}

void G1CollectedHeap::remove_allocated_regions_from_lists() {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  {
    HeapRegion* prev = NULL;
    HeapRegion* cur = _unclean_region_list.hd();
    while (cur != NULL) {
      HeapRegion* next = cur->next_from_unclean_list();
      if (cur->zero_fill_is_allocated()) {
        // Remove from the list.
        if (prev == NULL) {
          (void)_unclean_region_list.pop();
        } else {
          _unclean_region_list.delete_after(prev);
        }
        cur->set_on_unclean_list(false);
        cur->set_next_on_unclean_list(NULL);
      } else {
        prev = cur;
      }
      cur = next;
    }
    assert(_unclean_region_list.sz() == unclean_region_list_length(),
           "Inv");
  }

  {
    HeapRegion* prev = NULL;
    HeapRegion* cur = _free_region_list;
    while (cur != NULL) {
      HeapRegion* next = cur->next_from_free_list();
      if (cur->zero_fill_is_allocated()) {
        // Remove from the list.
        if (prev == NULL) {
          _free_region_list = cur->next_from_free_list();
        } else {
          prev->set_next_on_free_list(cur->next_from_free_list());
        }
        cur->set_on_free_list(false);
        cur->set_next_on_free_list(NULL);
        _free_region_list_size--;
      } else {
        prev = cur;
      }
      cur = next;
    }
    assert(_free_region_list_size == free_region_list_length(), "Inv");
  }
}

bool G1CollectedHeap::verify_region_lists() {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  return verify_region_lists_locked();
}

bool G1CollectedHeap::verify_region_lists_locked() {
  HeapRegion* unclean = _unclean_region_list.hd();
  while (unclean != NULL) {
    guarantee(unclean->is_on_unclean_list(), "Well, it is!");
    guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
    guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
              "Everything else is possible.");
    unclean = unclean->next_from_unclean_list();
  }
  guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");

  HeapRegion* free_r = _free_region_list;
  while (free_r != NULL) {
    assert(free_r->is_on_free_list(), "Well, it is!");
    assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
    switch (free_r->zero_fill_state()) {
    case HeapRegion::NotZeroFilled:
    case HeapRegion::ZeroFilling:
      guarantee(false, "Should not be on free list.");
      break;
    default:
      // Everything else is possible.
      break;
    }
    free_r = free_r->next_from_free_list();
  }
  guarantee(_free_region_list_size == free_region_list_length(), "Inv");
  // If we didn't do an assertion...
  return true;
}

size_t G1CollectedHeap::free_region_list_length() {
  assert(ZF_mon->owned_by_self(), "precondition.");
  size_t len = 0;
  HeapRegion* cur = _free_region_list;
  while (cur != NULL) {
    len++;
    cur = cur->next_from_free_list();
  }
  return len;
}

size_t G1CollectedHeap::unclean_region_list_length() {
  assert(ZF_mon->owned_by_self(), "precondition.");
  return _unclean_region_list.length();
}

size_t G1CollectedHeap::n_regions() {
  return _hrs->length();
}

size_t G1CollectedHeap::max_regions() {
  return
    (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
    HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::free_regions() {
  /* Possibly-expensive assert.
  assert(_free_regions == count_free_regions(),
         "_free_regions is off.");
  */
  return _free_regions;
}

bool G1CollectedHeap::should_zf() {
  return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
}

class RegionCounter: public HeapRegionClosure {
  size_t _n;
public:
  RegionCounter() : _n(0) {}
  bool doHeapRegion(HeapRegion* r) {
5474
    if (r->is_empty()) {
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
      assert(!r->isHumongous(), "H regions should not be empty.");
      _n++;
    }
    return false;
  }
  int res() { return (int) _n; }
};

size_t G1CollectedHeap::count_free_regions() {
  RegionCounter rc;
  heap_region_iterate(&rc);
  size_t n = rc.res();
  if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
    n--;
  return n;
}

size_t G1CollectedHeap::count_free_regions_list() {
  size_t n = 0;
  size_t o = 0;
  ZF_mon->lock_without_safepoint_check();
  HeapRegion* cur = _free_region_list;
  while (cur != NULL) {
    cur = cur->next_from_free_list();
    n++;
  }
  size_t m = unclean_region_list_length();
  ZF_mon->unlock();
  return n + m;
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
  g1_policy()->set_region_short_lived(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

5529 5530
bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  bool ret = _young_list->check_list_empty(check_sample);
5531

5532
  if (check_heap) {
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

void G1CollectedHeap::empty_young_list() {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");

  _young_list->empty_list();
}

bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  bool no_allocs = true;
  for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    no_allocs = r == NULL || r->saved_mark_at_top();
  }
  return no_allocs;
}

5558
void G1CollectedHeap::retire_all_alloc_regions() {
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    if (r != NULL) {
      // Check for aliases.
      bool has_processed_alias = false;
      for (int i = 0; i < ap; ++i) {
        if (_gc_alloc_regions[i] == r) {
          has_processed_alias = true;
          break;
        }
      }
      if (!has_processed_alias) {
5571
        retire_alloc_region(r, false /* par */);
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
      }
    }
  }
}


// Done at the start of full GC.
void G1CollectedHeap::tear_down_region_lists() {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  while (pop_unclean_region_list_locked() != NULL) ;
  assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
5583
         "Postconditions of loop.");
5584 5585 5586 5587
  while (pop_free_region_list_locked() != NULL) ;
  assert(_free_region_list == NULL, "Postcondition of loop.");
  if (_free_region_list_size != 0) {
    gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
5588
    print_on(gclog_or_tty, true /* extended */);
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
  }
  assert(_free_region_list_size == 0, "Postconditions of loop.");
}


class RegionResetter: public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _n;
public:
  RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->top() > r->bottom()) {
      if (r->top() < r->end()) {
        Copy::fill_to_words(r->top(),
                          pointer_delta(r->end(), r->top()));
      }
      r->set_zero_fill_allocated();
    } else {
      assert(r->is_empty(), "tautology");
5609 5610
      _n++;
      switch (r->zero_fill_state()) {
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
        case HeapRegion::NotZeroFilled:
        case HeapRegion::ZeroFilling:
          _g1->put_region_on_unclean_list_locked(r);
          break;
        case HeapRegion::Allocated:
          r->set_zero_fill_complete();
          // no break; go on to put on free list.
        case HeapRegion::ZeroFilled:
          _g1->put_free_region_on_list_locked(r);
          break;
      }
    }
    return false;
  }

  int getFreeRegionCount() {return _n;}
};

// Done at the end of full GC.
void G1CollectedHeap::rebuild_region_lists() {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  // This needs to go at the end of the full GC.
  RegionResetter rs;
  heap_region_iterate(&rs);
  _free_regions = rs.getFreeRegionCount();
  // Tell the ZF thread it may have work to do.
  if (should_zf()) ZF_mon->notify_all();
}

class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _n;
public:
  UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->top() > r->bottom()) {
      // There are assertions in "set_zero_fill_needed()" below that
      // require top() == bottom(), so this is technically illegal.
      // We'll skirt the law here, by making that true temporarily.
      DEBUG_ONLY(HeapWord* save_top = r->top();
                 r->set_top(r->bottom()));
      r->set_zero_fill_needed();
      DEBUG_ONLY(r->set_top(save_top));
    }
    return false;
  }
};

// Done at the start of full GC.
void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  // This needs to go at the end of the full GC.
  UsedRegionsNeedZeroFillSetter rs;
  heap_region_iterate(&rs);
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

#ifndef PRODUCT

class PrintHeapRegionClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion *r) {
    gclog_or_tty->print("Region: "PTR_FORMAT":", r);
    if (r != NULL) {
      if (r->is_on_free_list())
        gclog_or_tty->print("Free ");
      if (r->is_young())
        gclog_or_tty->print("Young ");
      if (r->isHumongous())
        gclog_or_tty->print("Is Humongous ");
      r->print();
    }
    return false;
  }
};

class SortHeapRegionClosure : public HeapRegionClosure {
  size_t young_regions,free_regions, unclean_regions;
  size_t hum_regions, count;
  size_t unaccounted, cur_unclean, cur_alloc;
  size_t total_free;
  HeapRegion* cur;
public:
  SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
    free_regions(0), unclean_regions(0),
    hum_regions(0),
    count(0), unaccounted(0),
    cur_alloc(0), total_free(0)
  {}
  bool doHeapRegion(HeapRegion *r) {
    count++;
    if (r->is_on_free_list()) free_regions++;
    else if (r->is_on_unclean_list()) unclean_regions++;
    else if (r->isHumongous())  hum_regions++;
    else if (r->is_young()) young_regions++;
    else if (r == cur) cur_alloc++;
    else unaccounted++;
    return false;
  }
  void print() {
    total_free = free_regions + unclean_regions;
    gclog_or_tty->print("%d regions\n", count);
    gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
                        total_free, free_regions, unclean_regions);
    gclog_or_tty->print("%d humongous %d young\n",
                        hum_regions, young_regions);
    gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
    gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
  }
};

void G1CollectedHeap::print_region_counts() {
  SortHeapRegionClosure sc(_cur_alloc_region);
  PrintHeapRegionClosure cl;
  heap_region_iterate(&cl);
  heap_region_iterate(&sc);
  sc.print();
  print_region_accounting_info();
};

bool G1CollectedHeap::regions_accounted_for() {
  // TODO: regions accounting for young/survivor/tenured
  return true;
}

bool G1CollectedHeap::print_region_accounting_info() {
  gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
                         free_regions(),
                         count_free_regions(), count_free_regions_list(),
                         _free_region_list_size, _unclean_region_list.sz());
  gclog_or_tty->print_cr("cur_alloc: %d.",
                         (_cur_alloc_region == NULL ? 0 : 1));
  gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);

  // TODO: check regions accounting for young/survivor/tenured
  return true;
}

bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
    return is_in_permanent(p);
  } else {
    return hr->is_in(p);
  }
}
Y
ysr 已提交
5761
#endif // !PRODUCT
5762 5763 5764 5765

void G1CollectedHeap::g1_unimplemented() {
  // Unimplemented();
}