concurrentMarkSweepGeneration.inline.hpp 16.9 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34
#ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_INLINE_HPP
#define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_INLINE_HPP

#include "gc_implementation/concurrentMarkSweep/cmsLockVerifier.hpp"
#include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
#include "gc_implementation/shared/gcUtil.hpp"
#include "memory/defNewGeneration.hpp"

D
duke 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
inline void CMSBitMap::clear_all() {
  assert_locked();
  // CMS bitmaps are usually cover large memory regions
  _bm.clear_large();
  return;
}

inline size_t CMSBitMap::heapWordToOffset(HeapWord* addr) const {
  return (pointer_delta(addr, _bmStartWord)) >> _shifter;
}

inline HeapWord* CMSBitMap::offsetToHeapWord(size_t offset) const {
  return _bmStartWord + (offset << _shifter);
}

inline size_t CMSBitMap::heapWordDiffToOffsetDiff(size_t diff) const {
  assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  return diff >> _shifter;
}

inline void CMSBitMap::mark(HeapWord* addr) {
  assert_locked();
  assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
         "outside underlying space?");
  _bm.set_bit(heapWordToOffset(addr));
}

inline bool CMSBitMap::par_mark(HeapWord* addr) {
  assert_locked();
  assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
         "outside underlying space?");
  return _bm.par_at_put(heapWordToOffset(addr), true);
}

inline void CMSBitMap::par_clear(HeapWord* addr) {
  assert_locked();
  assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
         "outside underlying space?");
  _bm.par_at_put(heapWordToOffset(addr), false);
}

inline void CMSBitMap::mark_range(MemRegion mr) {
  NOT_PRODUCT(region_invariant(mr));
  // Range size is usually just 1 bit.
  _bm.set_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
                BitMap::small_range);
}

inline void CMSBitMap::clear_range(MemRegion mr) {
  NOT_PRODUCT(region_invariant(mr));
  // Range size is usually just 1 bit.
  _bm.clear_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
                  BitMap::small_range);
}

inline void CMSBitMap::par_mark_range(MemRegion mr) {
  NOT_PRODUCT(region_invariant(mr));
  // Range size is usually just 1 bit.
  _bm.par_set_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
                    BitMap::small_range);
}

inline void CMSBitMap::par_clear_range(MemRegion mr) {
  NOT_PRODUCT(region_invariant(mr));
  // Range size is usually just 1 bit.
  _bm.par_clear_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
                      BitMap::small_range);
}

inline void CMSBitMap::mark_large_range(MemRegion mr) {
  NOT_PRODUCT(region_invariant(mr));
  // Range size must be greater than 32 bytes.
  _bm.set_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
                BitMap::large_range);
}

inline void CMSBitMap::clear_large_range(MemRegion mr) {
  NOT_PRODUCT(region_invariant(mr));
  // Range size must be greater than 32 bytes.
  _bm.clear_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
                  BitMap::large_range);
}

inline void CMSBitMap::par_mark_large_range(MemRegion mr) {
  NOT_PRODUCT(region_invariant(mr));
  // Range size must be greater than 32 bytes.
  _bm.par_set_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
                    BitMap::large_range);
}

inline void CMSBitMap::par_clear_large_range(MemRegion mr) {
  NOT_PRODUCT(region_invariant(mr));
  // Range size must be greater than 32 bytes.
  _bm.par_clear_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
                      BitMap::large_range);
}

// Starting at "addr" (inclusive) return a memory region
// corresponding to the first maximally contiguous marked ("1") region.
inline MemRegion CMSBitMap::getAndClearMarkedRegion(HeapWord* addr) {
  return getAndClearMarkedRegion(addr, endWord());
}

// Starting at "start_addr" (inclusive) return a memory region
// corresponding to the first maximal contiguous marked ("1") region
// strictly less than end_addr.
inline MemRegion CMSBitMap::getAndClearMarkedRegion(HeapWord* start_addr,
                                                    HeapWord* end_addr) {
  HeapWord *start, *end;
  assert_locked();
  start = getNextMarkedWordAddress  (start_addr, end_addr);
  end   = getNextUnmarkedWordAddress(start,      end_addr);
  assert(start <= end, "Consistency check");
  MemRegion mr(start, end);
  if (!mr.is_empty()) {
    clear_range(mr);
  }
  return mr;
}

inline bool CMSBitMap::isMarked(HeapWord* addr) const {
  assert_locked();
  assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
         "outside underlying space?");
  return _bm.at(heapWordToOffset(addr));
}

// The same as isMarked() but without a lock check.
inline bool CMSBitMap::par_isMarked(HeapWord* addr) const {
  assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
         "outside underlying space?");
  return _bm.at(heapWordToOffset(addr));
}


inline bool CMSBitMap::isUnmarked(HeapWord* addr) const {
  assert_locked();
  assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
         "outside underlying space?");
  return !_bm.at(heapWordToOffset(addr));
}

// Return the HeapWord address corresponding to next "1" bit
// (inclusive).
inline HeapWord* CMSBitMap::getNextMarkedWordAddress(HeapWord* addr) const {
  return getNextMarkedWordAddress(addr, endWord());
}

// Return the least HeapWord address corresponding to next "1" bit
// starting at start_addr (inclusive) but strictly less than end_addr.
inline HeapWord* CMSBitMap::getNextMarkedWordAddress(
  HeapWord* start_addr, HeapWord* end_addr) const {
  assert_locked();
  size_t nextOffset = _bm.get_next_one_offset(
                        heapWordToOffset(start_addr),
                        heapWordToOffset(end_addr));
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= start_addr &&
         nextAddr <= end_addr, "get_next_one postcondition");
  assert((nextAddr == end_addr) ||
         isMarked(nextAddr), "get_next_one postcondition");
  return nextAddr;
}


// Return the HeapWord address corrsponding to the next "0" bit
// (inclusive).
inline HeapWord* CMSBitMap::getNextUnmarkedWordAddress(HeapWord* addr) const {
  return getNextUnmarkedWordAddress(addr, endWord());
}

// Return the HeapWord address corrsponding to the next "0" bit
// (inclusive).
inline HeapWord* CMSBitMap::getNextUnmarkedWordAddress(
  HeapWord* start_addr, HeapWord* end_addr) const {
  assert_locked();
  size_t nextOffset = _bm.get_next_zero_offset(
                        heapWordToOffset(start_addr),
                        heapWordToOffset(end_addr));
  HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  assert(nextAddr >= start_addr &&
         nextAddr <= end_addr, "get_next_zero postcondition");
  assert((nextAddr == end_addr) ||
          isUnmarked(nextAddr), "get_next_zero postcondition");
  return nextAddr;
}

inline bool CMSBitMap::isAllClear() const {
  assert_locked();
  return getNextMarkedWordAddress(startWord()) >= endWord();
}

inline void CMSBitMap::iterate(BitMapClosure* cl, HeapWord* left,
                            HeapWord* right) {
  assert_locked();
  left = MAX2(_bmStartWord, left);
  right = MIN2(_bmStartWord + _bmWordSize, right);
  if (right > left) {
    _bm.iterate(cl, heapWordToOffset(left), heapWordToOffset(right));
  }
}

inline void CMSCollector::start_icms() {
  if (CMSIncrementalMode) {
    ConcurrentMarkSweepThread::start_icms();
  }
}

inline void CMSCollector::stop_icms() {
  if (CMSIncrementalMode) {
    ConcurrentMarkSweepThread::stop_icms();
  }
}

inline void CMSCollector::disable_icms() {
  if (CMSIncrementalMode) {
    ConcurrentMarkSweepThread::disable_icms();
  }
}

inline void CMSCollector::enable_icms() {
  if (CMSIncrementalMode) {
    ConcurrentMarkSweepThread::enable_icms();
  }
}

inline void CMSCollector::icms_wait() {
  if (CMSIncrementalMode) {
    cmsThread()->icms_wait();
  }
}

inline void CMSCollector::save_sweep_limits() {
  _cmsGen->save_sweep_limit();
  _permGen->save_sweep_limit();
}

inline bool CMSCollector::is_dead_obj(oop obj) const {
  HeapWord* addr = (HeapWord*)obj;
  assert((_cmsGen->cmsSpace()->is_in_reserved(addr)
          && _cmsGen->cmsSpace()->block_is_obj(addr))
         ||
         (_permGen->cmsSpace()->is_in_reserved(addr)
          && _permGen->cmsSpace()->block_is_obj(addr)),
         "must be object");
280
  return  should_unload_classes() &&
D
duke 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
          _collectorState == Sweeping &&
         !_markBitMap.isMarked(addr);
}

inline bool CMSCollector::should_abort_preclean() const {
  // We are in the midst of an "abortable preclean" and either
  // scavenge is done or foreground GC wants to take over collection
  return _collectorState == AbortablePreclean &&
         (_abort_preclean || _foregroundGCIsActive ||
          GenCollectedHeap::heap()->incremental_collection_will_fail());
}

inline size_t CMSCollector::get_eden_used() const {
  return _young_gen->as_DefNewGeneration()->eden()->used();
}

inline size_t CMSCollector::get_eden_capacity() const {
  return _young_gen->as_DefNewGeneration()->eden()->capacity();
}

inline bool CMSStats::valid() const {
  return _valid_bits == _ALL_VALID;
}

inline void CMSStats::record_gc0_begin() {
  if (_gc0_begin_time.is_updated()) {
    float last_gc0_period = _gc0_begin_time.seconds();
    _gc0_period = AdaptiveWeightedAverage::exp_avg(_gc0_period,
      last_gc0_period, _gc0_alpha);
    _gc0_alpha = _saved_alpha;
    _valid_bits |= _GC0_VALID;
  }
  _cms_used_at_gc0_begin = _cms_gen->cmsSpace()->used();

  _gc0_begin_time.update();
}

inline void CMSStats::record_gc0_end(size_t cms_gen_bytes_used) {
  float last_gc0_duration = _gc0_begin_time.seconds();
  _gc0_duration = AdaptiveWeightedAverage::exp_avg(_gc0_duration,
    last_gc0_duration, _gc0_alpha);

  // Amount promoted.
  _cms_used_at_gc0_end = cms_gen_bytes_used;

  size_t promoted_bytes = 0;
  if (_cms_used_at_gc0_end >= _cms_used_at_gc0_begin) {
    promoted_bytes = _cms_used_at_gc0_end - _cms_used_at_gc0_begin;
  }

  // If the younger gen collections were skipped, then the
  // number of promoted bytes will be 0 and adding it to the
  // average will incorrectly lessen the average.  It is, however,
  // also possible that no promotion was needed.
  //
  // _gc0_promoted used to be calculated as
  // _gc0_promoted = AdaptiveWeightedAverage::exp_avg(_gc0_promoted,
  //  promoted_bytes, _gc0_alpha);
  _cms_gen->gc_stats()->avg_promoted()->sample(promoted_bytes);
  _gc0_promoted = (size_t) _cms_gen->gc_stats()->avg_promoted()->average();

  // Amount directly allocated.
  size_t allocated_bytes = _cms_gen->direct_allocated_words() * HeapWordSize;
  _cms_gen->reset_direct_allocated_words();
  _cms_allocated = AdaptiveWeightedAverage::exp_avg(_cms_allocated,
    allocated_bytes, _gc0_alpha);
}

inline void CMSStats::record_cms_begin() {
  _cms_timer.stop();

  // This is just an approximate value, but is good enough.
  _cms_used_at_cms_begin = _cms_used_at_gc0_end;

  _cms_period = AdaptiveWeightedAverage::exp_avg((float)_cms_period,
    (float) _cms_timer.seconds(), _cms_alpha);
  _cms_begin_time.update();

  _cms_timer.reset();
  _cms_timer.start();
}

inline void CMSStats::record_cms_end() {
  _cms_timer.stop();

  float cur_duration = _cms_timer.seconds();
  _cms_duration = AdaptiveWeightedAverage::exp_avg(_cms_duration,
    cur_duration, _cms_alpha);

  // Avoid division by 0.
  const size_t cms_used_mb = MAX2(_cms_used_at_cms_begin / M, (size_t)1);
  _cms_duration_per_mb = AdaptiveWeightedAverage::exp_avg(_cms_duration_per_mb,
                                 cur_duration / cms_used_mb,
                                 _cms_alpha);

  _cms_end_time.update();
  _cms_alpha = _saved_alpha;
  _allow_duty_cycle_reduction = true;
  _valid_bits |= _CMS_VALID;

  _cms_timer.start();
}

inline double CMSStats::cms_time_since_begin() const {
  return _cms_begin_time.seconds();
}

inline double CMSStats::cms_time_since_end() const {
  return _cms_end_time.seconds();
}

inline double CMSStats::promotion_rate() const {
  assert(valid(), "statistics not valid yet");
  return gc0_promoted() / gc0_period();
}

inline double CMSStats::cms_allocation_rate() const {
  assert(valid(), "statistics not valid yet");
  return cms_allocated() / gc0_period();
}

inline double CMSStats::cms_consumption_rate() const {
  assert(valid(), "statistics not valid yet");
  return (gc0_promoted() + cms_allocated()) / gc0_period();
}

inline unsigned int CMSStats::icms_update_duty_cycle() {
  // Update the duty cycle only if pacing is enabled and the stats are valid
  // (after at least one young gen gc and one cms cycle have completed).
  if (CMSIncrementalPacing && valid()) {
    return icms_update_duty_cycle_impl();
  }
  return _icms_duty_cycle;
}

inline void ConcurrentMarkSweepGeneration::save_sweep_limit() {
  cmsSpace()->save_sweep_limit();
}

inline size_t ConcurrentMarkSweepGeneration::capacity() const {
  return _cmsSpace->capacity();
}

inline size_t ConcurrentMarkSweepGeneration::used() const {
  return _cmsSpace->used();
}

inline size_t ConcurrentMarkSweepGeneration::free() const {
  return _cmsSpace->free();
}

inline MemRegion ConcurrentMarkSweepGeneration::used_region() const {
  return _cmsSpace->used_region();
}

inline MemRegion ConcurrentMarkSweepGeneration::used_region_at_save_marks() const {
  return _cmsSpace->used_region_at_save_marks();
}

inline void MarkFromRootsClosure::do_yield_check() {
  if (ConcurrentMarkSweepThread::should_yield() &&
      !_collector->foregroundGCIsActive() &&
      _yield) {
    do_yield_work();
  }
}

inline void Par_MarkFromRootsClosure::do_yield_check() {
  if (ConcurrentMarkSweepThread::should_yield() &&
      !_collector->foregroundGCIsActive() &&
      _yield) {
    do_yield_work();
  }
}

// Return value of "true" indicates that the on-going preclean
// should be aborted.
inline bool ScanMarkedObjectsAgainCarefullyClosure::do_yield_check() {
  if (ConcurrentMarkSweepThread::should_yield() &&
      !_collector->foregroundGCIsActive() &&
      _yield) {
    // Sample young gen size before and after yield
    _collector->sample_eden();
    do_yield_work();
    _collector->sample_eden();
    return _collector->should_abort_preclean();
  }
  return false;
}

inline void SurvivorSpacePrecleanClosure::do_yield_check() {
  if (ConcurrentMarkSweepThread::should_yield() &&
      !_collector->foregroundGCIsActive() &&
      _yield) {
    // Sample young gen size before and after yield
    _collector->sample_eden();
    do_yield_work();
    _collector->sample_eden();
  }
}

inline void SweepClosure::do_yield_check(HeapWord* addr) {
  if (ConcurrentMarkSweepThread::should_yield() &&
      !_collector->foregroundGCIsActive() &&
      _yield) {
    do_yield_work(addr);
  }
}

inline void MarkRefsIntoAndScanClosure::do_yield_check() {
  // The conditions are ordered for the remarking phase
  // when _yield is false.
  if (_yield &&
      !_collector->foregroundGCIsActive() &&
      ConcurrentMarkSweepThread::should_yield()) {
    do_yield_work();
  }
}


inline void ModUnionClosure::do_MemRegion(MemRegion mr) {
  // Align the end of mr so it's at a card boundary.
  // This is superfluous except at the end of the space;
  // we should do better than this XXX
  MemRegion mr2(mr.start(), (HeapWord*)round_to((intptr_t)mr.end(),
                 CardTableModRefBS::card_size /* bytes */));
  _t->mark_range(mr2);
}

inline void ModUnionClosurePar::do_MemRegion(MemRegion mr) {
  // Align the end of mr so it's at a card boundary.
  // This is superfluous except at the end of the space;
  // we should do better than this XXX
  MemRegion mr2(mr.start(), (HeapWord*)round_to((intptr_t)mr.end(),
                 CardTableModRefBS::card_size /* bytes */));
  _t->par_mark_range(mr2);
}
518 519

#endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_INLINE_HPP