objectMonitor.cpp 104.3 KB
Newer Older
A
acorn 已提交
1
/*
2
 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
A
acorn 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36
#include "precompiled.hpp"
#include "classfile/vmSymbols.hpp"
#include "memory/resourceArea.hpp"
#include "oops/markOop.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/objectMonitor.inline.hpp"
#include "runtime/osThread.hpp"
#include "runtime/stubRoutines.hpp"
37
#include "runtime/thread.inline.hpp"
38
#include "services/threadService.hpp"
S
sla 已提交
39 40
#include "trace/tracing.hpp"
#include "trace/traceMacros.hpp"
41
#include "utilities/dtrace.hpp"
S
sla 已提交
42
#include "utilities/macros.hpp"
43 44 45 46 47 48 49 50 51 52
#include "utilities/preserveException.hpp"
#ifdef TARGET_OS_FAMILY_linux
# include "os_linux.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_solaris
# include "os_solaris.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_windows
# include "os_windows.inline.hpp"
#endif
N
never 已提交
53 54 55
#ifdef TARGET_OS_FAMILY_bsd
# include "os_bsd.inline.hpp"
#endif
A
acorn 已提交
56

57
#if defined(__GNUC__) && !defined(IA64) && !defined(PPC64)
A
acorn 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
  // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  #define ATTR __attribute__((noinline))
#else
  #define ATTR
#endif


#ifdef DTRACE_ENABLED

// Only bother with this argument setup if dtrace is available
// TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.


71
#define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
A
acorn 已提交
72 73 74
  char* bytes = NULL;                                                      \
  int len = 0;                                                             \
  jlong jtid = SharedRuntime::get_java_tid(thread);                        \
75
  Symbol* klassname = ((oop)obj)->klass()->name();                         \
A
acorn 已提交
76 77 78 79 80
  if (klassname != NULL) {                                                 \
    bytes = (char*)klassname->bytes();                                     \
    len = klassname->utf8_length();                                        \
  }

D
dcubed 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93
#ifndef USDT2

HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
  jlong, uintptr_t, char*, int);
HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
  jlong, uintptr_t, char*, int);
HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
  jlong, uintptr_t, char*, int);
HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
  jlong, uintptr_t, char*, int);
HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
  jlong, uintptr_t, char*, int);

94
#define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)       \
A
acorn 已提交
95 96
  {                                                                        \
    if (DTraceMonitorProbes) {                                            \
97
      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
A
acorn 已提交
98 99 100 101 102
      HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
                       (monitor), bytes, len, (millis));                   \
    }                                                                      \
  }

103
#define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)             \
A
acorn 已提交
104 105
  {                                                                        \
    if (DTraceMonitorProbes) {                                            \
106
      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
A
acorn 已提交
107 108 109 110 111
      HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
                       (uintptr_t)(monitor), bytes, len);                  \
    }                                                                      \
  }

D
dcubed 已提交
112 113
#else /* USDT2 */

114
#define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
D
dcubed 已提交
115 116
  {                                                                        \
    if (DTraceMonitorProbes) {                                            \
117
      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
D
dcubed 已提交
118 119 120 121 122 123 124 125 126 127 128
      HOTSPOT_MONITOR_WAIT(jtid,                                           \
                       (monitor), bytes, len, (millis));                   \
    }                                                                      \
  }

#define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
#define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
#define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
#define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
#define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL

129
#define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
D
dcubed 已提交
130 131
  {                                                                        \
    if (DTraceMonitorProbes) {                                            \
132
      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
D
dcubed 已提交
133 134 135 136 137 138
      HOTSPOT_MONITOR_##probe(jtid,                                               \
                       (uintptr_t)(monitor), bytes, len);                  \
    }                                                                      \
  }

#endif /* USDT2 */
A
acorn 已提交
139 140
#else //  ndef DTRACE_ENABLED

141 142
#define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
#define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
A
acorn 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

#endif // ndef DTRACE_ENABLED

// Tunables ...
// The knob* variables are effectively final.  Once set they should
// never be modified hence.  Consider using __read_mostly with GCC.

int ObjectMonitor::Knob_Verbose    = 0 ;
int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
static int Knob_HandOff            = 0 ;
static int Knob_ReportSettings     = 0 ;

static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
static int Knob_SpinEarly          = 1 ;
static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
static int Knob_Bonus              = 100 ;     // spin success bonus
static int Knob_BonusB             = 100 ;     // spin success bonus
static int Knob_Penalty            = 200 ;     // spin failure penalty
static int Knob_Poverty            = 1000 ;
static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
static int Knob_FixedSpin          = 0 ;
static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
static int Knob_UsePause           = 1 ;
static int Knob_ExitPolicy         = 0 ;
static int Knob_PreSpin            = 10 ;      // 20-100 likely better
static int Knob_ResetEvent         = 0 ;
static int BackOffMask             = 0 ;

static int Knob_FastHSSEC          = 0 ;
static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
static volatile int InitDone       = 0 ;

#define TrySpin TrySpin_VaryDuration

// -----------------------------------------------------------------------------
// Theory of operations -- Monitors lists, thread residency, etc:
//
// * A thread acquires ownership of a monitor by successfully
//   CAS()ing the _owner field from null to non-null.
//
// * Invariant: A thread appears on at most one monitor list --
//   cxq, EntryList or WaitSet -- at any one time.
//
// * Contending threads "push" themselves onto the cxq with CAS
//   and then spin/park.
//
// * After a contending thread eventually acquires the lock it must
//   dequeue itself from either the EntryList or the cxq.
//
// * The exiting thread identifies and unparks an "heir presumptive"
//   tentative successor thread on the EntryList.  Critically, the
//   exiting thread doesn't unlink the successor thread from the EntryList.
//   After having been unparked, the wakee will recontend for ownership of
//   the monitor.   The successor (wakee) will either acquire the lock or
//   re-park itself.
//
//   Succession is provided for by a policy of competitive handoff.
//   The exiting thread does _not_ grant or pass ownership to the
//   successor thread.  (This is also referred to as "handoff" succession").
//   Instead the exiting thread releases ownership and possibly wakes
//   a successor, so the successor can (re)compete for ownership of the lock.
//   If the EntryList is empty but the cxq is populated the exiting
//   thread will drain the cxq into the EntryList.  It does so by
//   by detaching the cxq (installing null with CAS) and folding
//   the threads from the cxq into the EntryList.  The EntryList is
//   doubly linked, while the cxq is singly linked because of the
//   CAS-based "push" used to enqueue recently arrived threads (RATs).
//
// * Concurrency invariants:
//
//   -- only the monitor owner may access or mutate the EntryList.
//      The mutex property of the monitor itself protects the EntryList
//      from concurrent interference.
//   -- Only the monitor owner may detach the cxq.
//
// * The monitor entry list operations avoid locks, but strictly speaking
//   they're not lock-free.  Enter is lock-free, exit is not.
//   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
//
// * The cxq can have multiple concurrent "pushers" but only one concurrent
//   detaching thread.  This mechanism is immune from the ABA corruption.
//   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
//
// * Taken together, the cxq and the EntryList constitute or form a
//   single logical queue of threads stalled trying to acquire the lock.
//   We use two distinct lists to improve the odds of a constant-time
//   dequeue operation after acquisition (in the ::enter() epilog) and
//   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
//   A key desideratum is to minimize queue & monitor metadata manipulation
//   that occurs while holding the monitor lock -- that is, we want to
//   minimize monitor lock holds times.  Note that even a small amount of
//   fixed spinning will greatly reduce the # of enqueue-dequeue operations
//   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
//   locks and monitor metadata.
//
//   Cxq points to the the set of Recently Arrived Threads attempting entry.
//   Because we push threads onto _cxq with CAS, the RATs must take the form of
//   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
//   the unlocking thread notices that EntryList is null but _cxq is != null.
//
//   The EntryList is ordered by the prevailing queue discipline and
//   can be organized in any convenient fashion, such as a doubly-linked list or
//   a circular doubly-linked list.  Critically, we want insert and delete operations
//   to operate in constant-time.  If we need a priority queue then something akin
//   to Solaris' sleepq would work nicely.  Viz.,
//   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
//   Queue discipline is enforced at ::exit() time, when the unlocking thread
//   drains the cxq into the EntryList, and orders or reorders the threads on the
//   EntryList accordingly.
//
//   Barring "lock barging", this mechanism provides fair cyclic ordering,
//   somewhat similar to an elevator-scan.
//
// * The monitor synchronization subsystem avoids the use of native
//   synchronization primitives except for the narrow platform-specific
//   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
//   the semantics of park-unpark.  Put another way, this monitor implementation
//   depends only on atomic operations and park-unpark.  The monitor subsystem
//   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
//   underlying OS manages the READY<->RUN transitions.
//
// * Waiting threads reside on the WaitSet list -- wait() puts
//   the caller onto the WaitSet.
//
// * notify() or notifyAll() simply transfers threads from the WaitSet to
//   either the EntryList or cxq.  Subsequent exit() operations will
//   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
//   it's likely the notifyee would simply impale itself on the lock held
//   by the notifier.
//
// * An interesting alternative is to encode cxq as (List,LockByte) where
//   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
//   variable, like _recursions, in the scheme.  The threads or Events that form
//   the list would have to be aligned in 256-byte addresses.  A thread would
//   try to acquire the lock or enqueue itself with CAS, but exiting threads
//   could use a 1-0 protocol and simply STB to set the LockByte to 0.
//   Note that is is *not* word-tearing, but it does presume that full-word
//   CAS operations are coherent with intermix with STB operations.  That's true
//   on most common processors.
//
// * See also http://blogs.sun.com/dave


// -----------------------------------------------------------------------------
// Enter support

bool ObjectMonitor::try_enter(Thread* THREAD) {
  if (THREAD != _owner) {
    if (THREAD->is_lock_owned ((address)_owner)) {
       assert(_recursions == 0, "internal state error");
       _owner = THREAD ;
       _recursions = 1 ;
       OwnerIsThread = 1 ;
       return true;
    }
    if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
      return false;
    }
    return true;
  } else {
    _recursions++;
    return true;
  }
}

void ATTR ObjectMonitor::enter(TRAPS) {
  // The following code is ordered to check the most common cases first
  // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
  Thread * const Self = THREAD ;
  void * cur ;

  cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  if (cur == NULL) {
     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
     assert (_recursions == 0   , "invariant") ;
     assert (_owner      == Self, "invariant") ;
     // CONSIDER: set or assert OwnerIsThread == 1
     return ;
  }

  if (cur == Self) {
     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
     _recursions ++ ;
     return ;
  }

  if (Self->is_lock_owned ((address)cur)) {
    assert (_recursions == 0, "internal state error");
    _recursions = 1 ;
    // Commute owner from a thread-specific on-stack BasicLockObject address to
    // a full-fledged "Thread *".
    _owner = Self ;
    OwnerIsThread = 1 ;
    return ;
  }

  // We've encountered genuine contention.
  assert (Self->_Stalled == 0, "invariant") ;
  Self->_Stalled = intptr_t(this) ;

  // Try one round of spinning *before* enqueueing Self
  // and before going through the awkward and expensive state
  // transitions.  The following spin is strictly optional ...
  // Note that if we acquire the monitor from an initial spin
  // we forgo posting JVMTI events and firing DTRACE probes.
  if (Knob_SpinEarly && TrySpin (Self) > 0) {
     assert (_owner == Self      , "invariant") ;
     assert (_recursions == 0    , "invariant") ;
     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
     Self->_Stalled = 0 ;
     return ;
  }

  assert (_owner != Self          , "invariant") ;
  assert (_succ  != Self          , "invariant") ;
  assert (Self->is_Java_thread()  , "invariant") ;
  JavaThread * jt = (JavaThread *) Self ;
  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
  assert (jt->thread_state() != _thread_blocked   , "invariant") ;
  assert (this->object() != NULL  , "invariant") ;
  assert (_count >= 0, "invariant") ;

  // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
  // Ensure the object-monitor relationship remains stable while there's contention.
  Atomic::inc_ptr(&_count);

S
sla 已提交
377 378
  EventJavaMonitorEnter event;

A
acorn 已提交
379 380 381 382 383 384
  { // Change java thread status to indicate blocked on monitor enter.
    JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);

    DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
    if (JvmtiExport::should_post_monitor_contended_enter()) {
      JvmtiExport::post_monitor_contended_enter(jt, this);
385 386 387 388 389 390

      // The current thread does not yet own the monitor and does not
      // yet appear on any queues that would get it made the successor.
      // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
      // handler cannot accidentally consume an unpark() meant for the
      // ParkEvent associated with this ObjectMonitor.
A
acorn 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    }

    OSThreadContendState osts(Self->osthread());
    ThreadBlockInVM tbivm(jt);

    Self->set_current_pending_monitor(this);

    // TODO-FIXME: change the following for(;;) loop to straight-line code.
    for (;;) {
      jt->set_suspend_equivalent();
      // cleared by handle_special_suspend_equivalent_condition()
      // or java_suspend_self()

      EnterI (THREAD) ;

      if (!ExitSuspendEquivalent(jt)) break ;

      //
      // We have acquired the contended monitor, but while we were
      // waiting another thread suspended us. We don't want to enter
      // the monitor while suspended because that would surprise the
      // thread that suspended us.
      //
          _recursions = 0 ;
      _succ = NULL ;
S
sla 已提交
416
      exit (false, Self) ;
A
acorn 已提交
417 418 419 420

      jt->java_suspend_self();
    }
    Self->set_current_pending_monitor(NULL);
421 422 423 424 425 426 427 428 429

    // We cleared the pending monitor info since we've just gotten past
    // the enter-check-for-suspend dance and we now own the monitor free
    // and clear, i.e., it is no longer pending. The ThreadBlockInVM
    // destructor can go to a safepoint at the end of this block. If we
    // do a thread dump during that safepoint, then this thread will show
    // as having "-locked" the monitor, but the OS and java.lang.Thread
    // states will still report that the thread is blocked trying to
    // acquire it.
A
acorn 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
  }

  Atomic::dec_ptr(&_count);
  assert (_count >= 0, "invariant") ;
  Self->_Stalled = 0 ;

  // Must either set _recursions = 0 or ASSERT _recursions == 0.
  assert (_recursions == 0     , "invariant") ;
  assert (_owner == Self       , "invariant") ;
  assert (_succ  != Self       , "invariant") ;
  assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;

  // The thread -- now the owner -- is back in vm mode.
  // Report the glorious news via TI,DTrace and jvmstat.
  // The probe effect is non-trivial.  All the reportage occurs
  // while we hold the monitor, increasing the length of the critical
  // section.  Amdahl's parallel speedup law comes vividly into play.
  //
  // Another option might be to aggregate the events (thread local or
  // per-monitor aggregation) and defer reporting until a more opportune
  // time -- such as next time some thread encounters contention but has
  // yet to acquire the lock.  While spinning that thread could
  // spinning we could increment JVMStat counters, etc.

  DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
  if (JvmtiExport::should_post_monitor_contended_entered()) {
    JvmtiExport::post_monitor_contended_entered(jt, this);
457 458 459 460 461 462

    // The current thread already owns the monitor and is not going to
    // call park() for the remainder of the monitor enter protocol. So
    // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
    // event handler consumed an unpark() issued by the thread that
    // just exited the monitor.
A
acorn 已提交
463
  }
S
sla 已提交
464 465 466 467 468 469 470 471

  if (event.should_commit()) {
    event.set_klass(((oop)this->object())->klass());
    event.set_previousOwner((TYPE_JAVALANGTHREAD)_previous_owner_tid);
    event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
    event.commit();
  }

A
acorn 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
  if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
     ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
  }
}


// Caveat: TryLock() is not necessarily serializing if it returns failure.
// Callers must compensate as needed.

int ObjectMonitor::TryLock (Thread * Self) {
   for (;;) {
      void * own = _owner ;
      if (own != NULL) return 0 ;
      if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
         // Either guarantee _recursions == 0 or set _recursions = 0.
         assert (_recursions == 0, "invariant") ;
         assert (_owner == Self, "invariant") ;
         // CONSIDER: set or assert that OwnerIsThread == 1
         return 1 ;
      }
      // The lock had been free momentarily, but we lost the race to the lock.
      // Interference -- the CAS failed.
      // We can either return -1 or retry.
      // Retry doesn't make as much sense because the lock was just acquired.
      if (true) return -1 ;
   }
}

void ATTR ObjectMonitor::EnterI (TRAPS) {
    Thread * Self = THREAD ;
    assert (Self->is_Java_thread(), "invariant") ;
    assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;

    // Try the lock - TATAS
    if (TryLock (Self) > 0) {
        assert (_succ != Self              , "invariant") ;
        assert (_owner == Self             , "invariant") ;
        assert (_Responsible != Self       , "invariant") ;
        return ;
    }

    DeferredInitialize () ;

    // We try one round of spinning *before* enqueueing Self.
    //
    // If the _owner is ready but OFFPROC we could use a YieldTo()
    // operation to donate the remainder of this thread's quantum
    // to the owner.  This has subtle but beneficial affinity
    // effects.

    if (TrySpin (Self) > 0) {
        assert (_owner == Self        , "invariant") ;
        assert (_succ != Self         , "invariant") ;
        assert (_Responsible != Self  , "invariant") ;
        return ;
    }

    // The Spin failed -- Enqueue and park the thread ...
    assert (_succ  != Self            , "invariant") ;
    assert (_owner != Self            , "invariant") ;
    assert (_Responsible != Self      , "invariant") ;

    // Enqueue "Self" on ObjectMonitor's _cxq.
    //
    // Node acts as a proxy for Self.
    // As an aside, if were to ever rewrite the synchronization code mostly
    // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
    // Java objects.  This would avoid awkward lifecycle and liveness issues,
    // as well as eliminate a subset of ABA issues.
    // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
    //

    ObjectWaiter node(Self) ;
    Self->_ParkEvent->reset() ;
    node._prev   = (ObjectWaiter *) 0xBAD ;
    node.TState  = ObjectWaiter::TS_CXQ ;

    // Push "Self" onto the front of the _cxq.
    // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
    // Note that spinning tends to reduce the rate at which threads
    // enqueue and dequeue on EntryList|cxq.
    ObjectWaiter * nxt ;
    for (;;) {
        node._next = nxt = _cxq ;
        if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;

        // Interference - the CAS failed because _cxq changed.  Just retry.
        // As an optional optimization we retry the lock.
        if (TryLock (Self) > 0) {
            assert (_succ != Self         , "invariant") ;
            assert (_owner == Self        , "invariant") ;
            assert (_Responsible != Self  , "invariant") ;
            return ;
        }
    }

    // Check for cxq|EntryList edge transition to non-null.  This indicates
    // the onset of contention.  While contention persists exiting threads
    // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
    // operations revert to the faster 1-0 mode.  This enter operation may interleave
    // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
    // arrange for one of the contending thread to use a timed park() operations
    // to detect and recover from the race.  (Stranding is form of progress failure
    // where the monitor is unlocked but all the contending threads remain parked).
    // That is, at least one of the contended threads will periodically poll _owner.
    // One of the contending threads will become the designated "Responsible" thread.
    // The Responsible thread uses a timed park instead of a normal indefinite park
    // operation -- it periodically wakes and checks for and recovers from potential
    // strandings admitted by 1-0 exit operations.   We need at most one Responsible
    // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
    // be responsible for a monitor.
    //
    // Currently, one of the contended threads takes on the added role of "Responsible".
    // A viable alternative would be to use a dedicated "stranding checker" thread
    // that periodically iterated over all the threads (or active monitors) and unparked
    // successors where there was risk of stranding.  This would help eliminate the
    // timer scalability issues we see on some platforms as we'd only have one thread
    // -- the checker -- parked on a timer.

    if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
        // Try to assume the role of responsible thread for the monitor.
        // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
        Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
    }

    // The lock have been released while this thread was occupied queueing
    // itself onto _cxq.  To close the race and avoid "stranding" and
    // progress-liveness failure we must resample-retry _owner before parking.
    // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
    // In this case the ST-MEMBAR is accomplished with CAS().
    //
    // TODO: Defer all thread state transitions until park-time.
    // Since state transitions are heavy and inefficient we'd like
    // to defer the state transitions until absolutely necessary,
    // and in doing so avoid some transitions ...

    TEVENT (Inflated enter - Contention) ;
    int nWakeups = 0 ;
    int RecheckInterval = 1 ;

    for (;;) {

        if (TryLock (Self) > 0) break ;
        assert (_owner != Self, "invariant") ;

        if ((SyncFlags & 2) && _Responsible == NULL) {
           Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
        }

        // park self
        if (_Responsible == Self || (SyncFlags & 1)) {
            TEVENT (Inflated enter - park TIMED) ;
            Self->_ParkEvent->park ((jlong) RecheckInterval) ;
            // Increase the RecheckInterval, but clamp the value.
            RecheckInterval *= 8 ;
            if (RecheckInterval > 1000) RecheckInterval = 1000 ;
        } else {
            TEVENT (Inflated enter - park UNTIMED) ;
            Self->_ParkEvent->park() ;
        }

        if (TryLock(Self) > 0) break ;

        // The lock is still contested.
        // Keep a tally of the # of futile wakeups.
        // Note that the counter is not protected by a lock or updated by atomics.
        // That is by design - we trade "lossy" counters which are exposed to
        // races during updates for a lower probe effect.
        TEVENT (Inflated enter - Futile wakeup) ;
        if (ObjectMonitor::_sync_FutileWakeups != NULL) {
           ObjectMonitor::_sync_FutileWakeups->inc() ;
        }
        ++ nWakeups ;

        // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
        // We can defer clearing _succ until after the spin completes
        // TrySpin() must tolerate being called with _succ == Self.
        // Try yet another round of adaptive spinning.
        if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;

        // We can find that we were unpark()ed and redesignated _succ while
        // we were spinning.  That's harmless.  If we iterate and call park(),
        // park() will consume the event and return immediately and we'll
        // just spin again.  This pattern can repeat, leaving _succ to simply
        // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
        // Alternately, we can sample fired() here, and if set, forgo spinning
        // in the next iteration.

        if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
           Self->_ParkEvent->reset() ;
           OrderAccess::fence() ;
        }
        if (_succ == Self) _succ = NULL ;

        // Invariant: after clearing _succ a thread *must* retry _owner before parking.
        OrderAccess::fence() ;
    }

    // Egress :
    // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
    // Normally we'll find Self on the EntryList .
    // From the perspective of the lock owner (this thread), the
    // EntryList is stable and cxq is prepend-only.
    // The head of cxq is volatile but the interior is stable.
    // In addition, Self.TState is stable.

    assert (_owner == Self      , "invariant") ;
    assert (object() != NULL    , "invariant") ;
    // I'd like to write:
    //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
    // but as we're at a safepoint that's not safe.

    UnlinkAfterAcquire (Self, &node) ;
    if (_succ == Self) _succ = NULL ;

    assert (_succ != Self, "invariant") ;
    if (_Responsible == Self) {
        _Responsible = NULL ;
690
        OrderAccess::fence(); // Dekker pivot-point
A
acorn 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953

        // We may leave threads on cxq|EntryList without a designated
        // "Responsible" thread.  This is benign.  When this thread subsequently
        // exits the monitor it can "see" such preexisting "old" threads --
        // threads that arrived on the cxq|EntryList before the fence, above --
        // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
        // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
        // non-null and elect a new "Responsible" timer thread.
        //
        // This thread executes:
        //    ST Responsible=null; MEMBAR    (in enter epilog - here)
        //    LD cxq|EntryList               (in subsequent exit)
        //
        // Entering threads in the slow/contended path execute:
        //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
        //    The (ST cxq; MEMBAR) is accomplished with CAS().
        //
        // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
        // exit operation from floating above the ST Responsible=null.
    }

    // We've acquired ownership with CAS().
    // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
    // But since the CAS() this thread may have also stored into _succ,
    // EntryList, cxq or Responsible.  These meta-data updates must be
    // visible __before this thread subsequently drops the lock.
    // Consider what could occur if we didn't enforce this constraint --
    // STs to monitor meta-data and user-data could reorder with (become
    // visible after) the ST in exit that drops ownership of the lock.
    // Some other thread could then acquire the lock, but observe inconsistent
    // or old monitor meta-data and heap data.  That violates the JMM.
    // To that end, the 1-0 exit() operation must have at least STST|LDST
    // "release" barrier semantics.  Specifically, there must be at least a
    // STST|LDST barrier in exit() before the ST of null into _owner that drops
    // the lock.   The barrier ensures that changes to monitor meta-data and data
    // protected by the lock will be visible before we release the lock, and
    // therefore before some other thread (CPU) has a chance to acquire the lock.
    // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
    //
    // Critically, any prior STs to _succ or EntryList must be visible before
    // the ST of null into _owner in the *subsequent* (following) corresponding
    // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
    // execute a serializing instruction.

    if (SyncFlags & 8) {
       OrderAccess::fence() ;
    }
    return ;
}

// ReenterI() is a specialized inline form of the latter half of the
// contended slow-path from EnterI().  We use ReenterI() only for
// monitor reentry in wait().
//
// In the future we should reconcile EnterI() and ReenterI(), adding
// Knob_Reset and Knob_SpinAfterFutile support and restructuring the
// loop accordingly.

void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
    assert (Self != NULL                , "invariant") ;
    assert (SelfNode != NULL            , "invariant") ;
    assert (SelfNode->_thread == Self   , "invariant") ;
    assert (_waiters > 0                , "invariant") ;
    assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
    assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
    JavaThread * jt = (JavaThread *) Self ;

    int nWakeups = 0 ;
    for (;;) {
        ObjectWaiter::TStates v = SelfNode->TState ;
        guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
        assert    (_owner != Self, "invariant") ;

        if (TryLock (Self) > 0) break ;
        if (TrySpin (Self) > 0) break ;

        TEVENT (Wait Reentry - parking) ;

        // State transition wrappers around park() ...
        // ReenterI() wisely defers state transitions until
        // it's clear we must park the thread.
        {
           OSThreadContendState osts(Self->osthread());
           ThreadBlockInVM tbivm(jt);

           // cleared by handle_special_suspend_equivalent_condition()
           // or java_suspend_self()
           jt->set_suspend_equivalent();
           if (SyncFlags & 1) {
              Self->_ParkEvent->park ((jlong)1000) ;
           } else {
              Self->_ParkEvent->park () ;
           }

           // were we externally suspended while we were waiting?
           for (;;) {
              if (!ExitSuspendEquivalent (jt)) break ;
              if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
              jt->java_suspend_self();
              jt->set_suspend_equivalent();
           }
        }

        // Try again, but just so we distinguish between futile wakeups and
        // successful wakeups.  The following test isn't algorithmically
        // necessary, but it helps us maintain sensible statistics.
        if (TryLock(Self) > 0) break ;

        // The lock is still contested.
        // Keep a tally of the # of futile wakeups.
        // Note that the counter is not protected by a lock or updated by atomics.
        // That is by design - we trade "lossy" counters which are exposed to
        // races during updates for a lower probe effect.
        TEVENT (Wait Reentry - futile wakeup) ;
        ++ nWakeups ;

        // Assuming this is not a spurious wakeup we'll normally
        // find that _succ == Self.
        if (_succ == Self) _succ = NULL ;

        // Invariant: after clearing _succ a contending thread
        // *must* retry  _owner before parking.
        OrderAccess::fence() ;

        if (ObjectMonitor::_sync_FutileWakeups != NULL) {
          ObjectMonitor::_sync_FutileWakeups->inc() ;
        }
    }

    // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
    // Normally we'll find Self on the EntryList.
    // Unlinking from the EntryList is constant-time and atomic-free.
    // From the perspective of the lock owner (this thread), the
    // EntryList is stable and cxq is prepend-only.
    // The head of cxq is volatile but the interior is stable.
    // In addition, Self.TState is stable.

    assert (_owner == Self, "invariant") ;
    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
    UnlinkAfterAcquire (Self, SelfNode) ;
    if (_succ == Self) _succ = NULL ;
    assert (_succ != Self, "invariant") ;
    SelfNode->TState = ObjectWaiter::TS_RUN ;
    OrderAccess::fence() ;      // see comments at the end of EnterI()
}

// after the thread acquires the lock in ::enter().  Equally, we could defer
// unlinking the thread until ::exit()-time.

void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
{
    assert (_owner == Self, "invariant") ;
    assert (SelfNode->_thread == Self, "invariant") ;

    if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
        // Normal case: remove Self from the DLL EntryList .
        // This is a constant-time operation.
        ObjectWaiter * nxt = SelfNode->_next ;
        ObjectWaiter * prv = SelfNode->_prev ;
        if (nxt != NULL) nxt->_prev = prv ;
        if (prv != NULL) prv->_next = nxt ;
        if (SelfNode == _EntryList ) _EntryList = nxt ;
        assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
        assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
        TEVENT (Unlink from EntryList) ;
    } else {
        guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
        // Inopportune interleaving -- Self is still on the cxq.
        // This usually means the enqueue of self raced an exiting thread.
        // Normally we'll find Self near the front of the cxq, so
        // dequeueing is typically fast.  If needbe we can accelerate
        // this with some MCS/CHL-like bidirectional list hints and advisory
        // back-links so dequeueing from the interior will normally operate
        // in constant-time.
        // Dequeue Self from either the head (with CAS) or from the interior
        // with a linear-time scan and normal non-atomic memory operations.
        // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
        // and then unlink Self from EntryList.  We have to drain eventually,
        // so it might as well be now.

        ObjectWaiter * v = _cxq ;
        assert (v != NULL, "invariant") ;
        if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
            // The CAS above can fail from interference IFF a "RAT" arrived.
            // In that case Self must be in the interior and can no longer be
            // at the head of cxq.
            if (v == SelfNode) {
                assert (_cxq != v, "invariant") ;
                v = _cxq ;          // CAS above failed - start scan at head of list
            }
            ObjectWaiter * p ;
            ObjectWaiter * q = NULL ;
            for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
                q = p ;
                assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
            }
            assert (v != SelfNode,  "invariant") ;
            assert (p == SelfNode,  "Node not found on cxq") ;
            assert (p != _cxq,      "invariant") ;
            assert (q != NULL,      "invariant") ;
            assert (q->_next == p,  "invariant") ;
            q->_next = p->_next ;
        }
        TEVENT (Unlink from cxq) ;
    }

    // Diagnostic hygiene ...
    SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
    SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
    SelfNode->TState = ObjectWaiter::TS_RUN ;
}

// -----------------------------------------------------------------------------
// Exit support
//
// exit()
// ~~~~~~
// Note that the collector can't reclaim the objectMonitor or deflate
// the object out from underneath the thread calling ::exit() as the
// thread calling ::exit() never transitions to a stable state.
// This inhibits GC, which in turn inhibits asynchronous (and
// inopportune) reclamation of "this".
//
// We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
// There's one exception to the claim above, however.  EnterI() can call
// exit() to drop a lock if the acquirer has been externally suspended.
// In that case exit() is called with _thread_state as _thread_blocked,
// but the monitor's _count field is > 0, which inhibits reclamation.
//
// 1-0 exit
// ~~~~~~~~
// ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
// the fast-path operators have been optimized so the common ::exit()
// operation is 1-0.  See i486.ad fast_unlock(), for instance.
// The code emitted by fast_unlock() elides the usual MEMBAR.  This
// greatly improves latency -- MEMBAR and CAS having considerable local
// latency on modern processors -- but at the cost of "stranding".  Absent the
// MEMBAR, a thread in fast_unlock() can race a thread in the slow
// ::enter() path, resulting in the entering thread being stranding
// and a progress-liveness failure.   Stranding is extremely rare.
// We use timers (timed park operations) & periodic polling to detect
// and recover from stranding.  Potentially stranded threads periodically
// wake up and poll the lock.  See the usage of the _Responsible variable.
//
// The CAS() in enter provides for safety and exclusion, while the CAS or
// MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
// eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
// We detect and recover from stranding with timers.
//
// If a thread transiently strands it'll park until (a) another
// thread acquires the lock and then drops the lock, at which time the
// exiting thread will notice and unpark the stranded thread, or, (b)
// the timer expires.  If the lock is high traffic then the stranding latency
// will be low due to (a).  If the lock is low traffic then the odds of
// stranding are lower, although the worst-case stranding latency
// is longer.  Critically, we don't want to put excessive load in the
// platform's timer subsystem.  We want to minimize both the timer injection
// rate (timers created/sec) as well as the number of timers active at
// any one time.  (more precisely, we want to minimize timer-seconds, which is
// the integral of the # of active timers at any instant over time).
// Both impinge on OS scalability.  Given that, at most one thread parked on
// a monitor will use a timer.

S
sla 已提交
954
void ATTR ObjectMonitor::exit(bool not_suspended, TRAPS) {
A
acorn 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
   Thread * Self = THREAD ;
   if (THREAD != _owner) {
     if (THREAD->is_lock_owned((address) _owner)) {
       // Transmute _owner from a BasicLock pointer to a Thread address.
       // We don't need to hold _mutex for this transition.
       // Non-null to Non-null is safe as long as all readers can
       // tolerate either flavor.
       assert (_recursions == 0, "invariant") ;
       _owner = THREAD ;
       _recursions = 0 ;
       OwnerIsThread = 1 ;
     } else {
       // NOTE: we need to handle unbalanced monitor enter/exit
       // in native code by throwing an exception.
       // TODO: Throw an IllegalMonitorStateException ?
       TEVENT (Exit - Throw IMSX) ;
       assert(false, "Non-balanced monitor enter/exit!");
       if (false) {
          THROW(vmSymbols::java_lang_IllegalMonitorStateException());
       }
       return;
     }
   }

   if (_recursions != 0) {
     _recursions--;        // this is simple recursive enter
     TEVENT (Inflated exit - recursive) ;
     return ;
   }

   // Invariant: after setting Responsible=null an thread must execute
   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
   if ((SyncFlags & 4) == 0) {
      _Responsible = NULL ;
   }

S
sla 已提交
991 992 993 994 995 996 997 998
#if INCLUDE_TRACE
   // get the owner's thread id for the MonitorEnter event
   // if it is enabled and the thread isn't suspended
   if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
     _previous_owner_tid = SharedRuntime::get_java_tid(Self);
   }
#endif

A
acorn 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
   for (;;) {
      assert (THREAD == _owner, "invariant") ;


      if (Knob_ExitPolicy == 0) {
         // release semantics: prior loads and stores from within the critical section
         // must not float (reorder) past the following store that drops the lock.
         // On SPARC that requires MEMBAR #loadstore|#storestore.
         // But of course in TSO #loadstore|#storestore is not required.
         // I'd like to write one of the following:
         // A.  OrderAccess::release() ; _owner = NULL
         // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
         // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
         // store into a _dummy variable.  That store is not needed, but can result
         // in massive wasteful coherency traffic on classic SMP systems.
         // Instead, I use release_store(), which is implemented as just a simple
         // ST on x64, x86 and SPARC.
         OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
         OrderAccess::storeload() ;                         // See if we need to wake a successor
         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
            TEVENT (Inflated exit - simple egress) ;
            return ;
         }
         TEVENT (Inflated exit - complex egress) ;

         // Normally the exiting thread is responsible for ensuring succession,
         // but if other successors are ready or other entering threads are spinning
         // then this thread can simply store NULL into _owner and exit without
         // waking a successor.  The existence of spinners or ready successors
         // guarantees proper succession (liveness).  Responsibility passes to the
         // ready or running successors.  The exiting thread delegates the duty.
         // More precisely, if a successor already exists this thread is absolved
         // of the responsibility of waking (unparking) one.
         //
         // The _succ variable is critical to reducing futile wakeup frequency.
         // _succ identifies the "heir presumptive" thread that has been made
         // ready (unparked) but that has not yet run.  We need only one such
         // successor thread to guarantee progress.
         // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
         // section 3.3 "Futile Wakeup Throttling" for details.
         //
         // Note that spinners in Enter() also set _succ non-null.
         // In the current implementation spinners opportunistically set
         // _succ so that exiting threads might avoid waking a successor.
         // Another less appealing alternative would be for the exiting thread
         // to drop the lock and then spin briefly to see if a spinner managed
         // to acquire the lock.  If so, the exiting thread could exit
         // immediately without waking a successor, otherwise the exiting
         // thread would need to dequeue and wake a successor.
         // (Note that we'd need to make the post-drop spin short, but no
         // shorter than the worst-case round-trip cache-line migration time.
         // The dropped lock needs to become visible to the spinner, and then
         // the acquisition of the lock by the spinner must become visible to
         // the exiting thread).
         //

         // It appears that an heir-presumptive (successor) must be made ready.
         // Only the current lock owner can manipulate the EntryList or
         // drain _cxq, so we need to reacquire the lock.  If we fail
         // to reacquire the lock the responsibility for ensuring succession
         // falls to the new owner.
         //
         if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
            return ;
         }
         TEVENT (Exit - Reacquired) ;
      } else {
         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
            OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
            OrderAccess::storeload() ;
            // Ratify the previously observed values.
            if (_cxq == NULL || _succ != NULL) {
                TEVENT (Inflated exit - simple egress) ;
                return ;
            }

            // inopportune interleaving -- the exiting thread (this thread)
            // in the fast-exit path raced an entering thread in the slow-enter
            // path.
            // We have two choices:
            // A.  Try to reacquire the lock.
            //     If the CAS() fails return immediately, otherwise
            //     we either restart/rerun the exit operation, or simply
            //     fall-through into the code below which wakes a successor.
            // B.  If the elements forming the EntryList|cxq are TSM
            //     we could simply unpark() the lead thread and return
            //     without having set _succ.
            if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
               TEVENT (Inflated exit - reacquired succeeded) ;
               return ;
            }
            TEVENT (Inflated exit - reacquired failed) ;
         } else {
            TEVENT (Inflated exit - complex egress) ;
         }
      }

      guarantee (_owner == THREAD, "invariant") ;

      ObjectWaiter * w = NULL ;
      int QMode = Knob_QMode ;

      if (QMode == 2 && _cxq != NULL) {
          // QMode == 2 : cxq has precedence over EntryList.
          // Try to directly wake a successor from the cxq.
          // If successful, the successor will need to unlink itself from cxq.
          w = _cxq ;
          assert (w != NULL, "invariant") ;
          assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
          ExitEpilog (Self, w) ;
          return ;
      }

      if (QMode == 3 && _cxq != NULL) {
          // Aggressively drain cxq into EntryList at the first opportunity.
          // This policy ensure that recently-run threads live at the head of EntryList.
          // Drain _cxq into EntryList - bulk transfer.
          // First, detach _cxq.
          // The following loop is tantamount to: w = swap (&cxq, NULL)
          w = _cxq ;
          for (;;) {
             assert (w != NULL, "Invariant") ;
             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
             if (u == w) break ;
             w = u ;
          }
          assert (w != NULL              , "invariant") ;

          ObjectWaiter * q = NULL ;
          ObjectWaiter * p ;
          for (p = w ; p != NULL ; p = p->_next) {
              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
              p->TState = ObjectWaiter::TS_ENTER ;
              p->_prev = q ;
              q = p ;
          }

          // Append the RATs to the EntryList
          // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
          ObjectWaiter * Tail ;
          for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
          if (Tail == NULL) {
              _EntryList = w ;
          } else {
              Tail->_next = w ;
              w->_prev = Tail ;
          }

          // Fall thru into code that tries to wake a successor from EntryList
      }

      if (QMode == 4 && _cxq != NULL) {
          // Aggressively drain cxq into EntryList at the first opportunity.
          // This policy ensure that recently-run threads live at the head of EntryList.

          // Drain _cxq into EntryList - bulk transfer.
          // First, detach _cxq.
          // The following loop is tantamount to: w = swap (&cxq, NULL)
          w = _cxq ;
          for (;;) {
             assert (w != NULL, "Invariant") ;
             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
             if (u == w) break ;
             w = u ;
          }
          assert (w != NULL              , "invariant") ;

          ObjectWaiter * q = NULL ;
          ObjectWaiter * p ;
          for (p = w ; p != NULL ; p = p->_next) {
              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
              p->TState = ObjectWaiter::TS_ENTER ;
              p->_prev = q ;
              q = p ;
          }

          // Prepend the RATs to the EntryList
          if (_EntryList != NULL) {
              q->_next = _EntryList ;
              _EntryList->_prev = q ;
          }
          _EntryList = w ;

          // Fall thru into code that tries to wake a successor from EntryList
      }

      w = _EntryList  ;
      if (w != NULL) {
          // I'd like to write: guarantee (w->_thread != Self).
          // But in practice an exiting thread may find itself on the EntryList.
          // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
          // then calls exit().  Exit release the lock by setting O._owner to NULL.
          // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
          // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
          // release the lock "O".  T2 resumes immediately after the ST of null into
          // _owner, above.  T2 notices that the EntryList is populated, so it
          // reacquires the lock and then finds itself on the EntryList.
          // Given all that, we have to tolerate the circumstance where "w" is
          // associated with Self.
          assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
          ExitEpilog (Self, w) ;
          return ;
      }

      // If we find that both _cxq and EntryList are null then just
      // re-run the exit protocol from the top.
      w = _cxq ;
      if (w == NULL) continue ;

      // Drain _cxq into EntryList - bulk transfer.
      // First, detach _cxq.
      // The following loop is tantamount to: w = swap (&cxq, NULL)
      for (;;) {
          assert (w != NULL, "Invariant") ;
          ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
          if (u == w) break ;
          w = u ;
      }
      TEVENT (Inflated exit - drain cxq into EntryList) ;

      assert (w != NULL              , "invariant") ;
      assert (_EntryList  == NULL    , "invariant") ;

      // Convert the LIFO SLL anchored by _cxq into a DLL.
      // The list reorganization step operates in O(LENGTH(w)) time.
      // It's critical that this step operate quickly as
      // "Self" still holds the outer-lock, restricting parallelism
      // and effectively lengthening the critical section.
      // Invariant: s chases t chases u.
      // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
      // we have faster access to the tail.

      if (QMode == 1) {
         // QMode == 1 : drain cxq to EntryList, reversing order
         // We also reverse the order of the list.
         ObjectWaiter * s = NULL ;
         ObjectWaiter * t = w ;
         ObjectWaiter * u = NULL ;
         while (t != NULL) {
             guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
             t->TState = ObjectWaiter::TS_ENTER ;
             u = t->_next ;
             t->_prev = u ;
             t->_next = s ;
             s = t;
             t = u ;
         }
         _EntryList  = s ;
         assert (s != NULL, "invariant") ;
      } else {
         // QMode == 0 or QMode == 2
         _EntryList = w ;
         ObjectWaiter * q = NULL ;
         ObjectWaiter * p ;
         for (p = w ; p != NULL ; p = p->_next) {
             guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
             p->TState = ObjectWaiter::TS_ENTER ;
             p->_prev = q ;
             q = p ;
         }
      }

      // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
      // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().

      // See if we can abdicate to a spinner instead of waking a thread.
      // A primary goal of the implementation is to reduce the
      // context-switch rate.
      if (_succ != NULL) continue;

      w = _EntryList  ;
      if (w != NULL) {
          guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
          ExitEpilog (Self, w) ;
          return ;
      }
   }
}

// ExitSuspendEquivalent:
// A faster alternate to handle_special_suspend_equivalent_condition()
//
// handle_special_suspend_equivalent_condition() unconditionally
// acquires the SR_lock.  On some platforms uncontended MutexLocker()
// operations have high latency.  Note that in ::enter() we call HSSEC
// while holding the monitor, so we effectively lengthen the critical sections.
//
// There are a number of possible solutions:
//
// A.  To ameliorate the problem we might also defer state transitions
//     to as late as possible -- just prior to parking.
//     Given that, we'd call HSSEC after having returned from park(),
//     but before attempting to acquire the monitor.  This is only a
//     partial solution.  It avoids calling HSSEC while holding the
//     monitor (good), but it still increases successor reacquisition latency --
//     the interval between unparking a successor and the time the successor
//     resumes and retries the lock.  See ReenterI(), which defers state transitions.
//     If we use this technique we can also avoid EnterI()-exit() loop
//     in ::enter() where we iteratively drop the lock and then attempt
//     to reacquire it after suspending.
//
// B.  In the future we might fold all the suspend bits into a
//     composite per-thread suspend flag and then update it with CAS().
//     Alternately, a Dekker-like mechanism with multiple variables
//     would suffice:
//       ST Self->_suspend_equivalent = false
//       MEMBAR
//       LD Self_>_suspend_flags
//


bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
   int Mode = Knob_FastHSSEC ;
   if (Mode && !jSelf->is_external_suspend()) {
      assert (jSelf->is_suspend_equivalent(), "invariant") ;
      jSelf->clear_suspend_equivalent() ;
      if (2 == Mode) OrderAccess::storeload() ;
      if (!jSelf->is_external_suspend()) return false ;
      // We raced a suspension -- fall thru into the slow path
      TEVENT (ExitSuspendEquivalent - raced) ;
      jSelf->set_suspend_equivalent() ;
   }
   return jSelf->handle_special_suspend_equivalent_condition() ;
}


void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
   assert (_owner == Self, "invariant") ;

   // Exit protocol:
   // 1. ST _succ = wakee
   // 2. membar #loadstore|#storestore;
   // 2. ST _owner = NULL
   // 3. unpark(wakee)

   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
   ParkEvent * Trigger = Wakee->_event ;

   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
   // out-of-scope (non-extant).
   Wakee  = NULL ;

   // Drop the lock
   OrderAccess::release_store_ptr (&_owner, NULL) ;
   OrderAccess::fence() ;                               // ST _owner vs LD in unpark()

   if (SafepointSynchronize::do_call_back()) {
      TEVENT (unpark before SAFEPOINT) ;
   }

   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
   Trigger->unpark() ;

   // Maintain stats and report events to JVMTI
   if (ObjectMonitor::_sync_Parks != NULL) {
      ObjectMonitor::_sync_Parks->inc() ;
   }
}


// -----------------------------------------------------------------------------
// Class Loader deadlock handling.
//
// complete_exit exits a lock returning recursion count
// complete_exit/reenter operate as a wait without waiting
// complete_exit requires an inflated monitor
// The _owner field is not always the Thread addr even with an
// inflated monitor, e.g. the monitor can be inflated by a non-owning
// thread due to contention.
intptr_t ObjectMonitor::complete_exit(TRAPS) {
   Thread * const Self = THREAD;
   assert(Self->is_Java_thread(), "Must be Java thread!");
   JavaThread *jt = (JavaThread *)THREAD;

   DeferredInitialize();

   if (THREAD != _owner) {
    if (THREAD->is_lock_owned ((address)_owner)) {
       assert(_recursions == 0, "internal state error");
       _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
       _recursions = 0 ;
       OwnerIsThread = 1 ;
    }
   }

   guarantee(Self == _owner, "complete_exit not owner");
   intptr_t save = _recursions; // record the old recursion count
   _recursions = 0;        // set the recursion level to be 0
S
sla 已提交
1388
   exit (true, Self) ;           // exit the monitor
A
acorn 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
   guarantee (_owner != Self, "invariant");
   return save;
}

// reenter() enters a lock and sets recursion count
// complete_exit/reenter operate as a wait without waiting
void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
   Thread * const Self = THREAD;
   assert(Self->is_Java_thread(), "Must be Java thread!");
   JavaThread *jt = (JavaThread *)THREAD;

   guarantee(_owner != Self, "reenter already owner");
   enter (THREAD);       // enter the monitor
   guarantee (_recursions == 0, "reenter recursion");
   _recursions = recursions;
   return;
}


// -----------------------------------------------------------------------------
// A macro is used below because there may already be a pending
// exception which should not abort the execution of the routines
// which use this (which is why we don't put this into check_slow and
// call it with a CHECK argument).

#define CHECK_OWNER()                                                             \
  do {                                                                            \
    if (THREAD != _owner) {                                                       \
      if (THREAD->is_lock_owned((address) _owner)) {                              \
        _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
        _recursions = 0;                                                          \
        OwnerIsThread = 1 ;                                                       \
      } else {                                                                    \
        TEVENT (Throw IMSX) ;                                                     \
        THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
      }                                                                           \
    }                                                                             \
  } while (false)

// check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
// TODO-FIXME: remove check_slow() -- it's likely dead.

void ObjectMonitor::check_slow(TRAPS) {
  TEVENT (check_slow - throw IMSX) ;
  assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
  THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
}

static int Adjust (volatile int * adr, int dx) {
  int v ;
  for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
  return v ;
}
S
sla 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

// helper method for posting a monitor wait event
void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
                                                           jlong notifier_tid,
                                                           jlong timeout,
                                                           bool timedout) {
  event->set_klass(((oop)this->object())->klass());
  event->set_timeout((TYPE_ULONG)timeout);
  event->set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
  event->set_notifier((TYPE_OSTHREAD)notifier_tid);
  event->set_timedOut((TYPE_BOOLEAN)timedout);
  event->commit();
}

A
acorn 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
// -----------------------------------------------------------------------------
// Wait/Notify/NotifyAll
//
// Note: a subset of changes to ObjectMonitor::wait()
// will need to be replicated in complete_exit above
void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
   Thread * const Self = THREAD ;
   assert(Self->is_Java_thread(), "Must be Java thread!");
   JavaThread *jt = (JavaThread *)THREAD;

   DeferredInitialize () ;

   // Throw IMSX or IEX.
   CHECK_OWNER();

S
sla 已提交
1471 1472
   EventJavaMonitorWait event;

A
acorn 已提交
1473 1474 1475 1476 1477 1478 1479
   // check for a pending interrupt
   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
     // post monitor waited event.  Note that this is past-tense, we are done waiting.
     if (JvmtiExport::should_post_monitor_waited()) {
        // Note: 'false' parameter is passed here because the
        // wait was not timed out due to thread interrupt.
        JvmtiExport::post_monitor_waited(jt, this, false);
1480 1481 1482 1483 1484 1485 1486 1487

        // In this short circuit of the monitor wait protocol, the
        // current thread never drops ownership of the monitor and
        // never gets added to the wait queue so the current thread
        // cannot be made the successor. This means that the
        // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
        // consume an unpark() meant for the ParkEvent associated with
        // this ObjectMonitor.
A
acorn 已提交
1488
     }
S
sla 已提交
1489 1490 1491
     if (event.should_commit()) {
       post_monitor_wait_event(&event, 0, millis, false);
     }
A
acorn 已提交
1492 1493 1494 1495
     TEVENT (Wait - Throw IEX) ;
     THROW(vmSymbols::java_lang_InterruptedException());
     return ;
   }
S
sla 已提交
1496

A
acorn 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
   TEVENT (Wait) ;

   assert (Self->_Stalled == 0, "invariant") ;
   Self->_Stalled = intptr_t(this) ;
   jt->set_current_waiting_monitor(this);

   // create a node to be put into the queue
   // Critically, after we reset() the event but prior to park(), we must check
   // for a pending interrupt.
   ObjectWaiter node(Self);
   node.TState = ObjectWaiter::TS_WAIT ;
   Self->_ParkEvent->reset() ;
   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag

   // Enter the waiting queue, which is a circular doubly linked list in this case
   // but it could be a priority queue or any data structure.
   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
   // by the the owner of the monitor *except* in the case where park()
   // returns because of a timeout of interrupt.  Contention is exceptionally rare
   // so we use a simple spin-lock instead of a heavier-weight blocking lock.

   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
   AddWaiter (&node) ;
   Thread::SpinRelease (&_WaitSetLock) ;

   if ((SyncFlags & 4) == 0) {
      _Responsible = NULL ;
   }
   intptr_t save = _recursions; // record the old recursion count
   _waiters++;                  // increment the number of waiters
   _recursions = 0;             // set the recursion level to be 1
S
sla 已提交
1528
   exit (true, Self) ;                    // exit the monitor
A
acorn 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
   guarantee (_owner != Self, "invariant") ;

   // The thread is on the WaitSet list - now park() it.
   // On MP systems it's conceivable that a brief spin before we park
   // could be profitable.
   //
   // TODO-FIXME: change the following logic to a loop of the form
   //   while (!timeout && !interrupted && _notified == 0) park()

   int ret = OS_OK ;
   int WasNotified = 0 ;
   { // State transition wrappers
     OSThread* osthread = Self->osthread();
     OSThreadWaitState osts(osthread, true);
     {
       ThreadBlockInVM tbivm(jt);
       // Thread is in thread_blocked state and oop access is unsafe.
       jt->set_suspend_equivalent();

       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
           // Intentionally empty
       } else
       if (node._notified == 0) {
         if (millis <= 0) {
            Self->_ParkEvent->park () ;
         } else {
            ret = Self->_ParkEvent->park (millis) ;
         }
       }

       // were we externally suspended while we were waiting?
       if (ExitSuspendEquivalent (jt)) {
          // TODO-FIXME: add -- if succ == Self then succ = null.
          jt->java_suspend_self();
       }

     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm


     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
     // from the WaitSet to the EntryList.
     // See if we need to remove Node from the WaitSet.
     // We use double-checked locking to avoid grabbing _WaitSetLock
     // if the thread is not on the wait queue.
     //
     // Note that we don't need a fence before the fetch of TState.
     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
     // written by the is thread. (perhaps the fetch might even be satisfied
     // by a look-aside into the processor's own store buffer, although given
     // the length of the code path between the prior ST and this load that's
     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
     // then we'll acquire the lock and then re-fetch a fresh TState value.
     // That is, we fail toward safety.

     if (node.TState == ObjectWaiter::TS_WAIT) {
         Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
         if (node.TState == ObjectWaiter::TS_WAIT) {
            DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
            assert(node._notified == 0, "invariant");
            node.TState = ObjectWaiter::TS_RUN ;
         }
         Thread::SpinRelease (&_WaitSetLock) ;
     }

     // The thread is now either on off-list (TS_RUN),
     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
     // The Node's TState variable is stable from the perspective of this thread.
     // No other threads will asynchronously modify TState.
     guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
     OrderAccess::loadload() ;
     if (_succ == Self) _succ = NULL ;
     WasNotified = node._notified ;

     // Reentry phase -- reacquire the monitor.
     // re-enter contended monitor after object.wait().
     // retain OBJECT_WAIT state until re-enter successfully completes
     // Thread state is thread_in_vm and oop access is again safe,
     // although the raw address of the object may have changed.
     // (Don't cache naked oops over safepoints, of course).

     // post monitor waited event. Note that this is past-tense, we are done waiting.
     if (JvmtiExport::should_post_monitor_waited()) {
       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
S
sla 已提交
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
       if (node._notified != 0 && _succ == Self) {
         // In this part of the monitor wait-notify-reenter protocol it
         // is possible (and normal) for another thread to do a fastpath
         // monitor enter-exit while this thread is still trying to get
         // to the reenter portion of the protocol.
         //
         // The ObjectMonitor was notified and the current thread is
         // the successor which also means that an unpark() has already
         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
         // consume the unpark() that was done when the successor was
         // set because the same ParkEvent is shared between Java
         // monitors and JVM/TI RawMonitors (for now).
         //
         // We redo the unpark() to ensure forward progress, i.e., we
         // don't want all pending threads hanging (parked) with none
         // entering the unlocked monitor.
         node._event->unpark();
       }
1631 1632
     }

S
sla 已提交
1633 1634 1635 1636
     if (event.should_commit()) {
       post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
     }

A
acorn 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
     OrderAccess::fence() ;

     assert (Self->_Stalled != 0, "invariant") ;
     Self->_Stalled = 0 ;

     assert (_owner != Self, "invariant") ;
     ObjectWaiter::TStates v = node.TState ;
     if (v == ObjectWaiter::TS_RUN) {
         enter (Self) ;
     } else {
         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
         ReenterI (Self, &node) ;
         node.wait_reenter_end(this);
     }

     // Self has reacquired the lock.
     // Lifecycle - the node representing Self must not appear on any queues.
     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
     // want residual elements associated with this thread left on any lists.
     guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
     assert    (_owner == Self, "invariant") ;
     assert    (_succ != Self , "invariant") ;
   } // OSThreadWaitState()

   jt->set_current_waiting_monitor(NULL);

   guarantee (_recursions == 0, "invariant") ;
   _recursions = save;     // restore the old recursion count
   _waiters--;             // decrement the number of waiters

   // Verify a few postconditions
   assert (_owner == Self       , "invariant") ;
   assert (_succ  != Self       , "invariant") ;
   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;

   if (SyncFlags & 32) {
      OrderAccess::fence() ;
   }

   // check if the notification happened
   if (!WasNotified) {
     // no, it could be timeout or Thread.interrupt() or both
     // check for interrupt event, otherwise it is timeout
     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
       TEVENT (Wait - throw IEX from epilog) ;
       THROW(vmSymbols::java_lang_InterruptedException());
     }
   }

   // NOTE: Spurious wake up will be consider as timeout.
   // Monitor notify has precedence over thread interrupt.
}


// Consider:
// If the lock is cool (cxq == null && succ == null) and we're on an MP system
// then instead of transferring a thread from the WaitSet to the EntryList
// we might just dequeue a thread from the WaitSet and directly unpark() it.

void ObjectMonitor::notify(TRAPS) {
  CHECK_OWNER();
  if (_WaitSet == NULL) {
     TEVENT (Empty-Notify) ;
     return ;
  }
  DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);

  int Policy = Knob_MoveNotifyee ;

  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
  ObjectWaiter * iterator = DequeueWaiter() ;
  if (iterator != NULL) {
     TEVENT (Notify1 - Transfer) ;
     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
     guarantee (iterator->_notified == 0, "invariant") ;
     if (Policy != 4) {
        iterator->TState = ObjectWaiter::TS_ENTER ;
     }
     iterator->_notified = 1 ;
S
sla 已提交
1716 1717
     Thread * Self = THREAD;
     iterator->_notifier_tid = Self->osthread()->thread_id();
A
acorn 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

     ObjectWaiter * List = _EntryList ;
     if (List != NULL) {
        assert (List->_prev == NULL, "invariant") ;
        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
        assert (List != iterator, "invariant") ;
     }

     if (Policy == 0) {       // prepend to EntryList
         if (List == NULL) {
             iterator->_next = iterator->_prev = NULL ;
             _EntryList = iterator ;
         } else {
             List->_prev = iterator ;
             iterator->_next = List ;
             iterator->_prev = NULL ;
             _EntryList = iterator ;
        }
     } else
     if (Policy == 1) {      // append to EntryList
         if (List == NULL) {
             iterator->_next = iterator->_prev = NULL ;
             _EntryList = iterator ;
         } else {
            // CONSIDER:  finding the tail currently requires a linear-time walk of
            // the EntryList.  We can make tail access constant-time by converting to
            // a CDLL instead of using our current DLL.
            ObjectWaiter * Tail ;
            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
            Tail->_next = iterator ;
            iterator->_prev = Tail ;
            iterator->_next = NULL ;
        }
     } else
     if (Policy == 2) {      // prepend to cxq
         // prepend to cxq
         if (List == NULL) {
             iterator->_next = iterator->_prev = NULL ;
             _EntryList = iterator ;
         } else {
            iterator->TState = ObjectWaiter::TS_CXQ ;
            for (;;) {
                ObjectWaiter * Front = _cxq ;
                iterator->_next = Front ;
                if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
                    break ;
                }
            }
         }
     } else
     if (Policy == 3) {      // append to cxq
        iterator->TState = ObjectWaiter::TS_CXQ ;
        for (;;) {
            ObjectWaiter * Tail ;
            Tail = _cxq ;
            if (Tail == NULL) {
                iterator->_next = NULL ;
                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
                   break ;
                }
            } else {
                while (Tail->_next != NULL) Tail = Tail->_next ;
                Tail->_next = iterator ;
                iterator->_prev = Tail ;
                iterator->_next = NULL ;
                break ;
            }
        }
     } else {
        ParkEvent * ev = iterator->_event ;
        iterator->TState = ObjectWaiter::TS_RUN ;
        OrderAccess::fence() ;
        ev->unpark() ;
     }

     if (Policy < 4) {
       iterator->wait_reenter_begin(this);
     }

     // _WaitSetLock protects the wait queue, not the EntryList.  We could
     // move the add-to-EntryList operation, above, outside the critical section
     // protected by _WaitSetLock.  In practice that's not useful.  With the
     // exception of  wait() timeouts and interrupts the monitor owner
     // is the only thread that grabs _WaitSetLock.  There's almost no contention
     // on _WaitSetLock so it's not profitable to reduce the length of the
     // critical section.
  }

  Thread::SpinRelease (&_WaitSetLock) ;

  if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
     ObjectMonitor::_sync_Notifications->inc() ;
  }
}


void ObjectMonitor::notifyAll(TRAPS) {
  CHECK_OWNER();
  ObjectWaiter* iterator;
  if (_WaitSet == NULL) {
      TEVENT (Empty-NotifyAll) ;
      return ;
  }
  DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);

  int Policy = Knob_MoveNotifyee ;
  int Tally = 0 ;
  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;

  for (;;) {
     iterator = DequeueWaiter () ;
     if (iterator == NULL) break ;
     TEVENT (NotifyAll - Transfer1) ;
     ++Tally ;

     // Disposition - what might we do with iterator ?
     // a.  add it directly to the EntryList - either tail or head.
     // b.  push it onto the front of the _cxq.
     // For now we use (a).

     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
     guarantee (iterator->_notified == 0, "invariant") ;
     iterator->_notified = 1 ;
S
sla 已提交
1842 1843
     Thread * Self = THREAD;
     iterator->_notifier_tid = Self->osthread()->thread_id();
A
acorn 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
     if (Policy != 4) {
        iterator->TState = ObjectWaiter::TS_ENTER ;
     }

     ObjectWaiter * List = _EntryList ;
     if (List != NULL) {
        assert (List->_prev == NULL, "invariant") ;
        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
        assert (List != iterator, "invariant") ;
     }

     if (Policy == 0) {       // prepend to EntryList
         if (List == NULL) {
             iterator->_next = iterator->_prev = NULL ;
             _EntryList = iterator ;
         } else {
             List->_prev = iterator ;
             iterator->_next = List ;
             iterator->_prev = NULL ;
             _EntryList = iterator ;
        }
     } else
     if (Policy == 1) {      // append to EntryList
         if (List == NULL) {
             iterator->_next = iterator->_prev = NULL ;
             _EntryList = iterator ;
         } else {
            // CONSIDER:  finding the tail currently requires a linear-time walk of
            // the EntryList.  We can make tail access constant-time by converting to
            // a CDLL instead of using our current DLL.
            ObjectWaiter * Tail ;
            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
            Tail->_next = iterator ;
            iterator->_prev = Tail ;
            iterator->_next = NULL ;
        }
     } else
     if (Policy == 2) {      // prepend to cxq
         // prepend to cxq
         iterator->TState = ObjectWaiter::TS_CXQ ;
         for (;;) {
             ObjectWaiter * Front = _cxq ;
             iterator->_next = Front ;
             if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
                 break ;
             }
         }
     } else
     if (Policy == 3) {      // append to cxq
        iterator->TState = ObjectWaiter::TS_CXQ ;
        for (;;) {
            ObjectWaiter * Tail ;
            Tail = _cxq ;
            if (Tail == NULL) {
                iterator->_next = NULL ;
                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
                   break ;
                }
            } else {
                while (Tail->_next != NULL) Tail = Tail->_next ;
                Tail->_next = iterator ;
                iterator->_prev = Tail ;
                iterator->_next = NULL ;
                break ;
            }
        }
     } else {
        ParkEvent * ev = iterator->_event ;
        iterator->TState = ObjectWaiter::TS_RUN ;
        OrderAccess::fence() ;
        ev->unpark() ;
     }

     if (Policy < 4) {
       iterator->wait_reenter_begin(this);
     }

     // _WaitSetLock protects the wait queue, not the EntryList.  We could
     // move the add-to-EntryList operation, above, outside the critical section
     // protected by _WaitSetLock.  In practice that's not useful.  With the
     // exception of  wait() timeouts and interrupts the monitor owner
     // is the only thread that grabs _WaitSetLock.  There's almost no contention
     // on _WaitSetLock so it's not profitable to reduce the length of the
     // critical section.
  }

  Thread::SpinRelease (&_WaitSetLock) ;

  if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
     ObjectMonitor::_sync_Notifications->inc(Tally) ;
  }
}

// -----------------------------------------------------------------------------
// Adaptive Spinning Support
//
// Adaptive spin-then-block - rational spinning
//
// Note that we spin "globally" on _owner with a classic SMP-polite TATAS
// algorithm.  On high order SMP systems it would be better to start with
// a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
// a contending thread could enqueue itself on the cxq and then spin locally
// on a thread-specific variable such as its ParkEvent._Event flag.
// That's left as an exercise for the reader.  Note that global spinning is
// not problematic on Niagara, as the L2$ serves the interconnect and has both
// low latency and massive bandwidth.
//
// Broadly, we can fix the spin frequency -- that is, the % of contended lock
// acquisition attempts where we opt to spin --  at 100% and vary the spin count
// (duration) or we can fix the count at approximately the duration of
// a context switch and vary the frequency.   Of course we could also
// vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
// See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
//
// This implementation varies the duration "D", where D varies with
// the success rate of recent spin attempts. (D is capped at approximately
// length of a round-trip context switch).  The success rate for recent
// spin attempts is a good predictor of the success rate of future spin
// attempts.  The mechanism adapts automatically to varying critical
// section length (lock modality), system load and degree of parallelism.
// D is maintained per-monitor in _SpinDuration and is initialized
// optimistically.  Spin frequency is fixed at 100%.
//
// Note that _SpinDuration is volatile, but we update it without locks
// or atomics.  The code is designed so that _SpinDuration stays within
// a reasonable range even in the presence of races.  The arithmetic
// operations on _SpinDuration are closed over the domain of legal values,
// so at worst a race will install and older but still legal value.
// At the very worst this introduces some apparent non-determinism.
// We might spin when we shouldn't or vice-versa, but since the spin
// count are relatively short, even in the worst case, the effect is harmless.
//
// Care must be taken that a low "D" value does not become an
// an absorbing state.  Transient spinning failures -- when spinning
// is overall profitable -- should not cause the system to converge
// on low "D" values.  We want spinning to be stable and predictable
// and fairly responsive to change and at the same time we don't want
// it to oscillate, become metastable, be "too" non-deterministic,
// or converge on or enter undesirable stable absorbing states.
//
// We implement a feedback-based control system -- using past behavior
// to predict future behavior.  We face two issues: (a) if the
// input signal is random then the spin predictor won't provide optimal
// results, and (b) if the signal frequency is too high then the control
// system, which has some natural response lag, will "chase" the signal.
// (b) can arise from multimodal lock hold times.  Transient preemption
// can also result in apparent bimodal lock hold times.
// Although sub-optimal, neither condition is particularly harmful, as
// in the worst-case we'll spin when we shouldn't or vice-versa.
// The maximum spin duration is rather short so the failure modes aren't bad.
// To be conservative, I've tuned the gain in system to bias toward
// _not spinning.  Relatedly, the system can sometimes enter a mode where it
// "rings" or oscillates between spinning and not spinning.  This happens
// when spinning is just on the cusp of profitability, however, so the
// situation is not dire.  The state is benign -- there's no need to add
// hysteresis control to damp the transition rate between spinning and
// not spinning.
//

intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;

// Spinning: Fixed frequency (100%), vary duration


int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {

    // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
    int ctr = Knob_FixedSpin ;
    if (ctr != 0) {
        while (--ctr >= 0) {
            if (TryLock (Self) > 0) return 1 ;
            SpinPause () ;
        }
        return 0 ;
    }

    for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
      if (TryLock(Self) > 0) {
        // Increase _SpinDuration ...
        // Note that we don't clamp SpinDuration precisely at SpinLimit.
        // Raising _SpurDuration to the poverty line is key.
        int x = _SpinDuration ;
        if (x < Knob_SpinLimit) {
           if (x < Knob_Poverty) x = Knob_Poverty ;
           _SpinDuration = x + Knob_BonusB ;
        }
        return 1 ;
      }
      SpinPause () ;
    }

    // Admission control - verify preconditions for spinning
    //
    // We always spin a little bit, just to prevent _SpinDuration == 0 from
    // becoming an absorbing state.  Put another way, we spin briefly to
    // sample, just in case the system load, parallelism, contention, or lock
    // modality changed.
    //
    // Consider the following alternative:
    // Periodically set _SpinDuration = _SpinLimit and try a long/full
    // spin attempt.  "Periodically" might mean after a tally of
    // the # of failed spin attempts (or iterations) reaches some threshold.
    // This takes us into the realm of 1-out-of-N spinning, where we
    // hold the duration constant but vary the frequency.

    ctr = _SpinDuration  ;
    if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
    if (ctr <= 0) return 0 ;

    if (Knob_SuccRestrict && _succ != NULL) return 0 ;
    if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
       TEVENT (Spin abort - notrunnable [TOP]);
       return 0 ;
    }

    int MaxSpin = Knob_MaxSpinners ;
    if (MaxSpin >= 0) {
       if (_Spinner > MaxSpin) {
          TEVENT (Spin abort -- too many spinners) ;
          return 0 ;
       }
       // Slighty racy, but benign ...
       Adjust (&_Spinner, 1) ;
    }

    // We're good to spin ... spin ingress.
    // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
    // when preparing to LD...CAS _owner, etc and the CAS is likely
    // to succeed.
    int hits    = 0 ;
    int msk     = 0 ;
    int caspty  = Knob_CASPenalty ;
    int oxpty   = Knob_OXPenalty ;
    int sss     = Knob_SpinSetSucc ;
    if (sss && _succ == NULL ) _succ = Self ;
    Thread * prv = NULL ;

    // There are three ways to exit the following loop:
    // 1.  A successful spin where this thread has acquired the lock.
    // 2.  Spin failure with prejudice
    // 3.  Spin failure without prejudice

    while (--ctr >= 0) {

      // Periodic polling -- Check for pending GC
      // Threads may spin while they're unsafe.
      // We don't want spinning threads to delay the JVM from reaching
      // a stop-the-world safepoint or to steal cycles from GC.
      // If we detect a pending safepoint we abort in order that
      // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
      // this thread, if safe, doesn't steal cycles from GC.
      // This is in keeping with the "no loitering in runtime" rule.
      // We periodically check to see if there's a safepoint pending.
      if ((ctr & 0xFF) == 0) {
         if (SafepointSynchronize::do_call_back()) {
            TEVENT (Spin: safepoint) ;
            goto Abort ;           // abrupt spin egress
         }
         if (Knob_UsePause & 1) SpinPause () ;

         int (*scb)(intptr_t,int) = SpinCallbackFunction ;
         if (hits > 50 && scb != NULL) {
            int abend = (*scb)(SpinCallbackArgument, 0) ;
         }
      }

      if (Knob_UsePause & 2) SpinPause() ;

      // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
      // This is useful on classic SMP systems, but is of less utility on
      // N1-style CMT platforms.
      //
      // Trade-off: lock acquisition latency vs coherency bandwidth.
      // Lock hold times are typically short.  A histogram
      // of successful spin attempts shows that we usually acquire
      // the lock early in the spin.  That suggests we want to
      // sample _owner frequently in the early phase of the spin,
      // but then back-off and sample less frequently as the spin
      // progresses.  The back-off makes a good citizen on SMP big
      // SMP systems.  Oversampling _owner can consume excessive
      // coherency bandwidth.  Relatedly, if we _oversample _owner we
      // can inadvertently interfere with the the ST m->owner=null.
      // executed by the lock owner.
      if (ctr & msk) continue ;
      ++hits ;
      if ((hits & 0xF) == 0) {
        // The 0xF, above, corresponds to the exponent.
        // Consider: (msk+1)|msk
        msk = ((msk << 2)|3) & BackOffMask ;
      }

      // Probe _owner with TATAS
      // If this thread observes the monitor transition or flicker
      // from locked to unlocked to locked, then the odds that this
      // thread will acquire the lock in this spin attempt go down
      // considerably.  The same argument applies if the CAS fails
      // or if we observe _owner change from one non-null value to
      // another non-null value.   In such cases we might abort
      // the spin without prejudice or apply a "penalty" to the
      // spin count-down variable "ctr", reducing it by 100, say.

      Thread * ox = (Thread *) _owner ;
      if (ox == NULL) {
         ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
         if (ox == NULL) {
            // The CAS succeeded -- this thread acquired ownership
            // Take care of some bookkeeping to exit spin state.
            if (sss && _succ == Self) {
               _succ = NULL ;
            }
            if (MaxSpin > 0) Adjust (&_Spinner, -1) ;

            // Increase _SpinDuration :
            // The spin was successful (profitable) so we tend toward
            // longer spin attempts in the future.
            // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
            // If we acquired the lock early in the spin cycle it
            // makes sense to increase _SpinDuration proportionally.
            // Note that we don't clamp SpinDuration precisely at SpinLimit.
            int x = _SpinDuration ;
            if (x < Knob_SpinLimit) {
                if (x < Knob_Poverty) x = Knob_Poverty ;
                _SpinDuration = x + Knob_Bonus ;
            }
            return 1 ;
         }

         // The CAS failed ... we can take any of the following actions:
         // * penalize: ctr -= Knob_CASPenalty
         // * exit spin with prejudice -- goto Abort;
         // * exit spin without prejudice.
         // * Since CAS is high-latency, retry again immediately.
         prv = ox ;
         TEVENT (Spin: cas failed) ;
         if (caspty == -2) break ;
         if (caspty == -1) goto Abort ;
         ctr -= caspty ;
         continue ;
      }

      // Did lock ownership change hands ?
      if (ox != prv && prv != NULL ) {
          TEVENT (spin: Owner changed)
          if (oxpty == -2) break ;
          if (oxpty == -1) goto Abort ;
          ctr -= oxpty ;
      }
      prv = ox ;

      // Abort the spin if the owner is not executing.
      // The owner must be executing in order to drop the lock.
      // Spinning while the owner is OFFPROC is idiocy.
      // Consider: ctr -= RunnablePenalty ;
      if (Knob_OState && NotRunnable (Self, ox)) {
         TEVENT (Spin abort - notrunnable);
         goto Abort ;
      }
      if (sss && _succ == NULL ) _succ = Self ;
   }

   // Spin failed with prejudice -- reduce _SpinDuration.
   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
   // AIMD is globally stable.
   TEVENT (Spin failure) ;
   {
     int x = _SpinDuration ;
     if (x > 0) {
        // Consider an AIMD scheme like: x -= (x >> 3) + 100
        // This is globally sample and tends to damp the response.
        x -= Knob_Penalty ;
        if (x < 0) x = 0 ;
        _SpinDuration = x ;
     }
   }

 Abort:
   if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
   if (sss && _succ == Self) {
      _succ = NULL ;
      // Invariant: after setting succ=null a contending thread
      // must recheck-retry _owner before parking.  This usually happens
      // in the normal usage of TrySpin(), but it's safest
      // to make TrySpin() as foolproof as possible.
      OrderAccess::fence() ;
      if (TryLock(Self) > 0) return 1 ;
   }
   return 0 ;
}

// NotRunnable() -- informed spinning
//
// Don't bother spinning if the owner is not eligible to drop the lock.
// Peek at the owner's schedctl.sc_state and Thread._thread_values and
// spin only if the owner thread is _thread_in_Java or _thread_in_vm.
// The thread must be runnable in order to drop the lock in timely fashion.
// If the _owner is not runnable then spinning will not likely be
// successful (profitable).
//
// Beware -- the thread referenced by _owner could have died
// so a simply fetch from _owner->_thread_state might trap.
// Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
// Because of the lifecycle issues the schedctl and _thread_state values
// observed by NotRunnable() might be garbage.  NotRunnable must
// tolerate this and consider the observed _thread_state value
// as advisory.
//
// Beware too, that _owner is sometimes a BasicLock address and sometimes
// a thread pointer.  We differentiate the two cases with OwnerIsThread.
// Alternately, we might tag the type (thread pointer vs basiclock pointer)
// with the LSB of _owner.  Another option would be to probablistically probe
// the putative _owner->TypeTag value.
//
// Checking _thread_state isn't perfect.  Even if the thread is
// in_java it might be blocked on a page-fault or have been preempted
// and sitting on a ready/dispatch queue.  _thread state in conjunction
// with schedctl.sc_state gives us a good picture of what the
// thread is doing, however.
//
// TODO: check schedctl.sc_state.
// We'll need to use SafeFetch32() to read from the schedctl block.
// See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
//
// The return value from NotRunnable() is *advisory* -- the
// result is based on sampling and is not necessarily coherent.
// The caller must tolerate false-negative and false-positive errors.
// Spinning, in general, is probabilistic anyway.


int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
    // Check either OwnerIsThread or ox->TypeTag == 2BAD.
    if (!OwnerIsThread) return 0 ;

    if (ox == NULL) return 0 ;

    // Avoid transitive spinning ...
    // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
    // Immediately after T1 acquires L it's possible that T2, also
    // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
    // This occurs transiently after T1 acquired L but before
    // T1 managed to clear T1.Stalled.  T2 does not need to abort
    // its spin in this circumstance.
    intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;

    if (BlockedOn == 1) return 1 ;
    if (BlockedOn != 0) {
      return BlockedOn != intptr_t(this) && _owner == ox ;
    }

    assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
    int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
    // consider also: jst != _thread_in_Java -- but that's overspecific.
    return jst == _thread_blocked || jst == _thread_in_native ;
}


// -----------------------------------------------------------------------------
// WaitSet management ...

ObjectWaiter::ObjectWaiter(Thread* thread) {
  _next     = NULL;
  _prev     = NULL;
  _notified = 0;
  TState    = TS_RUN ;
  _thread   = thread;
  _event    = thread->_ParkEvent ;
  _active   = false;
  assert (_event != NULL, "invariant") ;
}

void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
  JavaThread *jt = (JavaThread *)this->_thread;
  _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
}

void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
  JavaThread *jt = (JavaThread *)this->_thread;
  JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
}

inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
  assert(node != NULL, "should not dequeue NULL node");
  assert(node->_prev == NULL, "node already in list");
  assert(node->_next == NULL, "node already in list");
  // put node at end of queue (circular doubly linked list)
  if (_WaitSet == NULL) {
    _WaitSet = node;
    node->_prev = node;
    node->_next = node;
  } else {
    ObjectWaiter* head = _WaitSet ;
    ObjectWaiter* tail = head->_prev;
    assert(tail->_next == head, "invariant check");
    tail->_next = node;
    head->_prev = node;
    node->_next = head;
    node->_prev = tail;
  }
}

inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
  // dequeue the very first waiter
  ObjectWaiter* waiter = _WaitSet;
  if (waiter) {
    DequeueSpecificWaiter(waiter);
  }
  return waiter;
}

inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
  assert(node != NULL, "should not dequeue NULL node");
  assert(node->_prev != NULL, "node already removed from list");
  assert(node->_next != NULL, "node already removed from list");
  // when the waiter has woken up because of interrupt,
  // timeout or other spurious wake-up, dequeue the
  // waiter from waiting list
  ObjectWaiter* next = node->_next;
  if (next == node) {
    assert(node->_prev == node, "invariant check");
    _WaitSet = NULL;
  } else {
    ObjectWaiter* prev = node->_prev;
    assert(prev->_next == node, "invariant check");
    assert(next->_prev == node, "invariant check");
    next->_prev = prev;
    prev->_next = next;
    if (_WaitSet == node) {
      _WaitSet = next;
    }
  }
  node->_next = NULL;
  node->_prev = NULL;
}

// -----------------------------------------------------------------------------
// PerfData support
PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;

// One-shot global initialization for the sync subsystem.
// We could also defer initialization and initialize on-demand
// the first time we call inflate().  Initialization would
// be protected - like so many things - by the MonitorCache_lock.

void ObjectMonitor::Initialize () {
  static int InitializationCompleted = 0 ;
  assert (InitializationCompleted == 0, "invariant") ;
  InitializationCompleted = 1 ;
  if (UsePerfData) {
      EXCEPTION_MARK ;
      #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
      #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
      NEWPERFCOUNTER(_sync_Inflations) ;
      NEWPERFCOUNTER(_sync_Deflations) ;
      NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
      NEWPERFCOUNTER(_sync_FutileWakeups) ;
      NEWPERFCOUNTER(_sync_Parks) ;
      NEWPERFCOUNTER(_sync_EmptyNotifications) ;
      NEWPERFCOUNTER(_sync_Notifications) ;
      NEWPERFCOUNTER(_sync_SlowEnter) ;
      NEWPERFCOUNTER(_sync_SlowExit) ;
      NEWPERFCOUNTER(_sync_SlowNotify) ;
      NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
      NEWPERFCOUNTER(_sync_FailedSpins) ;
      NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
      NEWPERFCOUNTER(_sync_PrivateA) ;
      NEWPERFCOUNTER(_sync_PrivateB) ;
      NEWPERFCOUNTER(_sync_MonInCirculation) ;
      NEWPERFCOUNTER(_sync_MonScavenged) ;
      NEWPERFVARIABLE(_sync_MonExtant) ;
      #undef NEWPERFCOUNTER
  }
}


// Compile-time asserts
// When possible, it's better to catch errors deterministically at
// compile-time than at runtime.  The down-side to using compile-time
// asserts is that error message -- often something about negative array
// indices -- is opaque.

#define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }

void ObjectMonitor::ctAsserts() {
  CTASSERT(offset_of (ObjectMonitor, _header) == 0);
}


static char * kvGet (char * kvList, const char * Key) {
    if (kvList == NULL) return NULL ;
    size_t n = strlen (Key) ;
    char * Search ;
    for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
        if (strncmp (Search, Key, n) == 0) {
            if (Search[n] == '=') return Search + n + 1 ;
            if (Search[n] == 0)   return (char *) "1" ;
        }
    }
    return NULL ;
}

static int kvGetInt (char * kvList, const char * Key, int Default) {
    char * v = kvGet (kvList, Key) ;
    int rslt = v ? ::strtol (v, NULL, 0) : Default ;
    if (Knob_ReportSettings && v != NULL) {
        ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
        ::fflush (stdout) ;
    }
    return rslt ;
}

void ObjectMonitor::DeferredInitialize () {
  if (InitDone > 0) return ;
  if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
      while (InitDone != 1) ;
      return ;
  }

  // One-shot global initialization ...
  // The initialization is idempotent, so we don't need locks.
  // In the future consider doing this via os::init_2().
  // SyncKnobs consist of <Key>=<Value> pairs in the style
  // of environment variables.  Start by converting ':' to NUL.

  if (SyncKnobs == NULL) SyncKnobs = "" ;

  size_t sz = strlen (SyncKnobs) ;
  char * knobs = (char *) malloc (sz + 2) ;
  if (knobs == NULL) {
2490
     vm_exit_out_of_memory (sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs") ;
A
acorn 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
     guarantee (0, "invariant") ;
  }
  strcpy (knobs, SyncKnobs) ;
  knobs[sz+1] = 0 ;
  for (char * p = knobs ; *p ; p++) {
     if (*p == ':') *p = 0 ;
  }

  #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
  SETKNOB(ReportSettings) ;
  SETKNOB(Verbose) ;
  SETKNOB(FixedSpin) ;
  SETKNOB(SpinLimit) ;
  SETKNOB(SpinBase) ;
  SETKNOB(SpinBackOff);
  SETKNOB(CASPenalty) ;
  SETKNOB(OXPenalty) ;
  SETKNOB(LogSpins) ;
  SETKNOB(SpinSetSucc) ;
  SETKNOB(SuccEnabled) ;
  SETKNOB(SuccRestrict) ;
  SETKNOB(Penalty) ;
  SETKNOB(Bonus) ;
  SETKNOB(BonusB) ;
  SETKNOB(Poverty) ;
  SETKNOB(SpinAfterFutile) ;
  SETKNOB(UsePause) ;
  SETKNOB(SpinEarly) ;
  SETKNOB(OState) ;
  SETKNOB(MaxSpinners) ;
  SETKNOB(PreSpin) ;
  SETKNOB(ExitPolicy) ;
  SETKNOB(QMode);
  SETKNOB(ResetEvent) ;
  SETKNOB(MoveNotifyee) ;
  SETKNOB(FastHSSEC) ;
  #undef SETKNOB

  if (os::is_MP()) {
     BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
     if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
  } else {
     Knob_SpinLimit = 0 ;
     Knob_SpinBase  = 0 ;
     Knob_PreSpin   = 0 ;
     Knob_FixedSpin = -1 ;
  }

  if (Knob_LogSpins == 0) {
     ObjectMonitor::_sync_FailedSpins = NULL ;
  }

  free (knobs) ;
  OrderAccess::fence() ;
  InitDone = 1 ;
}

#ifndef PRODUCT
void ObjectMonitor::verify() {
}

void ObjectMonitor::print() {
}
#endif