frame_x86.hpp 8.9 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30
#ifndef CPU_X86_VM_FRAME_X86_HPP
#define CPU_X86_VM_FRAME_X86_HPP

#include "runtime/synchronizer.hpp"
#include "utilities/top.hpp"

D
duke 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
// A frame represents a physical stack frame (an activation).  Frames can be
// C or Java frames, and the Java frames can be interpreted or compiled.
// In contrast, vframes represent source-level activations, so that one physical frame
// can correspond to multiple source level frames because of inlining.
// A frame is comprised of {pc, fp, sp}
// ------------------------------ Asm interpreter ----------------------------------------
// Layout of asm interpreter frame:
//    [expression stack      ] * <- sp
//    [monitors              ]   \
//     ...                        | monitor block size
//    [monitors              ]   /
//    [monitor block size    ]
//    [byte code index/pointr]                   = bcx()                bcx_offset
//    [pointer to locals     ]                   = locals()             locals_offset
//    [constant pool cache   ]                   = cache()              cache_offset
//    [methodData            ]                   = mdp()                mdx_offset
//    [methodOop             ]                   = method()             method_offset
//    [last sp               ]                   = last_sp()            last_sp_offset
//    [old stack pointer     ]                     (sender_sp)          sender_sp_offset
//    [old frame pointer     ]   <- fp           = link()
//    [return pc             ]
//    [oop temp              ]                     (only for native calls)
//    [locals and parameters ]
//                               <- sender sp
// ------------------------------ Asm interpreter ----------------------------------------

// ------------------------------ C++ interpreter ----------------------------------------
//
// Layout of C++ interpreter frame: (While executing in BytecodeInterpreter::run)
//
//                             <- SP (current esp/rsp)
//    [local variables         ] BytecodeInterpreter::run local variables
//    ...                        BytecodeInterpreter::run local variables
//    [local variables         ] BytecodeInterpreter::run local variables
//    [old frame pointer       ]   fp [ BytecodeInterpreter::run's ebp/rbp ]
//    [return pc               ]  (return to frame manager)
//    [interpreter_state*      ]  (arg to BytecodeInterpreter::run)   --------------
//    [expression stack        ] <- last_Java_sp                           |
//    [...                     ] * <- interpreter_state.stack              |
//    [expression stack        ] * <- interpreter_state.stack_base         |
//    [monitors                ]   \                                       |
//     ...                          | monitor block size                   |
//    [monitors                ]   / <- interpreter_state.monitor_base     |
//    [struct interpretState   ] <-----------------------------------------|
//    [return pc               ] (return to callee of frame manager [1]
//    [locals and parameters   ]
//                               <- sender sp

// [1] When the c++ interpreter calls a new method it returns to the frame
//     manager which allocates a new frame on the stack. In that case there
//     is no real callee of this newly allocated frame. The frame manager is
//     aware of the  additional frame(s) and will pop them as nested calls
//     complete. Howevers tTo make it look good in the debugger the frame
//     manager actually installs a dummy pc pointing to RecursiveInterpreterActivation
//     with a fake interpreter_state* parameter to make it easy to debug
//     nested calls.

// Note that contrary to the layout for the assembly interpreter the
// expression stack allocated for the C++ interpreter is full sized.
// However this is not as bad as it seems as the interpreter frame_manager
// will truncate the unused space on succesive method calls.
//
// ------------------------------ C++ interpreter ----------------------------------------

 public:
  enum {
    pc_return_offset                                 =  0,
    // All frames
    link_offset                                      =  0,
    return_addr_offset                               =  1,
    // non-interpreter frames
    sender_sp_offset                                 =  2,

#ifndef CC_INTERP

    // Interpreter frames
    interpreter_frame_result_handler_offset          =  3, // for native calls only
    interpreter_frame_oop_temp_offset                =  2, // for native calls only

    interpreter_frame_sender_sp_offset               = -1,
    // outgoing sp before a call to an invoked method
    interpreter_frame_last_sp_offset                 = interpreter_frame_sender_sp_offset - 1,
    interpreter_frame_method_offset                  = interpreter_frame_last_sp_offset - 1,
    interpreter_frame_mdx_offset                     = interpreter_frame_method_offset - 1,
    interpreter_frame_cache_offset                   = interpreter_frame_mdx_offset - 1,
    interpreter_frame_locals_offset                  = interpreter_frame_cache_offset - 1,
    interpreter_frame_bcx_offset                     = interpreter_frame_locals_offset - 1,
    interpreter_frame_initial_sp_offset              = interpreter_frame_bcx_offset - 1,

    interpreter_frame_monitor_block_top_offset       = interpreter_frame_initial_sp_offset,
    interpreter_frame_monitor_block_bottom_offset    = interpreter_frame_initial_sp_offset,

#endif // CC_INTERP

    // Entry frames
#ifdef AMD64
#ifdef _WIN64
128
    entry_frame_after_call_words                     =  28,
D
duke 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    entry_frame_call_wrapper_offset                  =  2,

    arg_reg_save_area_bytes                          = 32, // Register argument save area
#else
    entry_frame_after_call_words                     = 13,
    entry_frame_call_wrapper_offset                  = -6,

    arg_reg_save_area_bytes                          =  0,
#endif // _WIN64
#else
    entry_frame_call_wrapper_offset                  =  2,
#endif // AMD64

    // Native frames

    native_frame_initial_param_offset                =  2

  };

  intptr_t ptr_at(int offset) const {
    return *ptr_at_addr(offset);
  }

  void ptr_at_put(int offset, intptr_t value) {
    *ptr_at_addr(offset) = value;
  }

 private:
  // an additional field beyond _sp and _pc:
  intptr_t*   _fp; // frame pointer
  // The interpreter and adapters will extend the frame of the caller.
  // Since oopMaps are based on the sp of the caller before extension
  // we need to know that value. However in order to compute the address
  // of the return address we need the real "raw" sp. Since sparc already
  // uses sp() to mean "raw" sp and unextended_sp() to mean the caller's
  // original sp we use that convention.

  intptr_t*     _unextended_sp;

  intptr_t* ptr_at_addr(int offset) const {
    return (intptr_t*) addr_at(offset);
  }

172 173 174 175 176 177 178 179
#if ASSERT
  // Used in frame::sender_for_{interpreter,compiled}_frame
  static void verify_deopt_original_pc(   nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return = false);
  static void verify_deopt_mh_original_pc(nmethod* nm, intptr_t* unextended_sp) {
    verify_deopt_original_pc(nm, unextended_sp, true);
  }
#endif

D
duke 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
 public:
  // Constructors

  frame(intptr_t* sp, intptr_t* fp, address pc);

  frame(intptr_t* sp, intptr_t* unextended_sp, intptr_t* fp, address pc);

  frame(intptr_t* sp, intptr_t* fp);

  // accessors for the instance variables
  intptr_t*   fp() const { return _fp; }

  inline address* sender_pc_addr() const;

  // return address of param, zero origin index.
  inline address* native_param_addr(int idx) const;

  // expression stack tos if we are nested in a java call
  intptr_t* interpreter_frame_last_sp() const;

#ifndef CC_INTERP
  // deoptimization support
  void interpreter_frame_set_last_sp(intptr_t* sp);
#endif // CC_INTERP

#ifdef CC_INTERP
  inline interpreterState get_interpreterState() const;
#endif // CC_INTERP
208 209

#endif // CPU_X86_VM_FRAME_X86_HPP