defaultMethods.cpp 45.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/bytecodeAssembler.hpp"
#include "classfile/defaultMethods.hpp"
#include "classfile/genericSignatures.hpp"
#include "classfile/symbolTable.hpp"
#include "memory/allocation.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/signature.hpp"
#include "runtime/thread.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klass.hpp"
#include "oops/method.hpp"
#include "utilities/accessFlags.hpp"
#include "utilities/exceptions.hpp"
#include "utilities/ostream.hpp"
#include "utilities/pair.hpp"
#include "utilities/resourceHash.hpp"

typedef enum { QUALIFIED, DISQUALIFIED } QualifiedState;

// Because we use an iterative algorithm when iterating over the type
// hierarchy, we can't use traditional scoped objects which automatically do
// cleanup in the destructor when the scope is exited.  PseudoScope (and
// PseudoScopeMark) provides a similar functionality, but for when you want a
// scoped object in non-stack memory (such as in resource memory, as we do
// here).  You've just got to remember to call 'destroy()' on the scope when
// leaving it (and marks have to be explicitly added).
class PseudoScopeMark : public ResourceObj {
 public:
  virtual void destroy() = 0;
};

class PseudoScope : public ResourceObj {
 private:
  GrowableArray<PseudoScopeMark*> _marks;
 public:

  static PseudoScope* cast(void* data) {
    return static_cast<PseudoScope*>(data);
  }

  void add_mark(PseudoScopeMark* psm) {
   _marks.append(psm);
  }

  void destroy() {
    for (int i = 0; i < _marks.length(); ++i) {
      _marks.at(i)->destroy();
    }
  }
};

class ContextMark : public PseudoScopeMark {
 private:
  generic::Context::Mark _mark;
 public:
  ContextMark(const generic::Context::Mark& cm) : _mark(cm) {}
  virtual void destroy() { _mark.destroy(); }
};

#ifndef PRODUCT
static void print_slot(outputStream* str, Symbol* name, Symbol* signature) {
  ResourceMark rm;
  str->print("%s%s", name->as_C_string(), signature->as_C_string());
}

static void print_method(outputStream* str, Method* mo, bool with_class=true) {
  ResourceMark rm;
  if (with_class) {
    str->print("%s.", mo->klass_name()->as_C_string());
  }
  print_slot(str, mo->name(), mo->signature());
}
#endif // ndef PRODUCT

/**
 * Perform a depth-first iteration over the class hierarchy, applying
 * algorithmic logic as it goes.
 *
 * This class is one half of the inheritance hierarchy analysis mechanism.
 * It is meant to be used in conjunction with another class, the algorithm,
 * which is indicated by the ALGO template parameter.  This class can be
 * paired with any algorithm class that provides the required methods.
 *
 * This class contains all the mechanics for iterating over the class hierarchy
 * starting at a particular root, without recursing (thus limiting stack growth
 * from this point).  It visits each superclass (if present) and superinterface
 * in a depth-first manner, with callbacks to the ALGO class as each class is
 * encountered (visit()), The algorithm can cut-off further exploration of a
 * particular branch by returning 'false' from a visit() call.
 *
 * The ALGO class, must provide a visit() method, which each of which will be
 * called once for each node in the inheritance tree during the iteration.  In
 * addition, it can provide a memory block via new_node_data(InstanceKlass*),
 * which it can use for node-specific storage (and access via the
 * current_data() and data_at_depth(int) methods).
 *
 * Bare minimum needed to be an ALGO class:
 * class Algo : public HierarchyVisitor<Algo> {
 *   void* new_node_data(InstanceKlass* cls) { return NULL; }
 *   void free_node_data(void* data) { return; }
 *   bool visit() { return true; }
 * };
 */
template <class ALGO>
class HierarchyVisitor : StackObj {
 private:

  class Node : public ResourceObj {
   public:
    InstanceKlass* _class;
    bool _super_was_visited;
    int _interface_index;
    void* _algorithm_data;

    Node(InstanceKlass* cls, void* data, bool visit_super)
        : _class(cls), _super_was_visited(!visit_super),
          _interface_index(0), _algorithm_data(data) {}

    int number_of_interfaces() { return _class->local_interfaces()->length(); }
    int interface_index() { return _interface_index; }
    void set_super_visited() { _super_was_visited = true; }
    void increment_visited_interface() { ++_interface_index; }
    void set_all_interfaces_visited() {
      _interface_index = number_of_interfaces();
    }
    bool has_visited_super() { return _super_was_visited; }
    bool has_visited_all_interfaces() {
      return interface_index() >= number_of_interfaces();
    }
    InstanceKlass* interface_at(int index) {
      return InstanceKlass::cast(_class->local_interfaces()->at(index));
    }
    InstanceKlass* next_super() { return _class->java_super(); }
    InstanceKlass* next_interface() {
      return interface_at(interface_index());
    }
  };

  bool _cancelled;
  GrowableArray<Node*> _path;

  Node* current_top() const { return _path.top(); }
  bool has_more_nodes() const { return !_path.is_empty(); }
  void push(InstanceKlass* cls, void* data) {
    assert(cls != NULL, "Requires a valid instance class");
    Node* node = new Node(cls, data, has_super(cls));
    _path.push(node);
  }
  void pop() { _path.pop(); }

  void reset_iteration() {
    _cancelled = false;
    _path.clear();
  }
  bool is_cancelled() const { return _cancelled; }

  static bool has_super(InstanceKlass* cls) {
    return cls->super() != NULL && !cls->is_interface();
  }

  Node* node_at_depth(int i) const {
    return (i >= _path.length()) ? NULL : _path.at(_path.length() - i - 1);
  }

 protected:

  // Accessors available to the algorithm
  int current_depth() const { return _path.length() - 1; }

  InstanceKlass* class_at_depth(int i) {
    Node* n = node_at_depth(i);
    return n == NULL ? NULL : n->_class;
  }
  InstanceKlass* current_class() { return class_at_depth(0); }

  void* data_at_depth(int i) {
    Node* n = node_at_depth(i);
    return n == NULL ? NULL : n->_algorithm_data;
  }
  void* current_data() { return data_at_depth(0); }

  void cancel_iteration() { _cancelled = true; }

 public:

  void run(InstanceKlass* root) {
    ALGO* algo = static_cast<ALGO*>(this);

    reset_iteration();

    void* algo_data = algo->new_node_data(root);
    push(root, algo_data);
    bool top_needs_visit = true;

    do {
      Node* top = current_top();
      if (top_needs_visit) {
        if (algo->visit() == false) {
          // algorithm does not want to continue along this path.  Arrange
          // it so that this state is immediately popped off the stack
          top->set_super_visited();
          top->set_all_interfaces_visited();
        }
        top_needs_visit = false;
      }

      if (top->has_visited_super() && top->has_visited_all_interfaces()) {
        algo->free_node_data(top->_algorithm_data);
        pop();
      } else {
        InstanceKlass* next = NULL;
        if (top->has_visited_super() == false) {
          next = top->next_super();
          top->set_super_visited();
        } else {
          next = top->next_interface();
          top->increment_visited_interface();
        }
        assert(next != NULL, "Otherwise we shouldn't be here");
        algo_data = algo->new_node_data(next);
        push(next, algo_data);
        top_needs_visit = true;
      }
    } while (!is_cancelled() && has_more_nodes());
  }
};

#ifndef PRODUCT
class PrintHierarchy : public HierarchyVisitor<PrintHierarchy> {
 public:

  bool visit() {
    InstanceKlass* cls = current_class();
    streamIndentor si(tty, current_depth() * 2);
    tty->indent().print_cr("%s", cls->name()->as_C_string());
    return true;
  }

  void* new_node_data(InstanceKlass* cls) { return NULL; }
  void free_node_data(void* data) { return; }
};
#endif // ndef PRODUCT

// Used to register InstanceKlass objects and all related metadata structures
// (Methods, ConstantPools) as "in-use" by the current thread so that they can't
// be deallocated by class redefinition while we're using them.  The classes are
// de-registered when this goes out of scope.
//
// Once a class is registered, we need not bother with methodHandles or
// constantPoolHandles for it's associated metadata.
class KeepAliveRegistrar : public StackObj {
 private:
  Thread* _thread;
  GrowableArray<ConstantPool*> _keep_alive;

 public:
  KeepAliveRegistrar(Thread* thread) : _thread(thread), _keep_alive(20) {
    assert(thread == Thread::current(), "Must be current thread");
  }

  ~KeepAliveRegistrar() {
    for (int i = _keep_alive.length() - 1; i >= 0; --i) {
      ConstantPool* cp = _keep_alive.at(i);
      int idx = _thread->metadata_handles()->find_from_end(cp);
      assert(idx > 0, "Must be in the list");
      _thread->metadata_handles()->remove_at(idx);
    }
  }

  // Register a class as 'in-use' by the thread.  It's fine to register a class
  // multiple times (though perhaps inefficient)
  void register_class(InstanceKlass* ik) {
    ConstantPool* cp = ik->constants();
    _keep_alive.push(cp);
    _thread->metadata_handles()->push(cp);
  }
};

class KeepAliveVisitor : public HierarchyVisitor<KeepAliveVisitor> {
 private:
  KeepAliveRegistrar* _registrar;

 public:
  KeepAliveVisitor(KeepAliveRegistrar* registrar) : _registrar(registrar) {}

  void* new_node_data(InstanceKlass* cls) { return NULL; }
  void free_node_data(void* data) { return; }

  bool visit() {
    _registrar->register_class(current_class());
    return true;
  }
};

// A method family contains a set of all methods that implement a single
// language-level method.  Because of erasure, these methods may have different
// signatures.  As members of the set are collected while walking over the
// hierarchy, they are tagged with a qualification state.  The qualification
// state for an erased method is set to disqualified if there exists a path
// from the root of hierarchy to the method that contains an interleaving
// language-equivalent method defined in an interface.
class MethodFamily : public ResourceObj {
 private:

  generic::MethodDescriptor* _descriptor; // language-level description
  GrowableArray<Pair<Method*,QualifiedState> > _members;
  ResourceHashtable<Method*, int> _member_index;

  Method* _selected_target;  // Filled in later, if a unique target exists
  Symbol* _exception_message; // If no unique target is found

  bool contains_method(Method* method) {
    int* lookup = _member_index.get(method);
    return lookup != NULL;
  }

  void add_method(Method* method, QualifiedState state) {
    Pair<Method*,QualifiedState> entry(method, state);
    _member_index.put(method, _members.length());
    _members.append(entry);
  }

  void disqualify_method(Method* method) {
    int* index = _member_index.get(method);
    assert(index != NULL && *index >= 0 && *index < _members.length(), "bad index");
    _members.at(*index).second = DISQUALIFIED;
  }

  Symbol* generate_no_defaults_message(TRAPS) const;
  Symbol* generate_abstract_method_message(Method* method, TRAPS) const;
  Symbol* generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const;

 public:

  MethodFamily(generic::MethodDescriptor* canonical_desc)
      : _descriptor(canonical_desc), _selected_target(NULL),
        _exception_message(NULL) {}

  generic::MethodDescriptor* descriptor() const { return _descriptor; }

  bool descriptor_matches(generic::MethodDescriptor* md, generic::Context* ctx) {
    return descriptor()->covariant_match(md, ctx);
  }

  void set_target_if_empty(Method* m) {
    if (_selected_target == NULL && !m->is_overpass()) {
      _selected_target = m;
    }
  }

  void record_qualified_method(Method* m) {
    // If the method already exists in the set as qualified, this operation is
    // redundant.  If it already exists as disqualified, then we leave it as
    // disqualfied.  Thus we only add to the set if it's not already in the
    // set.
    if (!contains_method(m)) {
      add_method(m, QUALIFIED);
    }
  }

  void record_disqualified_method(Method* m) {
    // If not in the set, add it as disqualified.  If it's already in the set,
    // then set the state to disqualified no matter what the previous state was.
    if (!contains_method(m)) {
      add_method(m, DISQUALIFIED);
    } else {
      disqualify_method(m);
    }
  }

  bool has_target() const { return _selected_target != NULL; }
  bool throws_exception() { return _exception_message != NULL; }

  Method* get_selected_target() { return _selected_target; }
  Symbol* get_exception_message() { return _exception_message; }

  // Either sets the target or the exception error message
  void determine_target(InstanceKlass* root, TRAPS) {
    if (has_target() || throws_exception()) {
      return;
    }

    GrowableArray<Method*> qualified_methods;
    for (int i = 0; i < _members.length(); ++i) {
      Pair<Method*,QualifiedState> entry = _members.at(i);
      if (entry.second == QUALIFIED) {
        qualified_methods.append(entry.first);
      }
    }

    if (qualified_methods.length() == 0) {
      _exception_message = generate_no_defaults_message(CHECK);
    } else if (qualified_methods.length() == 1) {
      Method* method = qualified_methods.at(0);
      if (method->is_abstract()) {
        _exception_message = generate_abstract_method_message(method, CHECK);
      } else {
        _selected_target = qualified_methods.at(0);
      }
    } else {
      _exception_message = generate_conflicts_message(&qualified_methods,CHECK);
    }

    assert((has_target() ^ throws_exception()) == 1,
           "One and only one must be true");
  }

  bool contains_signature(Symbol* query) {
    for (int i = 0; i < _members.length(); ++i) {
      if (query == _members.at(i).first->signature()) {
        return true;
      }
    }
    return false;
  }

#ifndef PRODUCT
  void print_on(outputStream* str) const {
    print_on(str, 0);
  }

  void print_on(outputStream* str, int indent) const {
    streamIndentor si(str, indent * 2);

    generic::Context ctx(NULL); // empty, as _descriptor already canonicalized
    TempNewSymbol family = descriptor()->reify_signature(&ctx, Thread::current());
    str->indent().print_cr("Logical Method %s:", family->as_C_string());

    streamIndentor si2(str);
    for (int i = 0; i < _members.length(); ++i) {
      str->indent();
      print_method(str, _members.at(i).first);
      if (_members.at(i).second == DISQUALIFIED) {
        str->print(" (disqualified)");
      }
      str->print_cr("");
    }

    if (_selected_target != NULL) {
      print_selected(str, 1);
    }
  }

  void print_selected(outputStream* str, int indent) const {
    assert(has_target(), "Should be called otherwise");
    streamIndentor si(str, indent * 2);
    str->indent().print("Selected method: ");
    print_method(str, _selected_target);
    str->print_cr("");
  }

  void print_exception(outputStream* str, int indent) {
    assert(throws_exception(), "Should be called otherwise");
    streamIndentor si(str, indent * 2);
    str->indent().print_cr("%s", _exception_message->as_C_string());
  }
#endif // ndef PRODUCT
};

Symbol* MethodFamily::generate_no_defaults_message(TRAPS) const {
  return SymbolTable::new_symbol("No qualifying defaults found", CHECK_NULL);
}

Symbol* MethodFamily::generate_abstract_method_message(Method* method, TRAPS) const {
  Symbol* klass = method->klass_name();
  Symbol* name = method->name();
  Symbol* sig = method->signature();
  stringStream ss;
  ss.print("Method ");
  ss.write((const char*)klass->bytes(), klass->utf8_length());
  ss.print(".");
  ss.write((const char*)name->bytes(), name->utf8_length());
  ss.write((const char*)sig->bytes(), sig->utf8_length());
  ss.print(" is abstract");
  return SymbolTable::new_symbol(ss.base(), (int)ss.size(), CHECK_NULL);
}

Symbol* MethodFamily::generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const {
  stringStream ss;
  ss.print("Conflicting default methods:");
  for (int i = 0; i < methods->length(); ++i) {
    Method* method = methods->at(i);
    Symbol* klass = method->klass_name();
    Symbol* name = method->name();
    ss.print(" ");
    ss.write((const char*)klass->bytes(), klass->utf8_length());
    ss.print(".");
    ss.write((const char*)name->bytes(), name->utf8_length());
  }
  return SymbolTable::new_symbol(ss.base(), (int)ss.size(), CHECK_NULL);
}

class StateRestorer;

// StatefulMethodFamily is a wrapper around MethodFamily that maintains the
// qualification state during hierarchy visitation, and applies that state
// when adding members to the MethodFamily.
class StatefulMethodFamily : public ResourceObj {
  friend class StateRestorer;
 private:
  MethodFamily* _method;
  QualifiedState _qualification_state;

  void set_qualification_state(QualifiedState state) {
    _qualification_state = state;
  }

 public:
  StatefulMethodFamily(generic::MethodDescriptor* md, generic::Context* ctx) {
    _method = new MethodFamily(md->canonicalize(ctx));
    _qualification_state = QUALIFIED;
  }

  void set_target_if_empty(Method* m) { _method->set_target_if_empty(m); }

  MethodFamily* get_method_family() { return _method; }

  bool descriptor_matches(generic::MethodDescriptor* md, generic::Context* ctx) {
    return _method->descriptor_matches(md, ctx);
  }

  StateRestorer* record_method_and_dq_further(Method* mo);
};

class StateRestorer : public PseudoScopeMark {
 private:
  StatefulMethodFamily* _method;
  QualifiedState _state_to_restore;
 public:
  StateRestorer(StatefulMethodFamily* dm, QualifiedState state)
      : _method(dm), _state_to_restore(state) {}
  ~StateRestorer() { destroy(); }
  void restore_state() { _method->set_qualification_state(_state_to_restore); }
  virtual void destroy() { restore_state(); }
};

StateRestorer* StatefulMethodFamily::record_method_and_dq_further(Method* mo) {
  StateRestorer* mark = new StateRestorer(this, _qualification_state);
  if (_qualification_state == QUALIFIED) {
    _method->record_qualified_method(mo);
  } else {
    _method->record_disqualified_method(mo);
  }
  // Everything found "above"??? this method in the hierarchy walk is set to
  // disqualified
  set_qualification_state(DISQUALIFIED);
  return mark;
}

class StatefulMethodFamilies : public ResourceObj {
 private:
  GrowableArray<StatefulMethodFamily*> _methods;

 public:
  StatefulMethodFamily* find_matching(
      generic::MethodDescriptor* md, generic::Context* ctx) {
    for (int i = 0; i < _methods.length(); ++i) {
      StatefulMethodFamily* existing = _methods.at(i);
      if (existing->descriptor_matches(md, ctx)) {
        return existing;
      }
    }
    return NULL;
  }

  StatefulMethodFamily* find_matching_or_create(
      generic::MethodDescriptor* md, generic::Context* ctx) {
    StatefulMethodFamily* method = find_matching(md, ctx);
    if (method == NULL) {
      method = new StatefulMethodFamily(md, ctx);
      _methods.append(method);
    }
    return method;
  }

  void extract_families_into(GrowableArray<MethodFamily*>* array) {
    for (int i = 0; i < _methods.length(); ++i) {
      array->append(_methods.at(i)->get_method_family());
    }
  }
};

// Represents a location corresponding to a vtable slot for methods that
// neither the class nor any of it's ancestors provide an implementaion.
// Default methods may be present to fill this slot.
class EmptyVtableSlot : public ResourceObj {
 private:
  Symbol* _name;
  Symbol* _signature;
  int _size_of_parameters;
  MethodFamily* _binding;

 public:
  EmptyVtableSlot(Method* method)
      : _name(method->name()), _signature(method->signature()),
        _size_of_parameters(method->size_of_parameters()), _binding(NULL) {}

  Symbol* name() const { return _name; }
  Symbol* signature() const { return _signature; }
  int size_of_parameters() const { return _size_of_parameters; }

  void bind_family(MethodFamily* lm) { _binding = lm; }
  bool is_bound() { return _binding != NULL; }
  MethodFamily* get_binding() { return _binding; }

#ifndef PRODUCT
  void print_on(outputStream* str) const {
    print_slot(str, name(), signature());
  }
#endif // ndef PRODUCT
};

static GrowableArray<EmptyVtableSlot*>* find_empty_vtable_slots(
    InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS) {

  assert(klass != NULL, "Must be valid class");

  GrowableArray<EmptyVtableSlot*>* slots = new GrowableArray<EmptyVtableSlot*>();

  // All miranda methods are obvious candidates
  for (int i = 0; i < mirandas->length(); ++i) {
    EmptyVtableSlot* slot = new EmptyVtableSlot(mirandas->at(i));
    slots->append(slot);
  }

  // Also any overpasses in our superclasses, that we haven't implemented.
  // (can't use the vtable because it is not guaranteed to be initialized yet)
  InstanceKlass* super = klass->java_super();
  while (super != NULL) {
    for (int i = 0; i < super->methods()->length(); ++i) {
      Method* m = super->methods()->at(i);
      if (m->is_overpass()) {
        // m is a method that would have been a miranda if not for the
        // default method processing that occurred on behalf of our superclass,
        // so it's a method we want to re-examine in this new context.  That is,
        // unless we have a real implementation of it in the current class.
        Method* impl = klass->lookup_method(m->name(), m->signature());
        if (impl == NULL || impl->is_overpass()) {
          slots->append(new EmptyVtableSlot(m));
        }
      }
    }
    super = super->java_super();
  }

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Slots that need filling:");
    streamIndentor si(tty);
    for (int i = 0; i < slots->length(); ++i) {
      tty->indent();
      slots->at(i)->print_on(tty);
      tty->print_cr("");
    }
  }
#endif // ndef PRODUCT
  return slots;
}

// Iterates over the type hierarchy looking for all methods with a specific
// method name.  The result of this is a set of method families each of
// which is populated with a set of methods that implement the same
// language-level signature.
class FindMethodsByName : public HierarchyVisitor<FindMethodsByName> {
 private:
  // Context data
  Thread* THREAD;
  generic::DescriptorCache* _cache;
  Symbol* _method_name;
  generic::Context* _ctx;
  StatefulMethodFamilies _families;

 public:

  FindMethodsByName(generic::DescriptorCache* cache, Symbol* name,
      generic::Context* ctx, Thread* thread) :
    _cache(cache), _method_name(name), _ctx(ctx), THREAD(thread) {}

  void get_discovered_families(GrowableArray<MethodFamily*>* methods) {
    _families.extract_families_into(methods);
  }

  void* new_node_data(InstanceKlass* cls) { return new PseudoScope(); }
  void free_node_data(void* node_data) {
    PseudoScope::cast(node_data)->destroy();
  }

  bool visit() {
    PseudoScope* scope = PseudoScope::cast(current_data());
    InstanceKlass* klass = current_class();
    InstanceKlass* sub = current_depth() > 0 ? class_at_depth(1) : NULL;

    ContextMark* cm = new ContextMark(_ctx->mark());
    scope->add_mark(cm); // will restore context when scope is freed

    _ctx->apply_type_arguments(sub, klass, THREAD);

    int start, end = 0;
    start = klass->find_method_by_name(_method_name, &end);
    if (start != -1) {
      for (int i = start; i < end; ++i) {
        Method* m = klass->methods()->at(i);
        // This gets the method's parameter list with its generic type
        // parameters resolved
        generic::MethodDescriptor* md = _cache->descriptor_for(m, THREAD);

        // Find all methods on this hierarchy that match this method
        // (name, signature).   This class collects other families of this
        // method name.
        StatefulMethodFamily* family =
            _families.find_matching_or_create(md, _ctx);

        if (klass->is_interface()) {
          // ???
          StateRestorer* restorer = family->record_method_and_dq_further(m);
          scope->add_mark(restorer);
        } else {
          // This is the rule that methods in classes "win" (bad word) over
          // methods in interfaces.  This works because of single inheritance
          family->set_target_if_empty(m);
        }
      }
    }
    return true;
  }
};

#ifndef PRODUCT
static void print_families(
    GrowableArray<MethodFamily*>* methods, Symbol* match) {
  streamIndentor si(tty, 4);
  if (methods->length() == 0) {
    tty->indent();
    tty->print_cr("No Logical Method found");
  }
  for (int i = 0; i < methods->length(); ++i) {
    tty->indent();
    MethodFamily* lm = methods->at(i);
    if (lm->contains_signature(match)) {
      tty->print_cr("<Matching>");
    } else {
      tty->print_cr("<Non-Matching>");
    }
    lm->print_on(tty, 1);
  }
}
#endif // ndef PRODUCT

static void merge_in_new_methods(InstanceKlass* klass,
    GrowableArray<Method*>* new_methods, TRAPS);
static void create_overpasses(
    GrowableArray<EmptyVtableSlot*>* slots, InstanceKlass* klass, TRAPS);

// This is the guts of the default methods implementation.  This is called just
// after the classfile has been parsed if some ancestor has default methods.
//
// First if finds any name/signature slots that need any implementation (either
// because they are miranda or a superclass's implementation is an overpass
// itself).  For each slot, iterate over the hierarchy, using generic signature
// information to partition any methods that match the name into method families
// where each family contains methods whose signatures are equivalent at the
// language level (i.e., their reified parameters match and return values are
// covariant). Check those sets to see if they contain a signature that matches
// the slot we're looking at (if we're lucky, there might be other empty slots
// that we can fill using the same analysis).
//
// For each slot filled, we generate an overpass method that either calls the
// unique default method candidate using invokespecial, or throws an exception
// (in the case of no default method candidates, or more than one valid
// candidate).  These methods are then added to the class's method list.  If
// the method set we're using contains methods (qualified or not) with a
// different runtime signature than the method we're creating, then we have to
// create bridges with those signatures too.
void DefaultMethods::generate_default_methods(
    InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS) {

  // This resource mark is the bound for all memory allocation that takes
  // place during default method processing.  After this goes out of scope,
  // all (Resource) objects' memory will be reclaimed.  Be careful if adding an
  // embedded resource mark under here as that memory can't be used outside
  // whatever scope it's in.
  ResourceMark rm(THREAD);

  generic::DescriptorCache cache;

  // Keep entire hierarchy alive for the duration of the computation
  KeepAliveRegistrar keepAlive(THREAD);
  KeepAliveVisitor loadKeepAlive(&keepAlive);
  loadKeepAlive.run(klass);

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    ResourceMark rm;  // be careful with these!
    tty->print_cr("Class %s requires default method processing",
        klass->name()->as_klass_external_name());
    PrintHierarchy printer;
    printer.run(klass);
  }
#endif // ndef PRODUCT

  GrowableArray<EmptyVtableSlot*>* empty_slots =
      find_empty_vtable_slots(klass, mirandas, CHECK);

  for (int i = 0; i < empty_slots->length(); ++i) {
    EmptyVtableSlot* slot = empty_slots->at(i);
#ifndef PRODUCT
    if (TraceDefaultMethods) {
      streamIndentor si(tty, 2);
      tty->indent().print("Looking for default methods for slot ");
      slot->print_on(tty);
      tty->print_cr("");
    }
#endif // ndef PRODUCT
    if (slot->is_bound()) {
#ifndef PRODUCT
      if (TraceDefaultMethods) {
        streamIndentor si(tty, 4);
        tty->indent().print_cr("Already bound to logical method:");
        slot->get_binding()->print_on(tty, 1);
      }
#endif // ndef PRODUCT
      continue; // covered by previous processing
    }

    generic::Context ctx(&cache);
    FindMethodsByName visitor(&cache, slot->name(), &ctx, CHECK);
    visitor.run(klass);

    GrowableArray<MethodFamily*> discovered_families;
    visitor.get_discovered_families(&discovered_families);

#ifndef PRODUCT
    if (TraceDefaultMethods) {
      print_families(&discovered_families, slot->signature());
    }
#endif // ndef PRODUCT

    // Find and populate any other slots that match the discovered families
    for (int j = i; j < empty_slots->length(); ++j) {
      EmptyVtableSlot* open_slot = empty_slots->at(j);

      if (slot->name() == open_slot->name()) {
        for (int k = 0; k < discovered_families.length(); ++k) {
          MethodFamily* lm = discovered_families.at(k);

          if (lm->contains_signature(open_slot->signature())) {
            lm->determine_target(klass, CHECK);
            open_slot->bind_family(lm);
          }
        }
      }
    }
  }

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Creating overpasses...");
  }
#endif // ndef PRODUCT

  create_overpasses(empty_slots, klass, CHECK);

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Default method processing complete");
  }
#endif // ndef PRODUCT
}


/**
 * Generic analysis was used upon interface '_target' and found a unique
 * default method candidate with generic signature '_method_desc'.  This
 * method is only viable if it would also be in the set of default method
 * candidates if we ran a full analysis on the current class.
 *
 * The only reason that the method would not be in the set of candidates for
 * the current class is if that there's another covariantly matching method
 * which is "more specific" than the found method -- i.e., one could find a
 * path in the interface hierarchy in which the matching method appears
 * before we get to '_target'.
 *
 * In order to determine this, we examine all of the implemented
 * interfaces.  If we find path that leads to the '_target' interface, then
 * we examine that path to see if there are any methods that would shadow
 * the selected method along that path.
 */
class ShadowChecker : public HierarchyVisitor<ShadowChecker> {
 private:
  generic::DescriptorCache* _cache;
  Thread* THREAD;

  InstanceKlass* _target;

  Symbol* _method_name;
  InstanceKlass* _method_holder;
  generic::MethodDescriptor* _method_desc;
  bool _found_shadow;

  bool path_has_shadow() {
    generic::Context ctx(_cache);

    for (int i = current_depth() - 1; i > 0; --i) {
      InstanceKlass* ik = class_at_depth(i);
      InstanceKlass* sub = class_at_depth(i + 1);
      ctx.apply_type_arguments(sub, ik, THREAD);

      if (ik->is_interface()) {
        int end;
        int start = ik->find_method_by_name(_method_name, &end);
        if (start != -1) {
          for (int j = start; j < end; ++j) {
            Method* mo = ik->methods()->at(j);
            generic::MethodDescriptor* md = _cache->descriptor_for(mo, THREAD);
            if (_method_desc->covariant_match(md, &ctx)) {
              return true;
            }
          }
        }
      }
    }
    return false;
  }

 public:

  ShadowChecker(generic::DescriptorCache* cache, Thread* thread,
      Symbol* name, InstanceKlass* holder, generic::MethodDescriptor* desc,
      InstanceKlass* target)
    : _cache(cache), THREAD(thread), _method_name(name), _method_holder(holder),
      _method_desc(desc), _target(target), _found_shadow(false) {}

  void* new_node_data(InstanceKlass* cls) { return NULL; }
  void free_node_data(void* data) { return; }

  bool visit() {
    InstanceKlass* ik = current_class();
    if (ik == _target && current_depth() == 1) {
      return false; // This was the specified super -- no need to search it
    }
    if (ik == _method_holder || ik == _target) {
      // We found a path that should be examined to see if it shadows _method
      if (path_has_shadow()) {
        _found_shadow = true;
        cancel_iteration();
      }
      return false; // no need to continue up hierarchy
    }
    return true;
  }

  bool found_shadow() { return _found_shadow; }
};

// This is called during linktime when we find an invokespecial call that
// refers to a direct superinterface.  It indicates that we should find the
// default method in the hierarchy of that superinterface, and if that method
// would have been a candidate from the point of view of 'this' class, then we
// return that method.
Method* DefaultMethods::find_super_default(
    Klass* cls, Klass* super, Symbol* method_name, Symbol* sig, TRAPS) {

  ResourceMark rm(THREAD);

  assert(cls != NULL && super != NULL, "Need real classes");

  InstanceKlass* current_class = InstanceKlass::cast(cls);
  InstanceKlass* direction = InstanceKlass::cast(super);

  // Keep entire hierarchy alive for the duration of the computation
  KeepAliveRegistrar keepAlive(THREAD);
  KeepAliveVisitor loadKeepAlive(&keepAlive);
  loadKeepAlive.run(current_class);

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Finding super default method %s.%s%s from %s",
      direction->name()->as_C_string(),
      method_name->as_C_string(), sig->as_C_string(),
      current_class->name()->as_C_string());
  }
#endif // ndef PRODUCT

  if (!direction->is_interface()) {
    // We should not be here
    return NULL;
  }

  generic::DescriptorCache cache;
  generic::Context ctx(&cache);

  // Prime the initial generic context for current -> direction
  ctx.apply_type_arguments(current_class, direction, CHECK_NULL);

  FindMethodsByName visitor(&cache, method_name, &ctx, CHECK_NULL);
  visitor.run(direction);

  GrowableArray<MethodFamily*> families;
  visitor.get_discovered_families(&families);

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    print_families(&families, sig);
  }
#endif // ndef PRODUCT

  MethodFamily* selected_family = NULL;

  for (int i = 0; i < families.length(); ++i) {
    MethodFamily* lm = families.at(i);
    if (lm->contains_signature(sig)) {
      lm->determine_target(current_class, CHECK_NULL);
      selected_family = lm;
    }
  }

  if (selected_family->has_target()) {
    Method* target = selected_family->get_selected_target();
    InstanceKlass* holder = InstanceKlass::cast(target->method_holder());

    // Verify that the identified method is valid from the context of
    // the current class
    ShadowChecker checker(&cache, THREAD, target->name(),
        holder, selected_family->descriptor(), direction);
    checker.run(current_class);

    if (checker.found_shadow()) {
#ifndef PRODUCT
      if (TraceDefaultMethods) {
        tty->print_cr("    Only candidate found was shadowed.");
      }
#endif // ndef PRODUCT
      THROW_MSG_(vmSymbols::java_lang_AbstractMethodError(),
                 "Accessible default method not found", NULL);
    } else {
#ifndef PRODUCT
      if (TraceDefaultMethods) {
        tty->print("    Returning ");
        print_method(tty, target, true);
        tty->print_cr("");
      }
#endif // ndef PRODUCT
      return target;
    }
  } else {
    assert(selected_family->throws_exception(), "must have target or throw");
    THROW_MSG_(vmSymbols::java_lang_AbstractMethodError(),
               selected_family->get_exception_message()->as_C_string(), NULL);
  }
}


static int assemble_redirect(
    BytecodeConstantPool* cp, BytecodeBuffer* buffer,
    Symbol* incoming, Method* target, TRAPS) {

  BytecodeAssembler assem(buffer, cp);

  SignatureStream in(incoming, true);
  SignatureStream out(target->signature(), true);
  u2 parameter_count = 0;

  assem.aload(parameter_count++); // load 'this'

  while (!in.at_return_type()) {
    assert(!out.at_return_type(), "Parameter counts do not match");
    BasicType bt = in.type();
    assert(out.type() == bt, "Parameter types are not compatible");
    assem.load(bt, parameter_count);
    if (in.is_object() && in.as_symbol(THREAD) != out.as_symbol(THREAD)) {
      assem.checkcast(out.as_symbol(THREAD));
    } else if (bt == T_LONG || bt == T_DOUBLE) {
      ++parameter_count; // longs and doubles use two slots
    }
    ++parameter_count;
    in.next();
    out.next();
  }
  assert(out.at_return_type(), "Parameter counts do not match");
  assert(in.type() == out.type(), "Return types are not compatible");

  if (parameter_count == 1 && (in.type() == T_LONG || in.type() == T_DOUBLE)) {
    ++parameter_count; // need room for return value
  }
  if (target->method_holder()->is_interface()) {
    assem.invokespecial(target);
  } else {
    assem.invokevirtual(target);
  }

  if (in.is_object() && in.as_symbol(THREAD) != out.as_symbol(THREAD)) {
    assem.checkcast(in.as_symbol(THREAD));
  }
  assem._return(in.type());
  return parameter_count;
}

static int assemble_abstract_method_error(
    BytecodeConstantPool* cp, BytecodeBuffer* buffer, Symbol* message, TRAPS) {

  Symbol* errorName = vmSymbols::java_lang_AbstractMethodError();
  Symbol* init = vmSymbols::object_initializer_name();
  Symbol* sig = vmSymbols::string_void_signature();

  BytecodeAssembler assem(buffer, cp);

  assem._new(errorName);
  assem.dup();
  assem.load_string(message);
  assem.invokespecial(errorName, init, sig);
  assem.athrow();

  return 3; // max stack size: [ exception, exception, string ]
}

static Method* new_method(
    BytecodeConstantPool* cp, BytecodeBuffer* bytecodes, Symbol* name,
    Symbol* sig, AccessFlags flags, int max_stack, int params,
    ConstMethod::MethodType mt, TRAPS) {

  address code_start = static_cast<address>(bytecodes->adr_at(0));
  int code_length = bytecodes->length();

  Method* m = Method::allocate(cp->pool_holder()->class_loader_data(),
1151
      code_length, flags, 0, 0, 0, 0, 0, mt, CHECK_NULL);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

  m->set_constants(NULL); // This will get filled in later
  m->set_name_index(cp->utf8(name));
  m->set_signature_index(cp->utf8(sig));
#ifdef CC_INTERP
  ResultTypeFinder rtf(sig);
  m->set_result_index(rtf.type());
#endif
  m->set_size_of_parameters(params);
  m->set_max_stack(max_stack);
  m->set_max_locals(params);
  m->constMethod()->set_stackmap_data(NULL);
  m->set_code(code_start);
  m->set_force_inline(true);

  return m;
}

static void switchover_constant_pool(BytecodeConstantPool* bpool,
    InstanceKlass* klass, GrowableArray<Method*>* new_methods, TRAPS) {

  if (new_methods->length() > 0) {
    ConstantPool* cp = bpool->create_constant_pool(CHECK);
    if (cp != klass->constants()) {
      klass->class_loader_data()->add_to_deallocate_list(klass->constants());
      klass->set_constants(cp);
      cp->set_pool_holder(klass);

      for (int i = 0; i < new_methods->length(); ++i) {
        new_methods->at(i)->set_constants(cp);
      }
      for (int i = 0; i < klass->methods()->length(); ++i) {
        Method* mo = klass->methods()->at(i);
        mo->set_constants(cp);
      }
    }
  }
}

// A "bridge" is a method created by javac to bridge the gap between
// an implementation and a generically-compatible, but different, signature.
// Bridges have actual bytecode implementation in classfiles.
// An "overpass", on the other hand, performs the same function as a bridge
// but does not occur in a classfile; the VM creates overpass itself,
// when it needs a path to get from a call site to an default method, and
// a bridge doesn't exist.
static void create_overpasses(
    GrowableArray<EmptyVtableSlot*>* slots,
    InstanceKlass* klass, TRAPS) {

  GrowableArray<Method*> overpasses;
  BytecodeConstantPool bpool(klass->constants());

  for (int i = 0; i < slots->length(); ++i) {
    EmptyVtableSlot* slot = slots->at(i);

    if (slot->is_bound()) {
      MethodFamily* method = slot->get_binding();
      int max_stack = 0;
      BytecodeBuffer buffer;

#ifndef PRODUCT
      if (TraceDefaultMethods) {
        tty->print("for slot: ");
        slot->print_on(tty);
        tty->print_cr("");
        if (method->has_target()) {
          method->print_selected(tty, 1);
        } else {
          method->print_exception(tty, 1);
        }
      }
#endif // ndef PRODUCT
      if (method->has_target()) {
        Method* selected = method->get_selected_target();
        max_stack = assemble_redirect(
            &bpool, &buffer, slot->signature(), selected, CHECK);
      } else if (method->throws_exception()) {
        max_stack = assemble_abstract_method_error(
            &bpool, &buffer, method->get_exception_message(), CHECK);
      }
      AccessFlags flags = accessFlags_from(
          JVM_ACC_PUBLIC | JVM_ACC_SYNTHETIC | JVM_ACC_BRIDGE);
      Method* m = new_method(&bpool, &buffer, slot->name(), slot->signature(),
          flags, max_stack, slot->size_of_parameters(),
          ConstMethod::OVERPASS, CHECK);
      if (m != NULL) {
        overpasses.push(m);
      }
    }
  }

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Created %d overpass methods", overpasses.length());
  }
#endif // ndef PRODUCT

  switchover_constant_pool(&bpool, klass, &overpasses, CHECK);
  merge_in_new_methods(klass, &overpasses, CHECK);
}

static void sort_methods(GrowableArray<Method*>* methods) {
  // Note that this must sort using the same key as is used for sorting
  // methods in InstanceKlass.
  bool sorted = true;
  for (int i = methods->length() - 1; i > 0; --i) {
    for (int j = 0; j < i; ++j) {
      Method* m1 = methods->at(j);
      Method* m2 = methods->at(j + 1);
      if ((uintptr_t)m1->name() > (uintptr_t)m2->name()) {
        methods->at_put(j, m2);
        methods->at_put(j + 1, m1);
        sorted = false;
      }
    }
    if (sorted) break;
    sorted = true;
  }
#ifdef ASSERT
  uintptr_t prev = 0;
  for (int i = 0; i < methods->length(); ++i) {
    Method* mh = methods->at(i);
    uintptr_t nv = (uintptr_t)mh->name();
    assert(nv >= prev, "Incorrect overpass method ordering");
    prev = nv;
  }
#endif
}

static void merge_in_new_methods(InstanceKlass* klass,
    GrowableArray<Method*>* new_methods, TRAPS) {

  enum { ANNOTATIONS, PARAMETERS, DEFAULTS, NUM_ARRAYS };

  Array<AnnotationArray*>* original_annots[NUM_ARRAYS];

  Array<Method*>* original_methods = klass->methods();
  Annotations* annots = klass->annotations();
  original_annots[ANNOTATIONS] = annots->methods_annotations();
  original_annots[PARAMETERS]  = annots->methods_parameter_annotations();
  original_annots[DEFAULTS]    = annots->methods_default_annotations();

  Array<int>* original_ordering = klass->method_ordering();
  Array<int>* merged_ordering = Universe::the_empty_int_array();

  int new_size = klass->methods()->length() + new_methods->length();

  Array<AnnotationArray*>* merged_annots[NUM_ARRAYS];

  Array<Method*>* merged_methods = MetadataFactory::new_array<Method*>(
      klass->class_loader_data(), new_size, NULL, CHECK);
  for (int i = 0; i < NUM_ARRAYS; ++i) {
    if (original_annots[i] != NULL) {
      merged_annots[i] = MetadataFactory::new_array<AnnotationArray*>(
          klass->class_loader_data(), new_size, CHECK);
    } else {
      merged_annots[i] = NULL;
    }
  }
  if (original_ordering != NULL && original_ordering->length() > 0) {
    merged_ordering = MetadataFactory::new_array<int>(
        klass->class_loader_data(), new_size, CHECK);
  }
  int method_order_index = klass->methods()->length();

  sort_methods(new_methods);

  // Perform grand merge of existing methods and new methods
  int orig_idx = 0;
  int new_idx = 0;

  for (int i = 0; i < new_size; ++i) {
    Method* orig_method = NULL;
    Method* new_method = NULL;
    if (orig_idx < original_methods->length()) {
      orig_method = original_methods->at(orig_idx);
    }
    if (new_idx < new_methods->length()) {
      new_method = new_methods->at(new_idx);
    }

    if (orig_method != NULL &&
        (new_method == NULL || orig_method->name() < new_method->name())) {
      merged_methods->at_put(i, orig_method);
      original_methods->at_put(orig_idx, NULL);
      for (int j = 0; j < NUM_ARRAYS; ++j) {
        if (merged_annots[j] != NULL) {
          merged_annots[j]->at_put(i, original_annots[j]->at(orig_idx));
          original_annots[j]->at_put(orig_idx, NULL);
        }
      }
      if (merged_ordering->length() > 0) {
        merged_ordering->at_put(i, original_ordering->at(orig_idx));
      }
      ++orig_idx;
    } else {
      merged_methods->at_put(i, new_method);
      if (merged_ordering->length() > 0) {
        merged_ordering->at_put(i, method_order_index++);
      }
      ++new_idx;
    }
    // update idnum for new location
    merged_methods->at(i)->set_method_idnum(i);
  }

  // Verify correct order
#ifdef ASSERT
  uintptr_t prev = 0;
  for (int i = 0; i < merged_methods->length(); ++i) {
    Method* mo = merged_methods->at(i);
    uintptr_t nv = (uintptr_t)mo->name();
    assert(nv >= prev, "Incorrect method ordering");
    prev = nv;
  }
#endif

  // Replace klass methods with new merged lists
  klass->set_methods(merged_methods);
  annots->set_methods_annotations(merged_annots[ANNOTATIONS]);
  annots->set_methods_parameter_annotations(merged_annots[PARAMETERS]);
  annots->set_methods_default_annotations(merged_annots[DEFAULTS]);

  ClassLoaderData* cld = klass->class_loader_data();
  MetadataFactory::free_array(cld, original_methods);
  for (int i = 0; i < NUM_ARRAYS; ++i) {
    MetadataFactory::free_array(cld, original_annots[i]);
  }
  if (original_ordering->length() > 0) {
    klass->set_method_ordering(merged_ordering);
    MetadataFactory::free_array(cld, original_ordering);
  }
}