g1CollectedHeap.cpp 174.7 KB
Newer Older
1
/*
2
 * Copyright 2001-2010 Sun Microsystems, Inc.  All Rights Reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_g1CollectedHeap.cpp.incl"

28 29
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
// turn it on so that the contents of the young list (scan-only /
// to-be-collected) are printed at "strategic" points before / during
// / after the collection --- this is useful for debugging
#define SCAN_ONLY_VERBOSE 0
// CURRENT STATUS
// This file is under construction.  Search for "FIXME".

// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
//   serialized by acquiring the HeapLock.  This happens in
//   mem_allocate_work, which all such allocation functions call.
//   (Note that this does not apply to TLAB allocation, which is not part
//   of this interface: it is done by clients of this interface.)

// Local to this file.

class RefineCardTableEntryClosure: public CardTableEntryClosure {
  SuspendibleThreadSet* _sts;
  G1RemSet* _g1rs;
  ConcurrentG1Refine* _cg1r;
  bool _concurrent;
public:
  RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
                              G1RemSet* g1rs,
                              ConcurrentG1Refine* cg1r) :
    _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  {}
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
    if (_concurrent && _sts->should_yield()) {
      // Caller will actually yield.
      return false;
    }
    // Otherwise, we finished successfully; return true.
    return true;
  }
  void set_concurrent(bool b) { _concurrent = b; }
};


class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  int _histo[256];
public:
  ClearLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
    for (int i = 0; i < 256; i++) _histo[i] = 0;
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      unsigned char* ujb = (unsigned char*)card_ptr;
      int ind = (int)(*ujb);
      _histo[ind]++;
      *card_ptr = -1;
    }
    return true;
  }
  int calls() { return _calls; }
  void print_histo() {
    gclog_or_tty->print_cr("Card table value histogram:");
    for (int i = 0; i < 256; i++) {
      if (_histo[i] != 0) {
        gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
      }
    }
  }
};

class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
  int _calls;
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
public:
  RedirtyLoggedCardTableEntryClosure() :
    _calls(0)
  {
    _g1h = G1CollectedHeap::heap();
    _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  }
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
      _calls++;
      *card_ptr = 0;
    }
    return true;
  }
  int calls() { return _calls; }
};

126 127 128 129 130 131 132 133
class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
public:
  bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    *card_ptr = CardTableModRefBS::dirty_card_val();
    return true;
  }
};

134 135 136 137 138
YoungList::YoungList(G1CollectedHeap* g1h)
  : _g1h(g1h), _head(NULL),
    _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
    _length(0), _scan_only_length(0),
    _last_sampled_rs_lengths(0),
139
    _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
{
  guarantee( check_list_empty(false), "just making sure..." );
}

void YoungList::push_region(HeapRegion *hr) {
  assert(!hr->is_young(), "should not already be young");
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_head);
  _head = hr;

  hr->set_young();
  double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
  ++_length;
}

void YoungList::add_survivor_region(HeapRegion* hr) {
157
  assert(hr->is_survivor(), "should be flagged as survivor region");
158 159 160 161
  assert(hr->get_next_young_region() == NULL, "cause it should!");

  hr->set_next_young_region(_survivor_head);
  if (_survivor_head == NULL) {
162
    _survivor_tail = hr;
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
  }
  _survivor_head = hr;

  ++_survivor_length;
}

HeapRegion* YoungList::pop_region() {
  while (_head != NULL) {
    assert( length() > 0, "list should not be empty" );
    HeapRegion* ret = _head;
    _head = ret->get_next_young_region();
    ret->set_next_young_region(NULL);
    --_length;
    assert(ret->is_young(), "region should be very young");

    // Replace 'Survivor' region type with 'Young'. So the region will
    // be treated as a young region and will not be 'confused' with
    // newly created survivor regions.
    if (ret->is_survivor()) {
      ret->set_young();
    }

    if (!ret->is_scan_only()) {
      return ret;
    }

    // scan-only, we'll add it to the scan-only list
    if (_scan_only_tail == NULL) {
      guarantee( _scan_only_head == NULL, "invariant" );

      _scan_only_head = ret;
      _curr_scan_only = ret;
    } else {
      guarantee( _scan_only_head != NULL, "invariant" );
      _scan_only_tail->set_next_young_region(ret);
    }
    guarantee( ret->get_next_young_region() == NULL, "invariant" );
    _scan_only_tail = ret;

    // no need to be tagged as scan-only any more
    ret->set_young();

    ++_scan_only_length;
  }
  assert( length() == 0, "list should be empty" );
  return NULL;
}

void YoungList::empty_list(HeapRegion* list) {
  while (list != NULL) {
    HeapRegion* next = list->get_next_young_region();
    list->set_next_young_region(NULL);
    list->uninstall_surv_rate_group();
    list->set_not_young();
    list = next;
  }
}

void YoungList::empty_list() {
  assert(check_list_well_formed(), "young list should be well formed");

  empty_list(_head);
  _head = NULL;
  _length = 0;

  empty_list(_scan_only_head);
  _scan_only_head = NULL;
  _scan_only_tail = NULL;
  _scan_only_length = 0;
  _curr_scan_only = NULL;

  empty_list(_survivor_head);
  _survivor_head = NULL;
236
  _survivor_tail = NULL;
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  _survivor_length = 0;

  _last_sampled_rs_lengths = 0;

  assert(check_list_empty(false), "just making sure...");
}

bool YoungList::check_list_well_formed() {
  bool ret = true;

  size_t length = 0;
  HeapRegion* curr = _head;
  HeapRegion* last = NULL;
  while (curr != NULL) {
    if (!curr->is_young() || curr->is_scan_only()) {
      gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
                             "incorrectly tagged (%d, %d)",
                             curr->bottom(), curr->end(),
                             curr->is_young(), curr->is_scan_only());
      ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  ret = ret && (length == _length);

  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
    gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
                           length, _length);
  }

  bool scan_only_ret = true;
  length = 0;
  curr = _scan_only_head;
  last = NULL;
  while (curr != NULL) {
    if (!curr->is_young() || curr->is_scan_only()) {
      gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
                             "incorrectly tagged (%d, %d)",
                             curr->bottom(), curr->end(),
                             curr->is_young(), curr->is_scan_only());
      scan_only_ret = false;
    }
    ++length;
    last = curr;
    curr = curr->get_next_young_region();
  }
  scan_only_ret = scan_only_ret && (length == _scan_only_length);

  if ( (last != _scan_only_tail) ||
       (_scan_only_head == NULL && _scan_only_tail != NULL) ||
       (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
     gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
     scan_only_ret = false;
  }

  if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
    gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
    scan_only_ret = false;
   }

  if (!scan_only_ret) {
    gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
    gclog_or_tty->print_cr("###   list has %d entries, _scan_only_length is %d",
                  length, _scan_only_length);
  }

  return ret && scan_only_ret;
}

bool YoungList::check_list_empty(bool ignore_scan_only_list,
                                 bool check_sample) {
  bool ret = true;

  if (_length != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
                  _length);
    ret = false;
  }
  if (check_sample && _last_sampled_rs_lengths != 0) {
    gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
    ret = false;
  }
  if (_head != NULL) {
    gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
    ret = false;
  }
  if (!ret) {
    gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
  }

  if (ignore_scan_only_list)
    return ret;

  bool scan_only_ret = true;
  if (_scan_only_length != 0) {
    gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
                  _scan_only_length);
    scan_only_ret = false;
  }
  if (_scan_only_head != NULL) {
    gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
     scan_only_ret = false;
  }
  if (_scan_only_tail != NULL) {
    gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
    scan_only_ret = false;
  }
  if (!scan_only_ret) {
    gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
  }

  return ret && scan_only_ret;
}

void
YoungList::rs_length_sampling_init() {
  _sampled_rs_lengths = 0;
  _curr               = _head;
}

bool
YoungList::rs_length_sampling_more() {
  return _curr != NULL;
}

void
YoungList::rs_length_sampling_next() {
  assert( _curr != NULL, "invariant" );
  _sampled_rs_lengths += _curr->rem_set()->occupied();
  _curr = _curr->get_next_young_region();
  if (_curr == NULL) {
    _last_sampled_rs_lengths = _sampled_rs_lengths;
    // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
  }
}

void
YoungList::reset_auxilary_lists() {
  // We could have just "moved" the scan-only list to the young list.
  // However, the scan-only list is ordered according to the region
  // age in descending order, so, by moving one entry at a time, we
  // ensure that it is recreated in ascending order.

  guarantee( is_empty(), "young list should be empty" );
  assert(check_list_well_formed(), "young list should be well formed");

  // Add survivor regions to SurvRateGroup.
  _g1h->g1_policy()->note_start_adding_survivor_regions();
388
  _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
389 390 391 392 393 394 395 396 397 398
  for (HeapRegion* curr = _survivor_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    _g1h->g1_policy()->set_region_survivors(curr);
  }
  _g1h->g1_policy()->note_stop_adding_survivor_regions();

  if (_survivor_head != NULL) {
    _head           = _survivor_head;
    _length         = _survivor_length + _scan_only_length;
399
    _survivor_tail->set_next_young_region(_scan_only_head);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
  } else {
    _head           = _scan_only_head;
    _length         = _scan_only_length;
  }

  for (HeapRegion* curr = _scan_only_head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    curr->recalculate_age_in_surv_rate_group();
  }
  _scan_only_head   = NULL;
  _scan_only_tail   = NULL;
  _scan_only_length = 0;
  _curr_scan_only   = NULL;

  _survivor_head    = NULL;
416
  _survivor_tail   = NULL;
417
  _survivor_length  = 0;
418
  _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

  assert(check_list_well_formed(), "young list should be well formed");
}

void YoungList::print() {
  HeapRegion* lists[] = {_head,   _scan_only_head, _survivor_head};
  const char* names[] = {"YOUNG", "SCAN-ONLY",     "SURVIVOR"};

  for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
    gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
    HeapRegion *curr = lists[list];
    if (curr == NULL)
      gclog_or_tty->print_cr("  empty");
    while (curr != NULL) {
      gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
                             "age: %4d, y: %d, s-o: %d, surv: %d",
                             curr->bottom(), curr->end(),
                             curr->top(),
                             curr->prev_top_at_mark_start(),
                             curr->next_top_at_mark_start(),
                             curr->top_at_conc_mark_count(),
                             curr->age_in_surv_rate_group_cond(),
                             curr->is_young(),
                             curr->is_scan_only(),
                             curr->is_survivor());
      curr = curr->get_next_young_region();
    }
  }

  gclog_or_tty->print_cr("");
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
{
  // Claim the right to put the region on the dirty cards region list
  // by installing a self pointer.
  HeapRegion* next = hr->get_next_dirty_cards_region();
  if (next == NULL) {
    HeapRegion* res = (HeapRegion*)
      Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
                          NULL);
    if (res == NULL) {
      HeapRegion* head;
      do {
        // Put the region to the dirty cards region list.
        head = _dirty_cards_region_list;
        next = (HeapRegion*)
          Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
        if (next == head) {
          assert(hr->get_next_dirty_cards_region() == hr,
                 "hr->get_next_dirty_cards_region() != hr");
          if (next == NULL) {
            // The last region in the list points to itself.
            hr->set_next_dirty_cards_region(hr);
          } else {
            hr->set_next_dirty_cards_region(next);
          }
        }
      } while (next != head);
    }
  }
}

HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
{
  HeapRegion* head;
  HeapRegion* hr;
  do {
    head = _dirty_cards_region_list;
    if (head == NULL) {
      return NULL;
    }
    HeapRegion* new_head = head->get_next_dirty_cards_region();
    if (head == new_head) {
      // The last region.
      new_head = NULL;
    }
    hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
                                          head);
  } while (hr != head);
  assert(hr != NULL, "invariant");
  hr->set_next_dirty_cards_region(NULL);
  return hr;
}

504
void G1CollectedHeap::stop_conc_gc_threads() {
505
  _cg1r->stop();
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
  _czft->stop();
  _cmThread->stop();
}


void G1CollectedHeap::check_ct_logs_at_safepoint() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();

  // Count the dirty cards at the start.
  CountNonCleanMemRegionClosure count1(this);
  ct_bs->mod_card_iterate(&count1);
  int orig_count = count1.n();

  // First clear the logged cards.
  ClearLoggedCardTableEntryClosure clear;
  dcqs.set_closure(&clear);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  clear.print_histo();

  // Now ensure that there's no dirty cards.
  CountNonCleanMemRegionClosure count2(this);
  ct_bs->mod_card_iterate(&count2);
  if (count2.n() != 0) {
    gclog_or_tty->print_cr("Card table has %d entries; %d originally",
                           count2.n(), orig_count);
  }
  guarantee(count2.n() == 0, "Card table should be clean.");

  RedirtyLoggedCardTableEntryClosure redirty;
  JavaThread::dirty_card_queue_set().set_closure(&redirty);
  dcqs.apply_closure_to_all_completed_buffers();
  dcqs.iterate_closure_all_threads(false);
  gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
                         clear.calls(), orig_count);
  guarantee(redirty.calls() == clear.calls(),
            "Or else mechanism is broken.");

  CountNonCleanMemRegionClosure count3(this);
  ct_bs->mod_card_iterate(&count3);
  if (count3.n() != orig_count) {
    gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
                           orig_count, count3.n());
    guarantee(count3.n() >= orig_count, "Should have restored them all.");
  }

  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
}

// Private class members.

G1CollectedHeap* G1CollectedHeap::_g1h;

// Private methods.

// Finds a HeapRegion that can be used to allocate a given size of block.


HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
                                                 bool do_expand,
                                                 bool zero_filled) {
  ConcurrentZFThread::note_region_alloc();
  HeapRegion* res = alloc_free_region_from_lists(zero_filled);
  if (res == NULL && do_expand) {
    expand(word_size * HeapWordSize);
    res = alloc_free_region_from_lists(zero_filled);
    assert(res == NULL ||
           (!res->isHumongous() &&
            (!zero_filled ||
             res->zero_fill_state() == HeapRegion::Allocated)),
           "Alloc Regions must be zero filled (and non-H)");
  }
  if (res != NULL && res->is_empty()) _free_regions--;
  assert(res == NULL ||
         (!res->isHumongous() &&
          (!zero_filled ||
           res->zero_fill_state() == HeapRegion::Allocated)),
         "Non-young alloc Regions must be zero filled (and non-H)");

586
  if (G1PrintHeapRegions) {
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    if (res != NULL) {
      gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
                             "top "PTR_FORMAT,
                             res->hrs_index(), res->bottom(), res->end(), res->top());
    }
  }

  return res;
}

HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
                                                         size_t word_size,
                                                         bool zero_filled) {
  HeapRegion* alloc_region = NULL;
  if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
    alloc_region = newAllocRegion_work(word_size, true, zero_filled);
    if (purpose == GCAllocForSurvived && alloc_region != NULL) {
604
      alloc_region->set_survivor();
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    }
    ++_gc_alloc_region_counts[purpose];
  } else {
    g1_policy()->note_alloc_region_limit_reached(purpose);
  }
  return alloc_region;
}

// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
  assert(regions_accounted_for(), "Region leakage!");

  // We can't allocate H regions while cleanupComplete is running, since
  // some of the regions we find to be empty might not yet be added to the
  // unclean list.  (If we're already at a safepoint, this call is
  // unnecessary, not to mention wrong.)
  if (!SafepointSynchronize::is_at_safepoint())
    wait_for_cleanup_complete();

  size_t num_regions =
    round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;

  // Special case if < one region???

  // Remember the ft size.
  size_t x_size = expansion_regions();

  HeapWord* res = NULL;
  bool eliminated_allocated_from_lists = false;

  // Can the allocation potentially fit in the free regions?
  if (free_regions() >= num_regions) {
    res = _hrs->obj_allocate(word_size);
  }
  if (res == NULL) {
    // Try expansion.
    size_t fs = _hrs->free_suffix();
    if (fs + x_size >= num_regions) {
      expand((num_regions - fs) * HeapRegion::GrainBytes);
      res = _hrs->obj_allocate(word_size);
      assert(res != NULL, "This should have worked.");
    } else {
      // Expansion won't help.  Are there enough free regions if we get rid
      // of reservations?
      size_t avail = free_regions();
      if (avail >= num_regions) {
        res = _hrs->obj_allocate(word_size);
        if (res != NULL) {
          remove_allocated_regions_from_lists();
          eliminated_allocated_from_lists = true;
        }
      }
    }
  }
  if (res != NULL) {
    // Increment by the number of regions allocated.
    // FIXME: Assumes regions all of size GrainBytes.
#ifndef PRODUCT
    mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
                                           HeapRegion::GrainWords));
#endif
    if (!eliminated_allocated_from_lists)
      remove_allocated_regions_from_lists();
    _summary_bytes_used += word_size * HeapWordSize;
    _free_regions -= num_regions;
    _num_humongous_regions += (int) num_regions;
  }
  assert(regions_accounted_for(), "Region Leakage");
  return res;
}

HeapWord*
G1CollectedHeap::attempt_allocation_slow(size_t word_size,
                                         bool permit_collection_pause) {
  HeapWord* res = NULL;
  HeapRegion* allocated_young_region = NULL;

  assert( SafepointSynchronize::is_at_safepoint() ||
          Heap_lock->owned_by_self(), "pre condition of the call" );

  if (isHumongous(word_size)) {
    // Allocation of a humongous object can, in a sense, complete a
    // partial region, if the previous alloc was also humongous, and
    // caused the test below to succeed.
    if (permit_collection_pause)
      do_collection_pause_if_appropriate(word_size);
    res = humongousObjAllocate(word_size);
    assert(_cur_alloc_region == NULL
           || !_cur_alloc_region->isHumongous(),
           "Prevent a regression of this bug.");

  } else {
699 700 701 702 703 704
    // We may have concurrent cleanup working at the time. Wait for it
    // to complete. In the future we would probably want to make the
    // concurrent cleanup truly concurrent by decoupling it from the
    // allocation.
    if (!SafepointSynchronize::is_at_safepoint())
      wait_for_cleanup_complete();
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
    // If we do a collection pause, this will be reset to a non-NULL
    // value.  If we don't, nulling here ensures that we allocate a new
    // region below.
    if (_cur_alloc_region != NULL) {
      // We're finished with the _cur_alloc_region.
      _summary_bytes_used += _cur_alloc_region->used();
      _cur_alloc_region = NULL;
    }
    assert(_cur_alloc_region == NULL, "Invariant.");
    // Completion of a heap region is perhaps a good point at which to do
    // a collection pause.
    if (permit_collection_pause)
      do_collection_pause_if_appropriate(word_size);
    // Make sure we have an allocation region available.
    if (_cur_alloc_region == NULL) {
      if (!SafepointSynchronize::is_at_safepoint())
        wait_for_cleanup_complete();
      bool next_is_young = should_set_young_locked();
      // If the next region is not young, make sure it's zero-filled.
      _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
      if (_cur_alloc_region != NULL) {
        _summary_bytes_used -= _cur_alloc_region->used();
        if (next_is_young) {
          set_region_short_lived_locked(_cur_alloc_region);
          allocated_young_region = _cur_alloc_region;
        }
      }
    }
    assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
           "Prevent a regression of this bug.");

    // Now retry the allocation.
    if (_cur_alloc_region != NULL) {
      res = _cur_alloc_region->allocate(word_size);
    }
  }

  // NOTE: fails frequently in PRT
  assert(regions_accounted_for(), "Region leakage!");

  if (res != NULL) {
    if (!SafepointSynchronize::is_at_safepoint()) {
      assert( permit_collection_pause, "invariant" );
      assert( Heap_lock->owned_by_self(), "invariant" );
      Heap_lock->unlock();
    }

    if (allocated_young_region != NULL) {
      HeapRegion* hr = allocated_young_region;
      HeapWord* bottom = hr->bottom();
      HeapWord* end = hr->end();
      MemRegion mr(bottom, end);
      ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
    }
  }

  assert( SafepointSynchronize::is_at_safepoint() ||
          (res == NULL && Heap_lock->owned_by_self()) ||
          (res != NULL && !Heap_lock->owned_by_self()),
          "post condition of the call" );

  return res;
}

HeapWord*
G1CollectedHeap::mem_allocate(size_t word_size,
                              bool   is_noref,
                              bool   is_tlab,
                              bool* gc_overhead_limit_was_exceeded) {
  debug_only(check_for_valid_allocation_state());
  assert(no_gc_in_progress(), "Allocation during gc not allowed");
  HeapWord* result = NULL;

  // Loop until the allocation is satisified,
  // or unsatisfied after GC.
  for (int try_count = 1; /* return or throw */; try_count += 1) {
    int gc_count_before;
    {
      Heap_lock->lock();
      result = attempt_allocation(word_size);
      if (result != NULL) {
        // attempt_allocation should have unlocked the heap lock
        assert(is_in(result), "result not in heap");
        return result;
      }
      // Read the gc count while the heap lock is held.
      gc_count_before = SharedHeap::heap()->total_collections();
      Heap_lock->unlock();
    }

    // Create the garbage collection operation...
    VM_G1CollectForAllocation op(word_size,
                                 gc_count_before);

    // ...and get the VM thread to execute it.
    VMThread::execute(&op);
    if (op.prologue_succeeded()) {
      result = op.result();
      assert(result == NULL || is_in(result), "result not in heap");
      return result;
    }

    // Give a warning if we seem to be looping forever.
    if ((QueuedAllocationWarningCount > 0) &&
        (try_count % QueuedAllocationWarningCount == 0)) {
      warning("G1CollectedHeap::mem_allocate_work retries %d times",
              try_count);
    }
  }
}

void G1CollectedHeap::abandon_cur_alloc_region() {
  if (_cur_alloc_region != NULL) {
    // We're finished with the _cur_alloc_region.
    if (_cur_alloc_region->is_empty()) {
      _free_regions++;
      free_region(_cur_alloc_region);
    } else {
      _summary_bytes_used += _cur_alloc_region->used();
    }
    _cur_alloc_region = NULL;
  }
}

829 830 831 832 833 834
void G1CollectedHeap::abandon_gc_alloc_regions() {
  // first, make sure that the GC alloc region list is empty (it should!)
  assert(_gc_alloc_region_list == NULL, "invariant");
  release_gc_alloc_regions(true /* totally */);
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
class PostMCRemSetClearClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    r->reset_gc_time_stamp();
    if (r->continuesHumongous())
      return false;
    HeapRegionRemSet* hrrs = r->rem_set();
    if (hrrs != NULL) hrrs->clear();
    // You might think here that we could clear just the cards
    // corresponding to the used region.  But no: if we leave a dirty card
    // in a region we might allocate into, then it would prevent that card
    // from being enqueued, and cause it to be missed.
    // Re: the performance cost: we shouldn't be doing full GC anyway!
    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
    return false;
  }
};


class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  ModRefBarrierSet* _mr_bs;
public:
  PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->used_region().word_size() != 0) {
      _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
    }
    return false;
  }
};

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*   _g1h;
  UpdateRSOopClosure _cl;
  int                _worker_i;
public:
  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
    _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
    _worker_i(worker_i),
    _g1h(g1)
  { }
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _cl.set_from(r);
      r->oop_iterate(&_cl);
    }
    return false;
  }
};

class ParRebuildRSTask: public AbstractGangTask {
  G1CollectedHeap* _g1;
public:
  ParRebuildRSTask(G1CollectedHeap* g1)
    : AbstractGangTask("ParRebuildRSTask"),
      _g1(g1)
  { }

  void work(int i) {
    RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
    _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
                                         HeapRegion::RebuildRSClaimValue);
  }
};

903 904
void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
                                    size_t word_size) {
905 906 907 908
  if (GC_locker::check_active_before_gc()) {
    return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  }

909 910
  ResourceMark rm;

911 912 913 914
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
  }

915 916 917 918 919 920 921
  if (full && DisableExplicitGC) {
    return;
  }

  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");

922 923 924 925 926
  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                           collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

927 928 929 930 931 932
  {
    IsGCActiveMark x;

    // Timing
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
933 934
    TraceTime t(full ? "Full GC (System.gc())" : "Full GC",
                PrintGC, true, gclog_or_tty);
935

936 937
    TraceMemoryManagerStats tms(true /* fullGC */);

938 939 940 941
    double start = os::elapsedTime();
    g1_policy()->record_full_collection_start();

    gc_prologue(true);
942
    increment_total_collections(true /* full gc */);
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972

    size_t g1h_prev_used = used();
    assert(used() == recalculate_used(), "Should be equal");

    if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      prepare_for_verify();
      gclog_or_tty->print(" VerifyBeforeGC:");
      Universe::verify(true);
    }
    assert(regions_accounted_for(), "Region leakage!");

    COMPILER2_PRESENT(DerivedPointerTable::clear());

    // We want to discover references, but not process them yet.
    // This mode is disabled in
    // instanceRefKlass::process_discovered_references if the
    // generation does some collection work, or
    // instanceRefKlass::enqueue_discovered_references if the
    // generation returns without doing any work.
    ref_processor()->disable_discovery();
    ref_processor()->abandon_partial_discovery();
    ref_processor()->verify_no_references_recorded();

    // Abandon current iterations of concurrent marking and concurrent
    // refinement, if any are in progress.
    concurrent_mark()->abort();

    // Make sure we'll choose a new allocation region afterwards.
    abandon_cur_alloc_region();
973
    abandon_gc_alloc_regions();
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    assert(_cur_alloc_region == NULL, "Invariant.");
    g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
    tear_down_region_lists();
    set_used_regions_to_need_zero_fill();
    if (g1_policy()->in_young_gc_mode()) {
      empty_young_list();
      g1_policy()->set_full_young_gcs(true);
    }

    // Temporarily make reference _discovery_ single threaded (non-MT).
    ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);

    // Temporarily make refs discovery atomic
    ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);

    // Temporarily clear _is_alive_non_header
    ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);

    ref_processor()->enable_discovery();
993
    ref_processor()->setup_policy(do_clear_all_soft_refs);
994 995 996 997

    // Do collection work
    {
      HandleMark hm;  // Discard invalid handles created during gc
998
      G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    }
    // Because freeing humongous regions may have added some unclean
    // regions, it is necessary to tear down again before rebuilding.
    tear_down_region_lists();
    rebuild_region_lists();

    _summary_bytes_used = recalculate_used();

    ref_processor()->enqueue_discovered_references();

    COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

1011 1012
    MemoryService::track_memory_usage();

1013 1014 1015
    if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
      HandleMark hm;  // Discard invalid handles created during verification
      gclog_or_tty->print(" VerifyAfterGC:");
1016
      prepare_for_verify();
1017 1018 1019 1020 1021 1022
      Universe::verify(false);
    }
    NOT_PRODUCT(ref_processor()->verify_no_references_recorded());

    reset_gc_time_stamp();
    // Since everything potentially moved, we will clear all remembered
1023 1024
    // sets, and clear all cards.  Later we will rebuild remebered
    // sets. We will also reset the GC time stamps of the regions.
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
    PostMCRemSetClearClosure rs_clear(mr_bs());
    heap_region_iterate(&rs_clear);

    // Resize the heap if necessary.
    resize_if_necessary_after_full_collection(full ? 0 : word_size);

    if (_cg1r->use_cache()) {
      _cg1r->clear_and_record_card_counts();
      _cg1r->clear_hot_cache();
    }

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    // Rebuild remembered sets of all regions.
    if (ParallelGCThreads > 0) {
      ParRebuildRSTask rebuild_rs_task(this);
      assert(check_heap_region_claim_values(
             HeapRegion::InitialClaimValue), "sanity check");
      set_par_threads(workers()->total_workers());
      workers()->run_task(&rebuild_rs_task);
      set_par_threads(0);
      assert(check_heap_region_claim_values(
             HeapRegion::RebuildRSClaimValue), "sanity check");
      reset_heap_region_claim_values();
    } else {
      RebuildRSOutOfRegionClosure rebuild_rs(this);
      heap_region_iterate(&rebuild_rs);
    }

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
    if (PrintGC) {
      print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
    }

    if (true) { // FIXME
      // Ask the permanent generation to adjust size for full collections
      perm()->compute_new_size();
    }

    double end = os::elapsedTime();
    g1_policy()->record_full_collection_end();

1064 1065 1066 1067
#ifdef TRACESPINNING
    ParallelTaskTerminator::print_termination_counts();
#endif

1068 1069
    gc_epilogue(true);

1070 1071
    // Discard all rset updates
    JavaThread::dirty_card_queue_set().abandon_logs();
1072 1073
    assert(!G1DeferredRSUpdate
           || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1074 1075 1076 1077 1078 1079 1080 1081
    assert(regions_accounted_for(), "Region leakage!");
  }

  if (g1_policy()->in_young_gc_mode()) {
    _young_list->reset_sampled_info();
    assert( check_young_list_empty(false, false),
            "young list should be empty at this point");
  }
1082 1083 1084 1085

  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
}

void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  do_collection(true, clear_all_soft_refs, 0);
}

// This code is mostly copied from TenuredGeneration.
void
G1CollectedHeap::
resize_if_necessary_after_full_collection(size_t word_size) {
  assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");

  // Include the current allocation, if any, and bytes that will be
  // pre-allocated to support collections, as "used".
  const size_t used_after_gc = used();
  const size_t capacity_after_gc = capacity();
  const size_t free_after_gc = capacity_after_gc - used_after_gc;

  // We don't have floating point command-line arguments
  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
  const double minimum_used_percentage = 1.0 - maximum_free_percentage;

  size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
  size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);

  // Don't shrink less than the initial size.
  minimum_desired_capacity =
    MAX2(minimum_desired_capacity,
         collector_policy()->initial_heap_byte_size());
  maximum_desired_capacity =
    MAX2(maximum_desired_capacity,
         collector_policy()->initial_heap_byte_size());

  // We are failing here because minimum_desired_capacity is
  assert(used_after_gc <= minimum_desired_capacity, "sanity check");
  assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");

  if (PrintGC && Verbose) {
    const double free_percentage = ((double)free_after_gc) / capacity();
    gclog_or_tty->print_cr("Computing new size after full GC ");
    gclog_or_tty->print_cr("  "
                           "  minimum_free_percentage: %6.2f",
                           minimum_free_percentage);
    gclog_or_tty->print_cr("  "
                           "  maximum_free_percentage: %6.2f",
                           maximum_free_percentage);
    gclog_or_tty->print_cr("  "
                           "  capacity: %6.1fK"
                           "  minimum_desired_capacity: %6.1fK"
                           "  maximum_desired_capacity: %6.1fK",
                           capacity() / (double) K,
                           minimum_desired_capacity / (double) K,
                           maximum_desired_capacity / (double) K);
    gclog_or_tty->print_cr("  "
                           "   free_after_gc   : %6.1fK"
                           "   used_after_gc   : %6.1fK",
                           free_after_gc / (double) K,
                           used_after_gc / (double) K);
    gclog_or_tty->print_cr("  "
                           "   free_percentage: %6.2f",
                           free_percentage);
  }
  if (capacity() < minimum_desired_capacity) {
    // Don't expand unless it's significant
    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
    expand(expand_bytes);
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("    expanding:"
                             "  minimum_desired_capacity: %6.1fK"
                             "  expand_bytes: %6.1fK",
                             minimum_desired_capacity / (double) K,
                             expand_bytes / (double) K);
    }

    // No expansion, now see if we want to shrink
  } else if (capacity() > maximum_desired_capacity) {
    // Capacity too large, compute shrinking size
    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
    shrink(shrink_bytes);
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("  "
                             "  shrinking:"
                             "  initSize: %.1fK"
                             "  maximum_desired_capacity: %.1fK",
                             collector_policy()->initial_heap_byte_size() / (double) K,
                             maximum_desired_capacity / (double) K);
      gclog_or_tty->print_cr("  "
                             "  shrink_bytes: %.1fK",
                             shrink_bytes / (double) K);
    }
  }
}


HeapWord*
G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
  HeapWord* result = NULL;

  // In a G1 heap, we're supposed to keep allocation from failing by
  // incremental pauses.  Therefore, at least for now, we'll favor
  // expansion over collection.  (This might change in the future if we can
  // do something smarter than full collection to satisfy a failed alloc.)

  result = expand_and_allocate(word_size);
  if (result != NULL) {
    assert(is_in(result), "result not in heap");
    return result;
  }

  // OK, I guess we have to try collection.

  do_collection(false, false, word_size);

  result = attempt_allocation(word_size, /*permit_collection_pause*/false);

  if (result != NULL) {
    assert(is_in(result), "result not in heap");
    return result;
  }

  // Try collecting soft references.
  do_collection(false, true, word_size);
  result = attempt_allocation(word_size, /*permit_collection_pause*/false);
  if (result != NULL) {
    assert(is_in(result), "result not in heap");
    return result;
  }

1216 1217 1218
  assert(!collector_policy()->should_clear_all_soft_refs(),
    "Flag should have been handled and cleared prior to this point");

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
  // What else?  We might try synchronous finalization later.  If the total
  // space available is large enough for the allocation, then a more
  // complete compaction phase than we've tried so far might be
  // appropriate.
  return NULL;
}

// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size".  If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".

HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  size_t expand_bytes = word_size * HeapWordSize;
  if (expand_bytes < MinHeapDeltaBytes) {
    expand_bytes = MinHeapDeltaBytes;
  }
  expand(expand_bytes);
  assert(regions_accounted_for(), "Region leakage!");
  HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
  return result;
}

size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
  size_t pre_used = 0;
  size_t cleared_h_regions = 0;
  size_t freed_regions = 0;
  UncleanRegionList local_list;
  free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
                                    freed_regions, &local_list);

  finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
                          &local_list);
  return pre_used;
}

void
G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
                                                   size_t& pre_used,
                                                   size_t& cleared_h,
                                                   size_t& freed_regions,
                                                   UncleanRegionList* list,
                                                   bool par) {
  assert(!hr->continuesHumongous(), "should have filtered these out");
  size_t res = 0;
1264 1265 1266 1267 1268 1269
  if (hr->used() > 0 && hr->garbage_bytes() == hr->used() &&
      !hr->is_young()) {
    if (G1PolicyVerbose > 0)
      gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
                                                                               " during cleanup", hr, hr->used());
    free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
  }
}

// FIXME: both this and shrink could probably be more efficient by
// doing one "VirtualSpace::expand_by" call rather than several.
void G1CollectedHeap::expand(size_t expand_bytes) {
  size_t old_mem_size = _g1_storage.committed_size();
  // We expand by a minimum of 1K.
  expand_bytes = MAX2(expand_bytes, (size_t)K);
  size_t aligned_expand_bytes =
    ReservedSpace::page_align_size_up(expand_bytes);
  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
                                       HeapRegion::GrainBytes);
  expand_bytes = aligned_expand_bytes;
  while (expand_bytes > 0) {
    HeapWord* base = (HeapWord*)_g1_storage.high();
    // Commit more storage.
    bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
    if (!successful) {
        expand_bytes = 0;
    } else {
      expand_bytes -= HeapRegion::GrainBytes;
      // Expand the committed region.
      HeapWord* high = (HeapWord*) _g1_storage.high();
      _g1_committed.set_end(high);
      // Create a new HeapRegion.
      MemRegion mr(base, high);
      bool is_zeroed = !_g1_max_committed.contains(base);
      HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);

      // Now update max_committed if necessary.
      _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));

      // Add it to the HeapRegionSeq.
      _hrs->insert(hr);
      // Set the zero-fill state, according to whether it's already
      // zeroed.
      {
        MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
        if (is_zeroed) {
          hr->set_zero_fill_complete();
          put_free_region_on_list_locked(hr);
        } else {
          hr->set_zero_fill_needed();
          put_region_on_unclean_list_locked(hr);
        }
      }
      _free_regions++;
      // And we used up an expansion region to create it.
      _expansion_regions--;
      // Tell the cardtable about it.
      Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
      // And the offset table as well.
      _bot_shared->resize(_g1_committed.word_size());
    }
  }
  if (Verbose && PrintGC) {
    size_t new_mem_size = _g1_storage.committed_size();
    gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
                           old_mem_size/K, aligned_expand_bytes/K,
                           new_mem_size/K);
  }
}

void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
{
  size_t old_mem_size = _g1_storage.committed_size();
  size_t aligned_shrink_bytes =
    ReservedSpace::page_align_size_down(shrink_bytes);
  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
                                         HeapRegion::GrainBytes);
  size_t num_regions_deleted = 0;
  MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);

  assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  if (mr.byte_size() > 0)
    _g1_storage.shrink_by(mr.byte_size());
  assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");

  _g1_committed.set_end(mr.start());
  _free_regions -= num_regions_deleted;
  _expansion_regions += num_regions_deleted;

  // Tell the cardtable about it.
  Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);

  // And the offset table as well.
  _bot_shared->resize(_g1_committed.word_size());

  HeapRegionRemSet::shrink_heap(n_regions());

  if (Verbose && PrintGC) {
    size_t new_mem_size = _g1_storage.committed_size();
    gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
                           old_mem_size/K, aligned_shrink_bytes/K,
                           new_mem_size/K);
  }
}

void G1CollectedHeap::shrink(size_t shrink_bytes) {
1370
  release_gc_alloc_regions(true /* totally */);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
  tear_down_region_lists();  // We will rebuild them in a moment.
  shrink_helper(shrink_bytes);
  rebuild_region_lists();
}

// Public methods.

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER


G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  SharedHeap(policy_),
  _g1_policy(policy_),
1386
  _dirty_card_queue_set(false),
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
  _ref_processor(NULL),
  _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  _bot_shared(NULL),
  _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
  _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  _evac_failure_scan_stack(NULL) ,
  _mark_in_progress(false),
  _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
  _cur_alloc_region(NULL),
  _refine_cte_cl(NULL),
  _free_region_list(NULL), _free_region_list_size(0),
  _free_regions(0),
  _full_collection(false),
  _unclean_region_list(),
  _unclean_regions_coming(false),
  _young_list(new YoungList(this)),
  _gc_time_stamp(0),
1404 1405
  _surviving_young_words(NULL),
  _in_cset_fast_test(NULL),
1406 1407
  _in_cset_fast_test_base(NULL),
  _dirty_cards_region_list(NULL) {
1408 1409 1410 1411
  _g1h = this; // To catch bugs.
  if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
1412 1413 1414

  _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
  int n_queues = MAX2((int)ParallelGCThreads, 1);
  _task_queues = new RefToScanQueueSet(n_queues);

  int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  assert(n_rem_sets > 0, "Invariant.");

  HeapRegionRemSetIterator** iter_arr =
    NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  for (int i = 0; i < n_queues; i++) {
    iter_arr[i] = new HeapRegionRemSetIterator();
  }
  _rem_set_iterator = iter_arr;

  for (int i = 0; i < n_queues; i++) {
    RefToScanQueue* q = new RefToScanQueue();
    q->initialize();
    _task_queues->register_queue(i, q);
  }

  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1435 1436 1437 1438 1439 1440
    _gc_alloc_regions[ap]          = NULL;
    _gc_alloc_region_counts[ap]    = 0;
    _retained_gc_alloc_regions[ap] = NULL;
    // by default, we do not retain a GC alloc region for each ap;
    // we'll override this, when appropriate, below
    _retain_gc_alloc_region[ap]    = false;
1441
  }
1442 1443 1444 1445 1446 1447

  // We will try to remember the last half-full tenured region we
  // allocated to at the end of a collection so that we can re-use it
  // during the next collection.
  _retain_gc_alloc_region[GCAllocForTenured]  = true;

1448 1449 1450 1451
  guarantee(_task_queues != NULL, "task_queues allocation failure.");
}

jint G1CollectedHeap::initialize() {
1452
  CollectedHeap::pre_initialize();
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
  os::enable_vtime();

  // Necessary to satisfy locking discipline assertions.

  MutexLocker x(Heap_lock);

  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  size_t max_byte_size = collector_policy()->max_heap_byte_size();

  // Ensure that the sizes are properly aligned.
  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");

  _cg1r = new ConcurrentG1Refine();

  // Reserve the maximum.
  PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  // Includes the perm-gen.
1478 1479 1480 1481

  const size_t total_reserved = max_byte_size + pgs->max_size();
  char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);

1482 1483
  ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
                        HeapRegion::GrainBytes,
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
                        false /*ism*/, addr);

  if (UseCompressedOops) {
    if (addr != NULL && !heap_rs.is_reserved()) {
      // Failed to reserve at specified address - the requested memory
      // region is taken already, for example, by 'java' launcher.
      // Try again to reserver heap higher.
      addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
      ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
                             false /*ism*/, addr);
      if (addr != NULL && !heap_rs0.is_reserved()) {
        // Failed to reserve at specified address again - give up.
        addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
        assert(addr == NULL, "");
        ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
                               false /*ism*/, addr);
        heap_rs = heap_rs1;
      } else {
        heap_rs = heap_rs0;
      }
    }
  }
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

  if (!heap_rs.is_reserved()) {
    vm_exit_during_initialization("Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }

  // It is important to do this in a way such that concurrent readers can't
  // temporarily think somethings in the heap.  (I've actually seen this
  // happen in asserts: DLD.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));

  _expansion_regions = max_byte_size/HeapRegion::GrainBytes;

  _num_humongous_regions = 0;

  // Create the gen rem set (and barrier set) for the entire reserved region.
  _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  set_barrier_set(rem_set()->bs());
  if (barrier_set()->is_a(BarrierSet::ModRef)) {
    _mr_bs = (ModRefBarrierSet*)_barrier_set;
  } else {
    vm_exit_during_initialization("G1 requires a mod ref bs.");
    return JNI_ENOMEM;
  }

  // Also create a G1 rem set.
  if (G1UseHRIntoRS) {
    if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
      _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
    } else {
      vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
      return JNI_ENOMEM;
    }
  } else {
    _g1_rem_set = new StupidG1RemSet(this);
  }

  // Carve out the G1 part of the heap.

  ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
                           g1_rs.size()/HeapWordSize);
  ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);

  _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());

  _g1_storage.initialize(g1_rs, 0);
  _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  _g1_max_committed = _g1_committed;
I
iveresov 已提交
1557
  _hrs = new HeapRegionSeq(_expansion_regions);
1558 1559 1560
  guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  guarantee(_cur_alloc_region == NULL, "from constructor");

1561 1562 1563 1564 1565 1566
  // 6843694 - ensure that the maximum region index can fit
  // in the remembered set structures.
  const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");

  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1567 1568 1569
  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
            "too many cards per region");
1570

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
  _bot_shared = new G1BlockOffsetSharedArray(_reserved,
                                             heap_word_size(init_byte_size));

  _g1h = this;

  // Create the ConcurrentMark data structure and thread.
  // (Must do this late, so that "max_regions" is defined.)
  _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  _cmThread = _cm->cmThread();

  // ...and the concurrent zero-fill thread, if necessary.
  if (G1ConcZeroFill) {
    _czft = new ConcurrentZFThread();
  }

  // Initialize the from_card cache structure of HeapRegionRemSet.
  HeapRegionRemSet::init_heap(max_regions());

1589 1590
  // Now expand into the initial heap size.
  expand(init_byte_size);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

  // Perform any initialization actions delegated to the policy.
  g1_policy()->init();

  g1_policy()->note_start_of_mark_thread();

  _refine_cte_cl =
    new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
                                    g1_rem_set(),
                                    concurrent_g1_refine());
  JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);

  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
                                               SATB_Q_FL_lock,
1605
                                               G1SATBProcessCompletedThreshold,
1606
                                               Shared_SATB_Q_lock);
1607 1608 1609

  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                                DirtyCardQ_FL_lock,
1610 1611
                                                concurrent_g1_refine()->yellow_zone(),
                                                concurrent_g1_refine()->red_zone(),
1612 1613
                                                Shared_DirtyCardQ_lock);

1614 1615 1616
  if (G1DeferredRSUpdate) {
    dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
                                      DirtyCardQ_FL_lock,
1617 1618
                                      -1, // never trigger processing
                                      -1, // no limit on length
1619 1620 1621
                                      Shared_DirtyCardQ_lock,
                                      &JavaThread::dirty_card_queue_set());
  }
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
  // In case we're keeping closure specialization stats, initialize those
  // counts and that mechanism.
  SpecializationStats::clear();

  _gc_alloc_region_list = NULL;

  // Do later initialization work for concurrent refinement.
  _cg1r->init();

  return JNI_OK;
}

void G1CollectedHeap::ref_processing_init() {
  SharedHeap::ref_processing_init();
  MemRegion mr = reserved_region();
  _ref_processor = ReferenceProcessor::create_ref_processor(
                                         mr,    // span
                                         false, // Reference discovery is not atomic
                                                // (though it shouldn't matter here.)
                                         true,  // mt_discovery
                                         NULL,  // is alive closure: need to fill this in for efficiency
                                         ParallelGCThreads,
                                         ParallelRefProcEnabled,
                                         true); // Setting next fields of discovered
                                                // lists requires a barrier.
}

size_t G1CollectedHeap::capacity() const {
  return _g1_committed.byte_size();
}

void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
                                                 int worker_i) {
1655 1656 1657
  // Clean cards in the hot card cache
  concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set());

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  int n_completed_buffers = 0;
  while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
    n_completed_buffers++;
  }
  g1_policy()->record_update_rs_processed_buffers(worker_i,
                                                  (double) n_completed_buffers);
  dcqs.clear_n_completed_buffers();
  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
}


// Computes the sum of the storage used by the various regions.

size_t G1CollectedHeap::used() const {
1673 1674
  assert(Heap_lock->owner() != NULL,
         "Should be owned on this thread's behalf.");
1675
  size_t result = _summary_bytes_used;
1676 1677 1678 1679
  // Read only once in case it is set to NULL concurrently
  HeapRegion* hr = _cur_alloc_region;
  if (hr != NULL)
    result += hr->used();
1680 1681 1682
  return result;
}

1683 1684 1685 1686 1687
size_t G1CollectedHeap::used_unlocked() const {
  size_t result = _summary_bytes_used;
  return result;
}

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
class SumUsedClosure: public HeapRegionClosure {
  size_t _used;
public:
  SumUsedClosure() : _used(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      _used += r->used();
    }
    return false;
  }
  size_t result() { return _used; }
};

size_t G1CollectedHeap::recalculate_used() const {
  SumUsedClosure blk;
  _hrs->iterate(&blk);
  return blk.result();
}

#ifndef PRODUCT
class SumUsedRegionsClosure: public HeapRegionClosure {
  size_t _num;
public:
1711
  SumUsedRegionsClosure() : _num(0) {}
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
      _num += 1;
    }
    return false;
  }
  size_t result() { return _num; }
};

size_t G1CollectedHeap::recalculate_used_regions() const {
  SumUsedRegionsClosure blk;
  _hrs->iterate(&blk);
  return blk.result();
}
#endif // PRODUCT

size_t G1CollectedHeap::unsafe_max_alloc() {
  if (_free_regions > 0) return HeapRegion::GrainBytes;
  // otherwise, is there space in the current allocation region?

  // We need to store the current allocation region in a local variable
  // here. The problem is that this method doesn't take any locks and
  // there may be other threads which overwrite the current allocation
  // region field. attempt_allocation(), for example, sets it to NULL
  // and this can happen *after* the NULL check here but before the call
  // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  // to be a problem in the optimized build, since the two loads of the
  // current allocation region field are optimized away.
  HeapRegion* car = _cur_alloc_region;

  // FIXME: should iterate over all regions?
  if (car == NULL) {
    return 0;
  }
  return car->free();
}

void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  assert(Thread::current()->is_VM_thread(), "Precondition#1");
  assert(Heap_lock->is_locked(), "Precondition#2");
  GCCauseSetter gcs(this, cause);
  switch (cause) {
    case GCCause::_heap_inspection:
    case GCCause::_heap_dump: {
      HandleMark hm;
      do_full_collection(false);         // don't clear all soft refs
      break;
    }
    default: // XXX FIX ME
      ShouldNotReachHere(); // Unexpected use of this function
  }
}

1765 1766 1767
void G1CollectedHeap::collect(GCCause::Cause cause) {
  // The caller doesn't have the Heap_lock
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
1768

1769
  int gc_count_before;
1770
  {
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
    MutexLocker ml(Heap_lock);
    // Read the GC count while holding the Heap_lock
    gc_count_before = SharedHeap::heap()->total_collections();

    // Don't want to do a GC until cleanup is completed.
    wait_for_cleanup_complete();
  } // We give up heap lock; VMThread::execute gets it back below
  switch (cause) {
    case GCCause::_scavenge_alot: {
      // Do an incremental pause, which might sometimes be abandoned.
      VM_G1IncCollectionPause op(gc_count_before, cause);
      VMThread::execute(&op);
      break;
    }
    default: {
      // In all other cases, we currently do a full gc.
      VM_G1CollectFull op(gc_count_before, cause);
      VMThread::execute(&op);
    }
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
  }
}

bool G1CollectedHeap::is_in(const void* p) const {
  if (_g1_committed.contains(p)) {
    HeapRegion* hr = _hrs->addr_to_region(p);
    return hr->is_in(p);
  } else {
    return _perm_gen->as_gen()->is_in(p);
  }
}

// Iteration functions.

// Iterates an OopClosure over all ref-containing fields of objects
// within a HeapRegion.

class IterateOopClosureRegionClosure: public HeapRegionClosure {
  MemRegion _mr;
  OopClosure* _cl;
public:
  IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
    : _mr(mr), _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->oop_iterate(_cl);
    }
    return false;
  }
};

1821
void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
1822 1823
  IterateOopClosureRegionClosure blk(_g1_committed, cl);
  _hrs->iterate(&blk);
1824 1825 1826
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
1827 1828
}

1829
void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
1830 1831
  IterateOopClosureRegionClosure blk(mr, cl);
  _hrs->iterate(&blk);
1832 1833 1834
  if (do_perm) {
    perm_gen()->oop_iterate(cl);
  }
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
}

// Iterates an ObjectClosure over all objects within a HeapRegion.

class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  ObjectClosure* _cl;
public:
  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    if (! r->continuesHumongous()) {
      r->object_iterate(_cl);
    }
    return false;
  }
};

1851
void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
1852 1853
  IterateObjectClosureRegionClosure blk(cl);
  _hrs->iterate(&blk);
1854 1855 1856
  if (do_perm) {
    perm_gen()->object_iterate(cl);
  }
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
}

void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  // FIXME: is this right?
  guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
}

// Calls a SpaceClosure on a HeapRegion.

class SpaceClosureRegionClosure: public HeapRegionClosure {
  SpaceClosure* _cl;
public:
  SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  bool doHeapRegion(HeapRegion* r) {
    _cl->do_space(r);
    return false;
  }
};

void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  SpaceClosureRegionClosure blk(cl);
  _hrs->iterate(&blk);
}

void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  _hrs->iterate(cl);
}

void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
                                               HeapRegionClosure* cl) {
  _hrs->iterate_from(r, cl);
}

void
G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  _hrs->iterate_from(idx, cl);
}

HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }

void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
                                                 int worker,
                                                 jint claim_value) {
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
  const size_t regions = n_regions();
  const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
  // try to spread out the starting points of the workers
  const size_t start_index = regions / worker_num * (size_t) worker;

  // each worker will actually look at all regions
  for (size_t count = 0; count < regions; ++count) {
    const size_t index = (start_index + count) % regions;
    assert(0 <= index && index < regions, "sanity");
    HeapRegion* r = region_at(index);
    // we'll ignore "continues humongous" regions (we'll process them
    // when we come across their corresponding "start humongous"
    // region) and regions already claimed
    if (r->claim_value() == claim_value || r->continuesHumongous()) {
      continue;
    }
    // OK, try to claim it
1918
    if (r->claimHeapRegion(claim_value)) {
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
      // success!
      assert(!r->continuesHumongous(), "sanity");
      if (r->startsHumongous()) {
        // If the region is "starts humongous" we'll iterate over its
        // "continues humongous" first; in fact we'll do them
        // first. The order is important. In on case, calling the
        // closure on the "starts humongous" region might de-allocate
        // and clear all its "continues humongous" regions and, as a
        // result, we might end up processing them twice. So, we'll do
        // them first (notice: most closures will ignore them anyway) and
        // then we'll do the "starts humongous" region.
        for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
          HeapRegion* chr = region_at(ch_index);

          // if the region has already been claimed or it's not
          // "continues humongous" we're done
          if (chr->claim_value() == claim_value ||
              !chr->continuesHumongous()) {
            break;
          }

          // Noone should have claimed it directly. We can given
          // that we claimed its "starts humongous" region.
          assert(chr->claim_value() != claim_value, "sanity");
          assert(chr->humongous_start_region() == r, "sanity");

          if (chr->claimHeapRegion(claim_value)) {
            // we should always be able to claim it; noone else should
            // be trying to claim this region

            bool res2 = cl->doHeapRegion(chr);
            assert(!res2, "Should not abort");

            // Right now, this holds (i.e., no closure that actually
            // does something with "continues humongous" regions
            // clears them). We might have to weaken it in the future,
            // but let's leave these two asserts here for extra safety.
            assert(chr->continuesHumongous(), "should still be the case");
            assert(chr->humongous_start_region() == r, "sanity");
          } else {
            guarantee(false, "we should not reach here");
          }
        }
1962
      }
1963 1964 1965 1966

      assert(!r->continuesHumongous(), "sanity");
      bool res = cl->doHeapRegion(r);
      assert(!res, "Should not abort");
1967 1968 1969 1970
    }
  }
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
class ResetClaimValuesClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->set_claim_value(HeapRegion::InitialClaimValue);
    return false;
  }
};

void
G1CollectedHeap::reset_heap_region_claim_values() {
  ResetClaimValuesClosure blk;
  heap_region_iterate(&blk);
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
#ifdef ASSERT
// This checks whether all regions in the heap have the correct claim
// value. I also piggy-backed on this a check to ensure that the
// humongous_start_region() information on "continues humongous"
// regions is correct.

class CheckClaimValuesClosure : public HeapRegionClosure {
private:
  jint _claim_value;
  size_t _failures;
  HeapRegion* _sh_region;
public:
  CheckClaimValuesClosure(jint claim_value) :
    _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->claim_value() != _claim_value) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                             "claim value = %d, should be %d",
                             r->bottom(), r->end(), r->claim_value(),
                             _claim_value);
      ++_failures;
    }
    if (!r->isHumongous()) {
      _sh_region = NULL;
    } else if (r->startsHumongous()) {
      _sh_region = r;
    } else if (r->continuesHumongous()) {
      if (r->humongous_start_region() != _sh_region) {
        gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
                               "HS = "PTR_FORMAT", should be "PTR_FORMAT,
                               r->bottom(), r->end(),
                               r->humongous_start_region(),
                               _sh_region);
        ++_failures;
      }
    }
    return false;
  }
  size_t failures() {
    return _failures;
  }
};

bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  CheckClaimValuesClosure cl(claim_value);
  heap_region_iterate(&cl);
  return cl.failures() == 0;
}
#endif // ASSERT

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  HeapRegion* r = g1_policy()->collection_set();
  while (r != NULL) {
    HeapRegion* next = r->next_in_collection_set();
    if (cl->doHeapRegion(r)) {
      cl->incomplete();
      return;
    }
    r = next;
  }
}

void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
                                                  HeapRegionClosure *cl) {
  assert(r->in_collection_set(),
         "Start region must be a member of the collection set.");
  HeapRegion* cur = r;
  while (cur != NULL) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
  cur = g1_policy()->collection_set();
  while (cur != r) {
    HeapRegion* next = cur->next_in_collection_set();
    if (cl->doHeapRegion(cur) && false) {
      cl->incomplete();
      return;
    }
    cur = next;
  }
}

CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  return _hrs->length() > 0 ? _hrs->at(0) : NULL;
}


Space* G1CollectedHeap::space_containing(const void* addr) const {
  Space* res = heap_region_containing(addr);
  if (res == NULL)
    res = perm_gen()->space_containing(addr);
  return res;
}

HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  Space* sp = space_containing(addr);
  if (sp != NULL) {
    return sp->block_start(addr);
  }
  return NULL;
}

size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  assert(sp != NULL, "block_size of address outside of heap");
  return sp->block_size(addr);
}

bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  Space* sp = space_containing(addr);
  return sp->block_is_obj(addr);
}

bool G1CollectedHeap::supports_tlab_allocation() const {
  return true;
}

size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  return HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  // Return the remaining space in the cur alloc region, but not less than
  // the min TLAB size.

2114 2115 2116 2117 2118 2119
  // Also, this value can be at most the humongous object threshold,
  // since we can't allow tlabs to grow big enough to accomodate
  // humongous objects.

  // We need to store the cur alloc region locally, since it might change
  // between when we test for NULL and when we use it later.
2120
  ContiguousSpace* cur_alloc_space = _cur_alloc_region;
2121 2122
  size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;

2123
  if (cur_alloc_space == NULL) {
2124
    return max_tlab_size;
2125
  } else {
2126 2127
    return MIN2(MAX2(cur_alloc_space->free(), (size_t)MinTLABSize),
                max_tlab_size);
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
  }
}

HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
  bool dummy;
  return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
}

bool G1CollectedHeap::allocs_are_zero_filled() {
  return false;
}

size_t G1CollectedHeap::large_typearray_limit() {
  // FIXME
  return HeapRegion::GrainBytes/HeapWordSize;
}

size_t G1CollectedHeap::max_capacity() const {
2146
  return g1_reserved_obj_bytes();
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
}

jlong G1CollectedHeap::millis_since_last_gc() {
  // assert(false, "NYI");
  return 0;
}


void G1CollectedHeap::prepare_for_verify() {
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    ensure_parsability(false);
  }
  g1_rem_set()->prepare_for_verify();
}

class VerifyLivenessOopClosure: public OopClosure {
  G1CollectedHeap* g1h;
public:
  VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
    g1h = _g1h;
  }
2168 2169 2170 2171 2172 2173 2174
  void do_oop(narrowOop *p) { do_oop_work(p); }
  void do_oop(      oop *p) { do_oop_work(p); }

  template <class T> void do_oop_work(T *p) {
    oop obj = oopDesc::load_decode_heap_oop(p);
    guarantee(obj == NULL || !g1h->is_obj_dead(obj),
              "Dead object referenced by a not dead object");
2175 2176 2177 2178
  }
};

class VerifyObjsInRegionClosure: public ObjectClosure {
2179
private:
2180 2181 2182
  G1CollectedHeap* _g1h;
  size_t _live_bytes;
  HeapRegion *_hr;
2183
  bool _use_prev_marking;
2184
public:
2185 2186 2187 2188
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
    : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
2189 2190 2191 2192 2193
    _g1h = G1CollectedHeap::heap();
  }
  void do_object(oop o) {
    VerifyLivenessOopClosure isLive(_g1h);
    assert(o != NULL, "Huh?");
2194
    if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
2195
      o->oop_iterate(&isLive);
2196 2197 2198 2199
      if (!_hr->obj_allocated_since_prev_marking(o)) {
        size_t obj_size = o->size();    // Make sure we don't overflow
        _live_bytes += (obj_size * HeapWordSize);
      }
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
    }
  }
  size_t live_bytes() { return _live_bytes; }
};

class PrintObjsInRegionClosure : public ObjectClosure {
  HeapRegion *_hr;
  G1CollectedHeap *_g1;
public:
  PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
    _g1 = G1CollectedHeap::heap();
  };

  void do_object(oop o) {
    if (o != NULL) {
      HeapWord *start = (HeapWord *) o;
      size_t word_sz = o->size();
      gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
                          " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
                          (void*) o, word_sz,
                          _g1->isMarkedPrev(o),
                          _g1->isMarkedNext(o),
                          _hr->obj_allocated_since_prev_marking(o));
      HeapWord *end = start + word_sz;
      HeapWord *cur;
      int *val;
      for (cur = start; cur < end; cur++) {
        val = (int *) cur;
        gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
      }
    }
  }
};

class VerifyRegionClosure: public HeapRegionClosure {
2235
private:
2236
  bool _allow_dirty;
2237
  bool _par;
2238
  bool _use_prev_marking;
2239
  bool _failures;
2240 2241 2242 2243
public:
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
2244 2245
    : _allow_dirty(allow_dirty),
      _par(par),
2246 2247 2248 2249 2250 2251
      _use_prev_marking(use_prev_marking),
      _failures(false) {}

  bool failures() {
    return _failures;
  }
2252

2253
  bool doHeapRegion(HeapRegion* r) {
2254 2255
    guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
              "Should be unclaimed at verify points.");
2256
    if (!r->continuesHumongous()) {
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
      bool failures = false;
      r->verify(_allow_dirty, _use_prev_marking, &failures);
      if (failures) {
        _failures = true;
      } else {
        VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
        r->object_iterate(&not_dead_yet_cl);
        if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
          gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
                                 "max_live_bytes "SIZE_FORMAT" "
                                 "< calculated "SIZE_FORMAT,
                                 r->bottom(), r->end(),
                                 r->max_live_bytes(),
                                 not_dead_yet_cl.live_bytes());
          _failures = true;
        }
      }
2274
    }
2275
    return false; // stop the region iteration if we hit a failure
2276 2277 2278 2279 2280 2281
  }
};

class VerifyRootsClosure: public OopsInGenClosure {
private:
  G1CollectedHeap* _g1h;
2282
  bool             _use_prev_marking;
2283
  bool             _failures;
2284
public:
2285 2286 2287
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  VerifyRootsClosure(bool use_prev_marking) :
2288
    _g1h(G1CollectedHeap::heap()),
2289 2290
    _use_prev_marking(use_prev_marking),
    _failures(false) { }
2291 2292 2293

  bool failures() { return _failures; }

2294 2295 2296 2297
  template <class T> void do_oop_nv(T* p) {
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop)) {
      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2298
      if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
2299
        gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2300
                              "points to dead obj "PTR_FORMAT, p, (void*) obj);
2301 2302 2303 2304 2305
        obj->print_on(gclog_or_tty);
        _failures = true;
      }
    }
  }
2306 2307 2308

  void do_oop(oop* p)       { do_oop_nv(p); }
  void do_oop(narrowOop* p) { do_oop_nv(p); }
2309 2310
};

2311 2312 2313 2314 2315 2316
// This is the task used for parallel heap verification.

class G1ParVerifyTask: public AbstractGangTask {
private:
  G1CollectedHeap* _g1h;
  bool _allow_dirty;
2317
  bool _use_prev_marking;
2318
  bool _failures;
2319 2320

public:
2321 2322 2323 2324
  // use_prev_marking == true  -> use "prev" marking information,
  // use_prev_marking == false -> use "next" marking information
  G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
                  bool use_prev_marking) :
2325
    AbstractGangTask("Parallel verify task"),
2326 2327
    _g1h(g1h),
    _allow_dirty(allow_dirty),
2328 2329 2330 2331 2332 2333
    _use_prev_marking(use_prev_marking),
    _failures(false) { }

  bool failures() {
    return _failures;
  }
2334 2335

  void work(int worker_i) {
2336
    HandleMark hm;
2337
    VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
2338 2339
    _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
                                          HeapRegion::ParVerifyClaimValue);
2340 2341 2342
    if (blk.failures()) {
      _failures = true;
    }
2343 2344 2345
  }
};

2346
void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2347 2348 2349 2350 2351 2352
  verify(allow_dirty, silent, /* use_prev_marking */ true);
}

void G1CollectedHeap::verify(bool allow_dirty,
                             bool silent,
                             bool use_prev_marking) {
2353 2354
  if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
    if (!silent) { gclog_or_tty->print("roots "); }
2355
    VerifyRootsClosure rootsCl(use_prev_marking);
2356 2357 2358
    CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
    process_strong_roots(true,  // activate StrongRootsScope
                         false,
2359 2360
                         SharedHeap::SO_AllClasses,
                         &rootsCl,
2361
                         &blobsCl,
2362
                         &rootsCl);
2363
    bool failures = rootsCl.failures();
2364 2365
    rem_set()->invalidate(perm_gen()->used_region(), false);
    if (!silent) { gclog_or_tty->print("heapRegions "); }
2366 2367 2368 2369
    if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");

2370
      G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
2371 2372 2373 2374
      int n_workers = workers()->total_workers();
      set_par_threads(n_workers);
      workers()->run_task(&task);
      set_par_threads(0);
2375 2376 2377
      if (task.failures()) {
        failures = true;
      }
2378 2379 2380 2381 2382 2383 2384 2385 2386

      assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
             "sanity check");

      reset_heap_region_claim_values();

      assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
             "sanity check");
    } else {
2387
      VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
2388
      _hrs->iterate(&blk);
2389 2390 2391
      if (blk.failures()) {
        failures = true;
      }
2392
    }
2393 2394
    if (!silent) gclog_or_tty->print("remset ");
    rem_set()->verify();
2395 2396 2397 2398 2399

    if (failures) {
      gclog_or_tty->print_cr("Heap:");
      print_on(gclog_or_tty, true /* extended */);
      gclog_or_tty->print_cr("");
2400
      if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
2401 2402
        concurrent_mark()->print_reachable("at-verification-failure",
                                           use_prev_marking, false /* all */);
2403 2404 2405 2406
      }
      gclog_or_tty->flush();
    }
    guarantee(!failures, "there should not have been any failures");
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
  } else {
    if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  }
}

class PrintRegionClosure: public HeapRegionClosure {
  outputStream* _st;
public:
  PrintRegionClosure(outputStream* st) : _st(st) {}
  bool doHeapRegion(HeapRegion* r) {
    r->print_on(_st);
    return false;
  }
};

2422
void G1CollectedHeap::print() const { print_on(tty); }
2423 2424

void G1CollectedHeap::print_on(outputStream* st) const {
2425 2426 2427 2428 2429 2430
  print_on(st, PrintHeapAtGCExtended);
}

void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  st->print(" %-20s", "garbage-first heap");
  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2431
            capacity()/K, used_unlocked()/K);
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
  st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
            _g1_storage.low_boundary(),
            _g1_storage.high(),
            _g1_storage.high_boundary());
  st->cr();
  st->print("  region size " SIZE_FORMAT "K, ",
            HeapRegion::GrainBytes/K);
  size_t young_regions = _young_list->length();
  st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
            young_regions, young_regions * HeapRegion::GrainBytes / K);
  size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
            survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  st->cr();
  perm()->as_gen()->print_on(st);
  if (extended) {
2448
    st->cr();
2449 2450 2451 2452 2453
    print_on_extended(st);
  }
}

void G1CollectedHeap::print_on_extended(outputStream* st) const {
2454 2455 2456 2457 2458 2459
  PrintRegionClosure blk(st);
  _hrs->iterate(&blk);
}

void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  if (ParallelGCThreads > 0) {
T
tonyp 已提交
2460
    workers()->print_worker_threads_on(st);
2461
  }
T
tonyp 已提交
2462 2463

  _cmThread->print_on(st);
2464
  st->cr();
T
tonyp 已提交
2465 2466 2467 2468 2469

  _cm->print_worker_threads_on(st);

  _cg1r->print_worker_threads_on(st);

2470 2471 2472 2473 2474 2475 2476 2477 2478
  _czft->print_on(st);
  st->cr();
}

void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  if (ParallelGCThreads > 0) {
    workers()->threads_do(tc);
  }
  tc->do_thread(_cmThread);
2479
  _cg1r->threads_do(tc);
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
  tc->do_thread(_czft);
}

void G1CollectedHeap::print_tracing_info() const {
  // We'll overload this to mean "trace GC pause statistics."
  if (TraceGen0Time || TraceGen1Time) {
    // The "G1CollectorPolicy" is keeping track of these stats, so delegate
    // to that.
    g1_policy()->print_tracing_info();
  }
J
johnc 已提交
2490
  if (G1SummarizeRSetStats) {
2491 2492
    g1_rem_set()->print_summary_info();
  }
2493
  if (G1SummarizeConcMark) {
2494 2495
    concurrent_mark()->print_summary_info();
  }
J
johnc 已提交
2496
  if (G1SummarizeZFStats) {
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
    ConcurrentZFThread::print_summary_info();
  }
  g1_policy()->print_yg_surv_rate_info();

  SpecializationStats::print();
}


int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  HeapRegion* hr = heap_region_containing(addr);
  if (hr == NULL) {
    return 0;
  } else {
    return 1;
  }
}

G1CollectedHeap* G1CollectedHeap::heap() {
  assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
         "not a garbage-first heap");
  return _g1h;
}

void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2521
  // always_do_update_barrier = false;
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  // Call allocation profiler
  AllocationProfiler::iterate_since_last_gc();
  // Fill TLAB's and such
  ensure_parsability(true);
}

void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  // FIXME: what is this about?
  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  // is set.
  COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
                        "derived pointer present"));
2535
  // always_do_update_barrier = true;
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
}

void G1CollectedHeap::do_collection_pause() {
  // Read the GC count while holding the Heap_lock
  // we need to do this _before_ wait_for_cleanup_complete(), to
  // ensure that we do not give up the heap lock and potentially
  // pick up the wrong count
  int gc_count_before = SharedHeap::heap()->total_collections();

  // Don't want to do a GC pause while cleanup is being completed!
  wait_for_cleanup_complete();

  g1_policy()->record_stop_world_start();
  {
    MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
    VM_G1IncCollectionPause op(gc_count_before);
    VMThread::execute(&op);
  }
}

void
G1CollectedHeap::doConcurrentMark() {
2558 2559 2560 2561
  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  if (!_cmThread->in_progress()) {
    _cmThread->set_started();
    CGC_lock->notify();
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
  }
}

class VerifyMarkedObjsClosure: public ObjectClosure {
    G1CollectedHeap* _g1h;
    public:
    VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
    void do_object(oop obj) {
      assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
             "markandsweep mark should agree with concurrent deadness");
    }
};

void
G1CollectedHeap::checkConcurrentMark() {
    VerifyMarkedObjsClosure verifycl(this);
    //    MutexLockerEx x(getMarkBitMapLock(),
    //              Mutex::_no_safepoint_check_flag);
2580
    object_iterate(&verifycl, false);
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
}

void G1CollectedHeap::do_sync_mark() {
  _cm->checkpointRootsInitial();
  _cm->markFromRoots();
  _cm->checkpointRootsFinal(false);
}

// <NEW PREDICTION>

double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
                                                       bool young) {
  return _g1_policy->predict_region_elapsed_time_ms(hr, young);
}

void G1CollectedHeap::check_if_region_is_too_expensive(double
                                                           predicted_time_ms) {
  _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
}

size_t G1CollectedHeap::pending_card_num() {
  size_t extra_cards = 0;
  JavaThread *curr = Threads::first();
  while (curr != NULL) {
    DirtyCardQueue& dcq = curr->dirty_card_queue();
    extra_cards += dcq.size();
    curr = curr->next();
  }
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num = dcqs.completed_buffers_num();
  return buffer_size * buffer_num + extra_cards;
}

size_t G1CollectedHeap::max_pending_card_num() {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  size_t buffer_size = dcqs.buffer_size();
  size_t buffer_num  = dcqs.completed_buffers_num();
  int thread_num  = Threads::number_of_threads();
  return (buffer_num + thread_num) * buffer_size;
}

size_t G1CollectedHeap::cards_scanned() {
  HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
  return g1_rset->cardsScanned();
}

void
G1CollectedHeap::setup_surviving_young_words() {
  guarantee( _surviving_young_words == NULL, "pre-condition" );
  size_t array_length = g1_policy()->young_cset_length();
  _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words == NULL) {
    vm_exit_out_of_memory(sizeof(size_t) * array_length,
                          "Not enough space for young surv words summary.");
  }
  memset(_surviving_young_words, 0, array_length * sizeof(size_t));
2638
#ifdef ASSERT
2639
  for (size_t i = 0;  i < array_length; ++i) {
2640
    assert( _surviving_young_words[i] == 0, "memset above" );
2641
  }
2642
#endif // !ASSERT
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
}

void
G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  size_t array_length = g1_policy()->young_cset_length();
  for (size_t i = 0; i < array_length; ++i)
    _surviving_young_words[i] += surv_young_words[i];
}

void
G1CollectedHeap::cleanup_surviving_young_words() {
  guarantee( _surviving_young_words != NULL, "pre-condition" );
  FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  _surviving_young_words = NULL;
}

// </NEW PREDICTION>

2662 2663 2664 2665 2666 2667 2668
struct PrepareForRSScanningClosure : public HeapRegionClosure {
  bool doHeapRegion(HeapRegion *r) {
    r->rem_set()->set_iter_claimed(0);
    return false;
  }
};

2669
void
2670
G1CollectedHeap::do_collection_pause_at_safepoint() {
2671 2672 2673 2674
  if (GC_locker::check_active_before_gc()) {
    return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  }

2675 2676
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
2677 2678
  }

2679
  {
2680 2681
    ResourceMark rm;

2682 2683 2684 2685 2686
    // This call will decide whether this pause is an initial-mark
    // pause. If it is, during_initial_mark_pause() will return true
    // for the duration of this pause.
    g1_policy()->decide_on_conc_mark_initiation();

2687 2688 2689 2690 2691 2692 2693 2694
    char verbose_str[128];
    sprintf(verbose_str, "GC pause ");
    if (g1_policy()->in_young_gc_mode()) {
      if (g1_policy()->full_young_gcs())
        strcat(verbose_str, "(young)");
      else
        strcat(verbose_str, "(partial)");
    }
2695
    if (g1_policy()->during_initial_mark_pause())
2696
      strcat(verbose_str, " (initial-mark)");
2697

2698 2699 2700 2701 2702 2703
    // if PrintGCDetails is on, we'll print long statistics information
    // in the collector policy code, so let's not print this as the output
    // is messy if we do.
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
2704

2705 2706
    TraceMemoryManagerStats tms(false /* fullGC */);

2707 2708 2709 2710
    assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
    assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
    guarantee(!is_gc_active(), "collection is not reentrant");
    assert(regions_accounted_for(), "Region leakage!");
2711

2712
    increment_gc_time_stamp();
2713

2714 2715 2716 2717
    if (g1_policy()->in_young_gc_mode()) {
      assert(check_young_list_well_formed(),
             "young list should be well formed");
    }
2718

2719 2720 2721 2722 2723 2724
    bool abandoned = false;
    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
      IsGCActiveMark x;

      gc_prologue(false);
      increment_total_collections(false /* full gc */);
2725 2726

#if G1_REM_SET_LOGGING
2727 2728
      gclog_or_tty->print_cr("\nJust chose CS, heap:");
      print();
2729 2730
#endif

2731 2732 2733 2734 2735 2736
      if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        prepare_for_verify();
        gclog_or_tty->print(" VerifyBeforeGC:");
        Universe::verify(false);
      }
2737

2738
      COMPILER2_PRESENT(DerivedPointerTable::clear());
2739

2740
      // We want to turn off ref discovery, if necessary, and turn it back on
2741
      // on again later if we do. XXX Dubious: why is discovery disabled?
2742 2743
      bool was_enabled = ref_processor()->discovery_enabled();
      if (was_enabled) ref_processor()->disable_discovery();
2744

2745 2746 2747
      // Forget the current alloc region (we might even choose it to be part
      // of the collection set!).
      abandon_cur_alloc_region();
2748

2749 2750 2751 2752
      // The elapsed time induced by the start time below deliberately elides
      // the possible verification above.
      double start_time_sec = os::elapsedTime();
      size_t start_used_bytes = used();
2753

2754 2755
      g1_policy()->record_collection_pause_start(start_time_sec,
                                                 start_used_bytes);
2756

2757 2758 2759 2760
      guarantee(_in_cset_fast_test == NULL, "invariant");
      guarantee(_in_cset_fast_test_base == NULL, "invariant");
      _in_cset_fast_test_length = max_regions();
      _in_cset_fast_test_base =
2761
                             NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
2762
      memset(_in_cset_fast_test_base, false,
2763
                                     _in_cset_fast_test_length * sizeof(bool));
2764 2765 2766 2767
      // We're biasing _in_cset_fast_test to avoid subtracting the
      // beginning of the heap every time we want to index; basically
      // it's the same with what we do with the card table.
      _in_cset_fast_test = _in_cset_fast_test_base -
2768 2769
              ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);

2770
#if SCAN_ONLY_VERBOSE
2771
      _young_list->print();
2772 2773
#endif // SCAN_ONLY_VERBOSE

2774
      if (g1_policy()->during_initial_mark_pause()) {
2775 2776 2777
        concurrent_mark()->checkpointRootsInitialPre();
      }
      save_marks();
2778

2779 2780 2781 2782
      // We must do this before any possible evacuation that should propagate
      // marks.
      if (mark_in_progress()) {
        double start_time_sec = os::elapsedTime();
2783

2784 2785 2786 2787 2788 2789 2790 2791 2792
        _cm->drainAllSATBBuffers();
        double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
        g1_policy()->record_satb_drain_time(finish_mark_ms);
      }
      // Record the number of elements currently on the mark stack, so we
      // only iterate over these.  (Since evacuation may add to the mark
      // stack, doing more exposes race conditions.)  If no mark is in
      // progress, this will be zero.
      _cm->set_oops_do_bound();
2793

2794
      assert(regions_accounted_for(), "Region leakage.");
2795

2796 2797
      if (mark_in_progress())
        concurrent_mark()->newCSet();
2798

2799 2800
      // Now choose the CS.
      g1_policy()->choose_collection_set();
2801

2802 2803 2804
      // We may abandon a pause if we find no region that will fit in the MMU
      // pause.
      bool abandoned = (g1_policy()->collection_set() == NULL);
2805

2806 2807
      // Nothing to do if we were unable to choose a collection set.
      if (!abandoned) {
2808
#if G1_REM_SET_LOGGING
2809 2810
        gclog_or_tty->print_cr("\nAfter pause, heap:");
        print();
2811
#endif
2812 2813
        PrepareForRSScanningClosure prepare_for_rs_scan;
        collection_set_iterate(&prepare_for_rs_scan);
2814

2815
        setup_surviving_young_words();
2816

2817 2818
        // Set up the gc allocation regions.
        get_gc_alloc_regions();
2819

2820 2821 2822 2823
        // Actually do the work...
        evacuate_collection_set();
        free_collection_set(g1_policy()->collection_set());
        g1_policy()->clear_collection_set();
2824

2825 2826 2827 2828 2829
        FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
        // this is more for peace of mind; we're nulling them here and
        // we're expecting them to be null at the beginning of the next GC
        _in_cset_fast_test = NULL;
        _in_cset_fast_test_base = NULL;
2830

2831
        cleanup_surviving_young_words();
2832

2833 2834 2835 2836
        if (g1_policy()->in_young_gc_mode()) {
          _young_list->reset_sampled_info();
          assert(check_young_list_empty(true),
                 "young list should be empty");
2837 2838

#if SCAN_ONLY_VERBOSE
2839
          _young_list->print();
2840 2841
#endif // SCAN_ONLY_VERBOSE

2842 2843 2844 2845 2846 2847
          g1_policy()->record_survivor_regions(_young_list->survivor_length(),
                                          _young_list->first_survivor_region(),
                                          _young_list->last_survivor_region());
          _young_list->reset_auxilary_lists();
        }
      } else {
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
        if (_in_cset_fast_test != NULL) {
          assert(_in_cset_fast_test_base != NULL, "Since _in_cset_fast_test isn't");
          FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
          //  this is more for peace of mind; we're nulling them here and
          // we're expecting them to be null at the beginning of the next GC
          _in_cset_fast_test = NULL;
          _in_cset_fast_test_base = NULL;
        }
        // This looks confusing, because the DPT should really be empty
        // at this point -- since we have not done any collection work,
        // there should not be any derived pointers in the table to update;
        // however, there is some additional state in the DPT which is
        // reset at the end of the (null) "gc" here via the following call.
        // A better approach might be to split off that state resetting work
        // into a separate method that asserts that the DPT is empty and call
        // that here. That is deferred for now.
2864
        COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
2865 2866
      }

2867 2868 2869 2870 2871 2872 2873
      if (evacuation_failed()) {
        _summary_bytes_used = recalculate_used();
      } else {
        // The "used" of the the collection set have already been subtracted
        // when they were freed.  Add in the bytes evacuated.
        _summary_bytes_used += g1_policy()->bytes_in_to_space();
      }
2874

2875
      if (g1_policy()->in_young_gc_mode() &&
2876
          g1_policy()->during_initial_mark_pause()) {
2877 2878
        concurrent_mark()->checkpointRootsInitialPost();
        set_marking_started();
2879 2880 2881 2882 2883 2884 2885
        // CAUTION: after the doConcurrentMark() call below,
        // the concurrent marking thread(s) could be running
        // concurrently with us. Make sure that anything after
        // this point does not assume that we are the only GC thread
        // running. Note: of course, the actual marking work will
        // not start until the safepoint itself is released in
        // ConcurrentGCThread::safepoint_desynchronize().
2886 2887
        doConcurrentMark();
      }
2888 2889

#if SCAN_ONLY_VERBOSE
2890
      _young_list->print();
2891 2892
#endif // SCAN_ONLY_VERBOSE

2893 2894 2895 2896
      double end_time_sec = os::elapsedTime();
      double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
      g1_policy()->record_pause_time_ms(pause_time_ms);
      g1_policy()->record_collection_pause_end(abandoned);
2897

2898
      assert(regions_accounted_for(), "Region leakage.");
2899

2900 2901
      MemoryService::track_memory_usage();

2902 2903 2904 2905 2906 2907
      if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
        HandleMark hm;  // Discard invalid handles created during verification
        gclog_or_tty->print(" VerifyAfterGC:");
        prepare_for_verify();
        Universe::verify(false);
      }
2908

2909
      if (was_enabled) ref_processor()->enable_discovery();
2910

2911 2912 2913 2914 2915 2916
      {
        size_t expand_bytes = g1_policy()->expansion_amount();
        if (expand_bytes > 0) {
          size_t bytes_before = capacity();
          expand(expand_bytes);
        }
2917 2918
      }

2919 2920 2921
      if (mark_in_progress()) {
        concurrent_mark()->update_g1_committed();
      }
2922 2923

#ifdef TRACESPINNING
2924
      ParallelTaskTerminator::print_termination_counts();
2925
#endif
2926

2927 2928 2929 2930
      gc_epilogue(false);
    }

    assert(verify_region_lists(), "Bad region lists.");
2931

2932 2933 2934 2935 2936 2937
    if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
      gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
      print_tracing_info();
      vm_exit(-1);
    }
  }
2938

2939 2940
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
2941
  }
2942 2943 2944 2945 2946
  if (G1SummarizeRSetStats &&
      (G1SummarizeRSetStatsPeriod > 0) &&
      (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
    g1_rem_set()->print_summary_info();
  }
2947 2948
}

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
{
  size_t gclab_word_size;
  switch (purpose) {
    case GCAllocForSurvived:
      gclab_word_size = YoungPLABSize;
      break;
    case GCAllocForTenured:
      gclab_word_size = OldPLABSize;
      break;
    default:
      assert(false, "unknown GCAllocPurpose");
      gclab_word_size = OldPLABSize;
      break;
  }
  return gclab_word_size;
}


2968 2969
void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
2970 2971 2972 2973
  // make sure we don't call set_gc_alloc_region() multiple times on
  // the same region
  assert(r == NULL || !r->is_gc_alloc_region(),
         "shouldn't already be a GC alloc region");
2974 2975 2976
  assert(r == NULL || !r->isHumongous(),
         "humongous regions shouldn't be used as GC alloc regions");

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
  HeapWord* original_top = NULL;
  if (r != NULL)
    original_top = r->top();

  // We will want to record the used space in r as being there before gc.
  // One we install it as a GC alloc region it's eligible for allocation.
  // So record it now and use it later.
  size_t r_used = 0;
  if (r != NULL) {
    r_used = r->used();

    if (ParallelGCThreads > 0) {
      // need to take the lock to guard against two threads calling
      // get_gc_alloc_region concurrently (very unlikely but...)
      MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
      r->save_marks();
    }
  }
  HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  _gc_alloc_regions[purpose] = r;
  if (old_alloc_region != NULL) {
    // Replace aliases too.
    for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
      if (_gc_alloc_regions[ap] == old_alloc_region) {
        _gc_alloc_regions[ap] = r;
      }
    }
  }
  if (r != NULL) {
    push_gc_alloc_region(r);
    if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
      // We are using a region as a GC alloc region after it has been used
      // as a mutator allocation region during the current marking cycle.
      // The mutator-allocated objects are currently implicitly marked, but
      // when we move hr->next_top_at_mark_start() forward at the the end
      // of the GC pause, they won't be.  We therefore mark all objects in
      // the "gap".  We do this object-by-object, since marking densely
      // does not currently work right with marking bitmap iteration.  This
      // means we rely on TLAB filling at the start of pauses, and no
      // "resuscitation" of filled TLAB's.  If we want to do this, we need
      // to fix the marking bitmap iteration.
      HeapWord* curhw = r->next_top_at_mark_start();
      HeapWord* t = original_top;

      while (curhw < t) {
        oop cur = (oop)curhw;
        // We'll assume parallel for generality.  This is rare code.
        concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
        curhw = curhw + cur->size();
      }
      assert(curhw == t, "Should have parsed correctly.");
    }
    if (G1PolicyVerbose > 1) {
      gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
                          "for survivors:", r->bottom(), original_top, r->end());
      r->print();
    }
    g1_policy()->record_before_bytes(r_used);
  }
}

void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  assert(Thread::current()->is_VM_thread() ||
         par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
  assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
         "Precondition.");
  hr->set_is_gc_alloc_region(true);
  hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  _gc_alloc_region_list = hr;
}

#ifdef G1_DEBUG
class FindGCAllocRegion: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_gc_alloc_region()) {
      gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
                             r->hrs_index(), r->bottom());
    }
    return false;
  }
};
#endif // G1_DEBUG

void G1CollectedHeap::forget_alloc_region_list() {
  assert(Thread::current()->is_VM_thread(), "Precondition");
  while (_gc_alloc_region_list != NULL) {
    HeapRegion* r = _gc_alloc_region_list;
    assert(r->is_gc_alloc_region(), "Invariant.");
3066 3067 3068 3069 3070 3071
    // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
    // newly allocated data in order to be able to apply deferred updates
    // before the GC is done for verification purposes (i.e to allow
    // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
    // collection.
    r->ContiguousSpace::set_saved_mark();
3072 3073 3074
    _gc_alloc_region_list = r->next_gc_alloc_region();
    r->set_next_gc_alloc_region(NULL);
    r->set_is_gc_alloc_region(false);
3075 3076 3077 3078 3079 3080 3081
    if (r->is_survivor()) {
      if (r->is_empty()) {
        r->set_not_young();
      } else {
        _young_list->add_survivor_region(r);
      }
    }
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
    if (r->is_empty()) {
      ++_free_regions;
    }
  }
#ifdef G1_DEBUG
  FindGCAllocRegion fa;
  heap_region_iterate(&fa);
#endif // G1_DEBUG
}


bool G1CollectedHeap::check_gc_alloc_regions() {
  // TODO: allocation regions check
  return true;
}

void G1CollectedHeap::get_gc_alloc_regions() {
3099 3100 3101
  // First, let's check that the GC alloc region list is empty (it should)
  assert(_gc_alloc_region_list == NULL, "invariant");

3102
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3103
    assert(_gc_alloc_regions[ap] == NULL, "invariant");
3104
    assert(_gc_alloc_region_counts[ap] == 0, "invariant");
3105

3106
    // Create new GC alloc regions.
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
    HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
    _retained_gc_alloc_regions[ap] = NULL;

    if (alloc_region != NULL) {
      assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");

      // let's make sure that the GC alloc region is not tagged as such
      // outside a GC operation
      assert(!alloc_region->is_gc_alloc_region(), "sanity");

      if (alloc_region->in_collection_set() ||
          alloc_region->top() == alloc_region->end() ||
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
          alloc_region->top() == alloc_region->bottom() ||
          alloc_region->isHumongous()) {
        // we will discard the current GC alloc region if
        // * it's in the collection set (it can happen!),
        // * it's already full (no point in using it),
        // * it's empty (this means that it was emptied during
        // a cleanup and it should be on the free list now), or
        // * it's humongous (this means that it was emptied
        // during a cleanup and was added to the free list, but
        // has been subseqently used to allocate a humongous
        // object that may be less than the region size).
3130 3131 3132 3133 3134 3135 3136

        alloc_region = NULL;
      }
    }

    if (alloc_region == NULL) {
      // we will get a new GC alloc region
3137
      alloc_region = newAllocRegionWithExpansion(ap, 0);
3138 3139 3140
    } else {
      // the region was retained from the last collection
      ++_gc_alloc_region_counts[ap];
3141 3142 3143 3144 3145
      if (G1PrintHeapRegions) {
        gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
                               "top "PTR_FORMAT,
                               alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
      }
3146
    }
3147

3148
    if (alloc_region != NULL) {
3149
      assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
3150 3151
      set_gc_alloc_region(ap, alloc_region);
    }
3152 3153 3154 3155 3156 3157 3158

    assert(_gc_alloc_regions[ap] == NULL ||
           _gc_alloc_regions[ap]->is_gc_alloc_region(),
           "the GC alloc region should be tagged as such");
    assert(_gc_alloc_regions[ap] == NULL ||
           _gc_alloc_regions[ap] == _gc_alloc_region_list,
           "the GC alloc region should be the same as the GC alloc list head");
3159 3160
  }
  // Set alternative regions for allocation purposes that have reached
3161
  // their limit.
3162 3163 3164 3165 3166 3167 3168 3169 3170
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
    if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
      _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
    }
  }
  assert(check_gc_alloc_regions(), "alloc regions messed up");
}

3171
void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
3172
  // We keep a separate list of all regions that have been alloc regions in
3173 3174 3175 3176
  // the current collection pause. Forget that now. This method will
  // untag the GC alloc regions and tear down the GC alloc region
  // list. It's desirable that no regions are tagged as GC alloc
  // outside GCs.
3177 3178 3179 3180 3181 3182
  forget_alloc_region_list();

  // The current alloc regions contain objs that have survived
  // collection. Make them no longer GC alloc regions.
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
3183
    _retained_gc_alloc_regions[ap] = NULL;
3184
    _gc_alloc_region_counts[ap] = 0;
3185 3186 3187 3188 3189 3190 3191 3192

    if (r != NULL) {
      // we retain nothing on _gc_alloc_regions between GCs
      set_gc_alloc_region(ap, NULL);

      if (r->is_empty()) {
        // we didn't actually allocate anything in it; let's just put
        // it on the free list
3193 3194 3195
        MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
        r->set_zero_fill_complete();
        put_free_region_on_list_locked(r);
3196 3197 3198
      } else if (_retain_gc_alloc_region[ap] && !totally) {
        // retain it so that we can use it at the beginning of the next GC
        _retained_gc_alloc_regions[ap] = r;
3199 3200 3201 3202 3203
      }
    }
  }
}

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
#ifndef PRODUCT
// Useful for debugging

void G1CollectedHeap::print_gc_alloc_regions() {
  gclog_or_tty->print_cr("GC alloc regions");
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    if (r == NULL) {
      gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
    } else {
      gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
                             ap, r->bottom(), r->used());
    }
  }
}
#endif // PRODUCT

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  _drain_in_progress = false;
  set_evac_failure_closure(cl);
  _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
}

void G1CollectedHeap::finalize_for_evac_failure() {
  assert(_evac_failure_scan_stack != NULL &&
         _evac_failure_scan_stack->length() == 0,
         "Postcondition");
  assert(!_drain_in_progress, "Postcondition");
A
apetrusenko 已提交
3232
  delete _evac_failure_scan_stack;
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
  _evac_failure_scan_stack = NULL;
}



// *** Sequential G1 Evacuation

HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
  HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  // let the caller handle alloc failure
  if (alloc_region == NULL) return NULL;
  assert(isHumongous(word_size) || !alloc_region->isHumongous(),
         "Either the object is humongous or the region isn't");
  HeapWord* block = alloc_region->allocate(word_size);
  if (block == NULL) {
    block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
  }
  return block;
}

class G1IsAliveClosure: public BoolObjectClosure {
  G1CollectedHeap* _g1;
public:
  G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  void do_object(oop p) { assert(false, "Do not call."); }
  bool do_object_b(oop p) {
    // It is reachable if it is outside the collection set, or is inside
    // and forwarded.

#ifdef G1_DEBUG
    gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
                           (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
                           !_g1->obj_in_cs(p) || p->is_forwarded());
#endif // G1_DEBUG

    return !_g1->obj_in_cs(p) || p->is_forwarded();
  }
};

class G1KeepAliveClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3276 3277
  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  void do_oop(      oop* p) {
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
    oop obj = *p;
#ifdef G1_DEBUG
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
                             p, (void*) obj, (void*) *p);
    }
#endif // G1_DEBUG

    if (_g1->obj_in_cs(obj)) {
      assert( obj->is_forwarded(), "invariant" );
      *p = obj->forwardee();
#ifdef G1_DEBUG
      gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
                             (void*) obj, (void*) *p);
#endif // G1_DEBUG
    }
  }
};

3297
class UpdateRSetImmediate : public OopsInHeapRegionClosure {
3298 3299 3300 3301
private:
  G1CollectedHeap* _g1;
  G1RemSet* _g1_rem_set;
public:
3302 3303 3304
  UpdateRSetImmediate(G1CollectedHeap* g1) :
    _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}

3305 3306 3307
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
  template <class T> void do_oop_work(T* p) {
3308
    assert(_from->is_in_reserved(p), "paranoia");
3309 3310
    T heap_oop = oopDesc::load_heap_oop(p);
    if (!oopDesc::is_null(heap_oop) && !_from->is_survivor()) {
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
      _g1_rem_set->par_write_ref(_from, p, 0);
    }
  }
};

class UpdateRSetDeferred : public OopsInHeapRegionClosure {
private:
  G1CollectedHeap* _g1;
  DirtyCardQueue *_dcq;
  CardTableModRefBS* _ct_bs;

public:
  UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
    _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3325

3326 3327 3328
  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  virtual void do_oop(      oop* p) { do_oop_work(p); }
  template <class T> void do_oop_work(T* p) {
3329
    assert(_from->is_in_reserved(p), "paranoia");
3330 3331
    if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
        !_from->is_survivor()) {
3332 3333 3334 3335
      size_t card_index = _ct_bs->index_for(p);
      if (_ct_bs->mark_card_deferred(card_index)) {
        _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
      }
3336 3337 3338 3339
    }
  }
};

3340 3341


3342 3343 3344 3345 3346 3347 3348
class RemoveSelfPointerClosure: public ObjectClosure {
private:
  G1CollectedHeap* _g1;
  ConcurrentMark* _cm;
  HeapRegion* _hr;
  size_t _prev_marked_bytes;
  size_t _next_marked_bytes;
3349
  OopsInHeapRegionClosure *_cl;
3350
public:
3351 3352 3353
  RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
    _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
    _next_marked_bytes(0), _cl(cl) {}
3354 3355 3356 3357

  size_t prev_marked_bytes() { return _prev_marked_bytes; }
  size_t next_marked_bytes() { return _next_marked_bytes; }

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
  // The original idea here was to coalesce evacuated and dead objects.
  // However that caused complications with the block offset table (BOT).
  // In particular if there were two TLABs, one of them partially refined.
  // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  // The BOT entries of the unrefined part of TLAB_2 point to the start
  // of TLAB_2. If the last object of the TLAB_1 and the first object
  // of TLAB_2 are coalesced, then the cards of the unrefined part
  // would point into middle of the filler object.
  //
  // The current approach is to not coalesce and leave the BOT contents intact.
3368
  void do_object(oop obj) {
3369 3370 3371 3372 3373 3374 3375 3376
    if (obj->is_forwarded() && obj->forwardee() == obj) {
      // The object failed to move.
      assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
      _cm->markPrev(obj);
      assert(_cm->isPrevMarked(obj), "Should be marked!");
      _prev_marked_bytes += (obj->size() * HeapWordSize);
      if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
        _cm->markAndGrayObjectIfNecessary(obj);
3377
      }
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
      obj->set_mark(markOopDesc::prototype());
      // While we were processing RSet buffers during the
      // collection, we actually didn't scan any cards on the
      // collection set, since we didn't want to update remebered
      // sets with entries that point into the collection set, given
      // that live objects fromthe collection set are about to move
      // and such entries will be stale very soon. This change also
      // dealt with a reliability issue which involved scanning a
      // card in the collection set and coming across an array that
      // was being chunked and looking malformed. The problem is
      // that, if evacuation fails, we might have remembered set
      // entries missing given that we skipped cards on the
      // collection set. So, we'll recreate such entries now.
3391
      obj->oop_iterate(_cl);
3392 3393 3394 3395 3396
      assert(_cm->isPrevMarked(obj), "Should be marked!");
    } else {
      // The object has been either evacuated or is dead. Fill it with a
      // dummy object.
      MemRegion mr((HeapWord*)obj, obj->size());
3397
      CollectedHeap::fill_with_object(mr);
3398
      _cm->clearRangeBothMaps(mr);
3399 3400 3401 3402 3403
    }
  }
};

void G1CollectedHeap::remove_self_forwarding_pointers() {
3404 3405 3406 3407 3408 3409 3410 3411 3412
  UpdateRSetImmediate immediate_update(_g1h);
  DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  UpdateRSetDeferred deferred_update(_g1h, &dcq);
  OopsInHeapRegionClosure *cl;
  if (G1DeferredRSUpdate) {
    cl = &deferred_update;
  } else {
    cl = &immediate_update;
  }
3413 3414 3415 3416
  HeapRegion* cur = g1_policy()->collection_set();
  while (cur != NULL) {
    assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");

3417
    RemoveSelfPointerClosure rspc(_g1h, cl);
3418 3419
    if (cur->evacuation_failed()) {
      assert(cur->in_collection_set(), "bad CS");
3420
      cl->set_region(cur);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
      cur->object_iterate(&rspc);

      // A number of manipulations to make the TAMS be the current top,
      // and the marked bytes be the ones observed in the iteration.
      if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
        // The comments below are the postconditions achieved by the
        // calls.  Note especially the last such condition, which says that
        // the count of marked bytes has been properly restored.
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        cur->add_to_marked_bytes(rspc.prev_marked_bytes());
        // _next_marked_bytes == prev_marked_bytes.
        cur->note_end_of_marking();
        // _prev_top_at_mark_start == top(),
        // _prev_marked_bytes == prev_marked_bytes
      }
      // If there is no mark in progress, we modified the _next variables
      // above needlessly, but harmlessly.
      if (_g1h->mark_in_progress()) {
        cur->note_start_of_marking(false);
        // _next_top_at_mark_start == top, _next_marked_bytes == 0
        // _next_marked_bytes == next_marked_bytes.
      }

      // Now make sure the region has the right index in the sorted array.
      g1_policy()->note_change_in_marked_bytes(cur);
    }
    cur = cur->next_in_collection_set();
  }
  assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");

  // Now restore saved marks, if any.
  if (_objs_with_preserved_marks != NULL) {
    assert(_preserved_marks_of_objs != NULL, "Both or none.");
    assert(_objs_with_preserved_marks->length() ==
           _preserved_marks_of_objs->length(), "Both or none.");
    guarantee(_objs_with_preserved_marks->length() ==
              _preserved_marks_of_objs->length(), "Both or none.");
    for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
      oop obj   = _objs_with_preserved_marks->at(i);
      markOop m = _preserved_marks_of_objs->at(i);
      obj->set_mark(m);
    }
    // Delete the preserved marks growable arrays (allocated on the C heap).
    delete _objs_with_preserved_marks;
    delete _preserved_marks_of_objs;
    _objs_with_preserved_marks = NULL;
    _preserved_marks_of_objs = NULL;
  }
}

void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  _evac_failure_scan_stack->push(obj);
}

void G1CollectedHeap::drain_evac_failure_scan_stack() {
  assert(_evac_failure_scan_stack != NULL, "precondition");

  while (_evac_failure_scan_stack->length() > 0) {
     oop obj = _evac_failure_scan_stack->pop();
     _evac_failure_closure->set_region(heap_region_containing(obj));
     obj->oop_iterate_backwards(_evac_failure_closure);
  }
}

void G1CollectedHeap::handle_evacuation_failure(oop old) {
  markOop m = old->mark();
  // forward to self
  assert(!old->is_forwarded(), "precondition");

  old->forward_to(old);
  handle_evacuation_failure_common(old, m);
}

oop
G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
                                               oop old) {
  markOop m = old->mark();
  oop forward_ptr = old->forward_to_atomic(old);
  if (forward_ptr == NULL) {
    // Forward-to-self succeeded.
    if (_evac_failure_closure != cl) {
      MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
      assert(!_drain_in_progress,
             "Should only be true while someone holds the lock.");
      // Set the global evac-failure closure to the current thread's.
      assert(_evac_failure_closure == NULL, "Or locking has failed.");
      set_evac_failure_closure(cl);
      // Now do the common part.
      handle_evacuation_failure_common(old, m);
      // Reset to NULL.
      set_evac_failure_closure(NULL);
    } else {
      // The lock is already held, and this is recursive.
      assert(_drain_in_progress, "This should only be the recursive case.");
      handle_evacuation_failure_common(old, m);
    }
    return old;
  } else {
    // Someone else had a place to copy it.
    return forward_ptr;
  }
}

void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  set_evacuation_failed(true);

  preserve_mark_if_necessary(old, m);

  HeapRegion* r = heap_region_containing(old);
  if (!r->evacuation_failed()) {
    r->set_evacuation_failed(true);
3533
    if (G1PrintHeapRegions) {
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
      gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
                          "["PTR_FORMAT","PTR_FORMAT")\n",
                          r, r->bottom(), r->end());
    }
  }

  push_on_evac_failure_scan_stack(old);

  if (!_drain_in_progress) {
    // prevent recursion in copy_to_survivor_space()
    _drain_in_progress = true;
    drain_evac_failure_scan_stack();
    _drain_in_progress = false;
  }
}

void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  if (m != markOopDesc::prototype()) {
    if (_objs_with_preserved_marks == NULL) {
      assert(_preserved_marks_of_objs == NULL, "Both or none.");
      _objs_with_preserved_marks =
        new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
      _preserved_marks_of_objs =
        new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
    }
    _objs_with_preserved_marks->push(obj);
    _preserved_marks_of_objs->push(m);
  }
}

// *** Parallel G1 Evacuation

HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
                                                  size_t word_size) {
  HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  // let the caller handle alloc failure
  if (alloc_region == NULL) return NULL;

  HeapWord* block = alloc_region->par_allocate(word_size);
  if (block == NULL) {
    MutexLockerEx x(par_alloc_during_gc_lock(),
                    Mutex::_no_safepoint_check_flag);
    block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  }
  return block;
}

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
                                            bool par) {
  // Another thread might have obtained alloc_region for the given
  // purpose, and might be attempting to allocate in it, and might
  // succeed.  Therefore, we can't do the "finalization" stuff on the
  // region below until we're sure the last allocation has happened.
  // We ensure this by allocating the remaining space with a garbage
  // object.
  if (par) par_allocate_remaining_space(alloc_region);
  // Now we can do the post-GC stuff on the region.
  alloc_region->note_end_of_copying();
  g1_policy()->record_after_bytes(alloc_region->used());
}

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
HeapWord*
G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
                                         HeapRegion*    alloc_region,
                                         bool           par,
                                         size_t         word_size) {
  HeapWord* block = NULL;
  // In the parallel case, a previous thread to obtain the lock may have
  // already assigned a new gc_alloc_region.
  if (alloc_region != _gc_alloc_regions[purpose]) {
    assert(par, "But should only happen in parallel case.");
    alloc_region = _gc_alloc_regions[purpose];
    if (alloc_region == NULL) return NULL;
    block = alloc_region->par_allocate(word_size);
    if (block != NULL) return block;
    // Otherwise, continue; this new region is empty, too.
  }
  assert(alloc_region != NULL, "We better have an allocation region");
3612
  retire_alloc_region(alloc_region, par);
3613 3614 3615 3616 3617 3618 3619 3620

  if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
    // Cannot allocate more regions for the given purpose.
    GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
    // Is there an alternative?
    if (purpose != alt_purpose) {
      HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
      // Has not the alternative region been aliased?
3621
      if (alloc_region != alt_region && alt_region != NULL) {
3622 3623 3624 3625 3626 3627 3628 3629
        // Try to allocate in the alternative region.
        if (par) {
          block = alt_region->par_allocate(word_size);
        } else {
          block = alt_region->allocate(word_size);
        }
        // Make an alias.
        _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
3630 3631 3632 3633
        if (block != NULL) {
          return block;
        }
        retire_alloc_region(alt_region, par);
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
      }
      // Both the allocation region and the alternative one are full
      // and aliased, replace them with a new allocation region.
      purpose = alt_purpose;
    } else {
      set_gc_alloc_region(purpose, NULL);
      return NULL;
    }
  }

  // Now allocate a new region for allocation.
  alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);

  // let the caller handle alloc failure
  if (alloc_region != NULL) {

    assert(check_gc_alloc_regions(), "alloc regions messed up");
    assert(alloc_region->saved_mark_at_top(),
           "Mark should have been saved already.");
    // We used to assert that the region was zero-filled here, but no
    // longer.

    // This must be done last: once it's installed, other regions may
    // allocate in it (without holding the lock.)
    set_gc_alloc_region(purpose, alloc_region);

    if (par) {
      block = alloc_region->par_allocate(word_size);
    } else {
      block = alloc_region->allocate(word_size);
    }
    // Caller handles alloc failure.
  } else {
    // This sets other apis using the same old alloc region to NULL, also.
    set_gc_alloc_region(purpose, NULL);
  }
  return block;  // May be NULL.
}

void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  HeapWord* block = NULL;
  size_t free_words;
  do {
    free_words = r->free()/HeapWordSize;
    // If there's too little space, no one can allocate, so we're done.
    if (free_words < (size_t)oopDesc::header_size()) return;
    // Otherwise, try to claim it.
    block = r->par_allocate(free_words);
  } while (block == NULL);
3683
  fill_with_object(block, free_words);
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
}

#ifndef PRODUCT
bool GCLabBitMapClosure::do_bit(size_t offset) {
  HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  guarantee(_cm->isMarked(oop(addr)), "it should be!");
  return true;
}
#endif // PRODUCT

3694 3695 3696 3697 3698 3699 3700 3701
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  : _g1h(g1h),
    _refs(g1h->task_queue(queue_num)),
    _dcq(&g1h->dirty_card_queue_set()),
    _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
    _g1_rem(g1h->g1_rem_set()),
    _hash_seed(17), _queue_num(queue_num),
    _term_attempts(0),
3702 3703
    _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
    _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
3704
    _age_table(false),
3705
#if G1_DETAILED_STATS
3706 3707
    _pushes(0), _pops(0), _steals(0),
    _steal_attempts(0),  _overflow_pushes(0),
3708
#endif
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
    _strong_roots_time(0), _term_time(0),
    _alloc_buffer_waste(0), _undo_waste(0)
{
  // we allocate G1YoungSurvRateNumRegions plus one entries, since
  // we "sacrifice" entry 0 to keep track of surviving bytes for
  // non-young regions (where the age is -1)
  // We also add a few elements at the beginning and at the end in
  // an attempt to eliminate cache contention
  size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  size_t array_length = PADDING_ELEM_NUM +
                        real_length +
                        PADDING_ELEM_NUM;
  _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  if (_surviving_young_words_base == NULL)
    vm_exit_out_of_memory(array_length * sizeof(size_t),
                          "Not enough space for young surv histo.");
  _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  memset(_surviving_young_words, 0, real_length * sizeof(size_t));

  _overflowed_refs = new OverflowQueue(10);

3730 3731 3732
  _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;

3733 3734
  _start = os::elapsedTime();
}
3735 3736 3737 3738 3739

G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  _par_scan_state(par_scan_state) { }

3740
template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
3741 3742 3743 3744
  // This is called _after_ do_oop_work has been called, hence after
  // the object has been relocated to its new location and *p points
  // to its new location.

3745 3746 3747 3748
  T heap_oop = oopDesc::load_heap_oop(p);
  if (!oopDesc::is_null(heap_oop)) {
    oop obj = oopDesc::decode_heap_oop(heap_oop);
    assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)),
3749
           "shouldn't still be in the CSet if evacuation didn't fail.");
3750
    HeapWord* addr = (HeapWord*)obj;
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
    if (_g1->is_in_g1_reserved(addr))
      _cm->grayRoot(oop(addr));
  }
}

oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  size_t    word_sz = old->size();
  HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  // +1 to make the -1 indexes valid...
  int       young_index = from_region->young_index_in_cset()+1;
  assert( (from_region->is_young() && young_index > 0) ||
          (!from_region->is_young() && young_index == 0), "invariant" );
  G1CollectorPolicy* g1p = _g1->g1_policy();
  markOop m = old->mark();
3765 3766 3767
  int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
                                           : m->age();
  GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
                                                             word_sz);
  HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  oop       obj     = oop(obj_ptr);

  if (obj_ptr == NULL) {
    // This will either forward-to-self, or detect that someone else has
    // installed a forwarding pointer.
    OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
    return _g1->handle_evacuation_failure_par(cl, old);
  }

3779 3780 3781
  // We're going to allocate linearly, so might as well prefetch ahead.
  Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);

3782 3783 3784 3785
  oop forward_ptr = old->forward_to_atomic(obj);
  if (forward_ptr == NULL) {
    Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
    if (g1p->track_object_age(alloc_purpose)) {
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
      // We could simply do obj->incr_age(). However, this causes a
      // performance issue. obj->incr_age() will first check whether
      // the object has a displaced mark by checking its mark word;
      // getting the mark word from the new location of the object
      // stalls. So, given that we already have the mark word and we
      // are about to install it anyway, it's better to increase the
      // age on the mark word, when the object does not have a
      // displaced mark word. We're not expecting many objects to have
      // a displaced marked word, so that case is not optimized
      // further (it could be...) and we simply call obj->incr_age().

      if (m->has_displaced_mark_helper()) {
        // in this case, we have to install the mark word first,
        // otherwise obj looks to be forwarded (the old mark word,
        // which contains the forward pointer, was copied)
        obj->set_mark(m);
        obj->incr_age();
      } else {
        m = m->incr_age();
3805
        obj->set_mark(m);
3806
      }
3807 3808 3809
      _par_scan_state->age_table()->add(obj, word_sz);
    } else {
      obj->set_mark(m);
3810
    }
3811

3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
    // preserve "next" mark bit
    if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
      if (!use_local_bitmaps ||
          !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
        // if we couldn't mark it on the local bitmap (this happens when
        // the object was not allocated in the GCLab), we have to bite
        // the bullet and do the standard parallel mark
        _cm->markAndGrayObjectIfNecessary(obj);
      }
#if 1
      if (_g1->isMarkedNext(old)) {
        _cm->nextMarkBitMap()->parClear((HeapWord*)old);
      }
#endif
    }

    size_t* surv_young_words = _par_scan_state->surviving_young_words();
    surv_young_words[young_index] += word_sz;

    if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
      arrayOop(old)->set_length(0);
3833 3834
      oop* old_p = set_partial_array_mask(old);
      _par_scan_state->push_on_queue(old_p);
3835
    } else {
3836 3837 3838
      // No point in using the slower heap_region_containing() method,
      // given that we know obj is in the heap.
      _scanner->set_region(_g1->heap_region_containing_raw(obj));
3839 3840 3841 3842 3843 3844 3845 3846 3847
      obj->oop_iterate_backwards(_scanner);
    }
  } else {
    _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
    obj = forward_ptr;
  }
  return obj;
}

3848
template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
3849
template <class T>
3850
void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
3851 3852
::do_oop_work(T* p) {
  oop obj = oopDesc::load_decode_heap_oop(p);
3853 3854 3855
  assert(barrier != G1BarrierRS || obj != NULL,
         "Precondition: G1BarrierRS implies obj is nonNull");

3856
  // here the null check is implicit in the cset_fast_test() test
3857
  if (_g1->in_cset_fast_test(obj)) {
3858
#if G1_REM_SET_LOGGING
3859 3860
    gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
                           "into CS.", p, (void*) obj);
3861
#endif
3862
    if (obj->is_forwarded()) {
3863
      oopDesc::encode_store_heap_oop(p, obj->forwardee());
3864
    } else {
3865 3866
      oop copy_oop = copy_to_survivor_space(obj);
      oopDesc::encode_store_heap_oop(p, copy_oop);
3867
    }
3868 3869
    // When scanning the RS, we only care about objs in CS.
    if (barrier == G1BarrierRS) {
3870
      _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
3871
    }
3872
  }
3873

3874
  if (barrier == G1BarrierEvac && obj != NULL) {
3875
    _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
3876 3877 3878 3879
  }

  if (do_gen_barrier && obj != NULL) {
    par_do_barrier(p);
3880 3881 3882
  }
}

3883 3884
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
3885

3886
template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
3887 3888
  assert(has_partial_array_mask(p), "invariant");
  oop old = clear_partial_array_mask(p);
3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
  assert(old->is_objArray(), "must be obj array");
  assert(old->is_forwarded(), "must be forwarded");
  assert(Universe::heap()->is_in_reserved(old), "must be in heap.");

  objArrayOop obj = objArrayOop(old->forwardee());
  assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  // Process ParGCArrayScanChunk elements now
  // and push the remainder back onto queue
  int start     = arrayOop(old)->length();
  int end       = obj->length();
  int remainder = end - start;
  assert(start <= end, "just checking");
  if (remainder > 2 * ParGCArrayScanChunk) {
    // Test above combines last partial chunk with a full chunk
    end = start + ParGCArrayScanChunk;
    arrayOop(old)->set_length(end);
    // Push remainder.
3906 3907 3908
    oop* old_p = set_partial_array_mask(old);
    assert(arrayOop(old)->length() < obj->length(), "Empty push?");
    _par_scan_state->push_on_queue(old_p);
3909 3910 3911 3912 3913
  } else {
    // Restore length so that the heap remains parsable in
    // case of evacuation failure.
    arrayOop(old)->set_length(end);
  }
3914
  _scanner.set_region(_g1->heap_region_containing_raw(obj));
3915
  // process our set of indices (include header in first chunk)
3916
  obj->oop_iterate_range(&_scanner, start, end);
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
}

class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
  G1CollectedHeap*              _g1h;
  G1ParScanThreadState*         _par_scan_state;
  RefToScanQueueSet*            _queues;
  ParallelTaskTerminator*       _terminator;

  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  RefToScanQueueSet*      queues()         { return _queues; }
  ParallelTaskTerminator* terminator()     { return _terminator; }

public:
  G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
                                G1ParScanThreadState* par_scan_state,
                                RefToScanQueueSet* queues,
                                ParallelTaskTerminator* terminator)
    : _g1h(g1h), _par_scan_state(par_scan_state),
      _queues(queues), _terminator(terminator) {}

  void do_void() {
    G1ParScanThreadState* pss = par_scan_state();
    while (true) {
      pss->trim_queue();
      IF_G1_DETAILED_STATS(pss->note_steal_attempt());
3943 3944 3945

      StarTask stolen_task;
      if (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
3946
        IF_G1_DETAILED_STATS(pss->note_steal());
3947 3948 3949 3950

        // slightly paranoid tests; I'm trying to catch potential
        // problems before we go into push_on_queue to know where the
        // problem is coming from
3951 3952 3953 3954 3955
        assert((oop*)stolen_task != NULL, "Error");
        if (stolen_task.is_narrow()) {
          assert(UseCompressedOops, "Error");
          narrowOop* p = (narrowOop*) stolen_task;
          assert(has_partial_array_mask(p) ||
3956
                 _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "Error");
3957 3958 3959
          pss->push_on_queue(p);
        } else {
          oop* p = (oop*) stolen_task;
3960
          assert(has_partial_array_mask(p) || _g1h->is_in_g1_reserved(*p), "Error");
3961 3962
          pss->push_on_queue(p);
        }
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
        continue;
      }
      pss->start_term_time();
      if (terminator()->offer_termination()) break;
      pss->end_term_time();
    }
    pss->end_term_time();
    pss->retire_alloc_buffers();
  }
};

class G1ParTask : public AbstractGangTask {
protected:
  G1CollectedHeap*       _g1h;
  RefToScanQueueSet      *_queues;
  ParallelTaskTerminator _terminator;
3979
  int _n_workers;
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994

  Mutex _stats_lock;
  Mutex* stats_lock() { return &_stats_lock; }

  size_t getNCards() {
    return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
      / G1BlockOffsetSharedArray::N_bytes;
  }

public:
  G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
    : AbstractGangTask("G1 collection"),
      _g1h(g1h),
      _queues(task_queues),
      _terminator(workers, _queues),
3995 3996
      _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
      _n_workers(workers)
3997 3998 3999 4000 4001 4002 4003 4004 4005
  {}

  RefToScanQueueSet* queues() { return _queues; }

  RefToScanQueue *work_queue(int i) {
    return queues()->queue(i);
  }

  void work(int i) {
4006
    if (i >= _n_workers) return;  // no work needed this round
4007 4008 4009
    ResourceMark rm;
    HandleMark   hm;

4010 4011 4012 4013
    G1ParScanThreadState            pss(_g1h, i);
    G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
    G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
    G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4014 4015 4016 4017 4018 4019 4020 4021

    pss.set_evac_closure(&scan_evac_cl);
    pss.set_evac_failure_closure(&evac_failure_cl);
    pss.set_partial_scan_closure(&partial_scan_cl);

    G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
    G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
    G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4022
    G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4023

4024 4025 4026 4027 4028 4029 4030 4031
    G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
    G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
    G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);

    OopsInHeapRegionClosure        *scan_root_cl;
    OopsInHeapRegionClosure        *scan_perm_cl;
    OopsInHeapRegionClosure        *scan_so_cl;

4032
    if (_g1h->g1_policy()->during_initial_mark_pause()) {
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
      scan_root_cl = &scan_mark_root_cl;
      scan_perm_cl = &scan_mark_perm_cl;
      scan_so_cl   = &scan_mark_heap_rs_cl;
    } else {
      scan_root_cl = &only_scan_root_cl;
      scan_perm_cl = &only_scan_perm_cl;
      scan_so_cl   = &only_scan_heap_rs_cl;
    }

    pss.start_strong_roots();
    _g1h->g1_process_strong_roots(/* not collecting perm */ false,
                                  SharedHeap::SO_AllClasses,
                                  scan_root_cl,
4046
                                  &push_heap_rs_cl,
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
                                  scan_so_cl,
                                  scan_perm_cl,
                                  i);
    pss.end_strong_roots();
    {
      double start = os::elapsedTime();
      G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
      evac.do_void();
      double elapsed_ms = (os::elapsedTime()-start)*1000.0;
      double term_ms = pss.term_time()*1000.0;
      _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
      _g1h->g1_policy()->record_termination_time(i, term_ms);
    }
4060
    _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
    _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

    // Clean up any par-expanded rem sets.
    HeapRegionRemSet::par_cleanup();

    MutexLocker x(stats_lock());
    if (ParallelGCVerbose) {
      gclog_or_tty->print("Thread %d complete:\n", i);
#if G1_DETAILED_STATS
      gclog_or_tty->print("  Pushes: %7d    Pops: %7d   Overflows: %7d   Steals %7d (in %d attempts)\n",
                          pss.pushes(),
                          pss.pops(),
                          pss.overflow_pushes(),
                          pss.steals(),
                          pss.steal_attempts());
#endif
      double elapsed      = pss.elapsed();
      double strong_roots = pss.strong_roots_time();
      double term         = pss.term_time();
      gclog_or_tty->print("  Elapsed: %7.2f ms.\n"
                          "    Strong roots: %7.2f ms (%6.2f%%)\n"
                          "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
                          elapsed * 1000.0,
                          strong_roots * 1000.0, (strong_roots*100.0/elapsed),
                          term * 1000.0, (term*100.0/elapsed),
                          pss.term_attempts());
      size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
      gclog_or_tty->print("  Waste: %8dK\n"
                 "    Alloc Buffer: %8dK\n"
                 "    Undo: %8dK\n",
                 (total_waste * HeapWordSize) / K,
                 (pss.alloc_buffer_waste() * HeapWordSize) / K,
                 (pss.undo_waste() * HeapWordSize) / K);
    }

    assert(pss.refs_to_scan() == 0, "Task queue should be empty");
    assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
  }
};

// *** Common G1 Evacuation Stuff

void
G1CollectedHeap::
g1_process_strong_roots(bool collecting_perm_gen,
                        SharedHeap::ScanningOption so,
                        OopClosure* scan_non_heap_roots,
                        OopsInHeapRegionClosure* scan_rs,
                        OopsInHeapRegionClosure* scan_so,
                        OopsInGenClosure* scan_perm,
                        int worker_i) {
  // First scan the strong roots, including the perm gen.
  double ext_roots_start = os::elapsedTime();
  double closure_app_time_sec = 0.0;

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  buf_scan_perm.set_generation(perm_gen());

4120 4121 4122 4123 4124 4125
  // Walk the code cache w/o buffering, because StarTask cannot handle
  // unaligned oop locations.
  CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);

  process_strong_roots(false, // no scoping; this is parallel code
                       collecting_perm_gen, so,
4126
                       &buf_scan_non_heap_roots,
4127
                       &eager_scan_code_roots,
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
                       &buf_scan_perm);
  // Finish up any enqueued closure apps.
  buf_scan_non_heap_roots.done();
  buf_scan_perm.done();
  double ext_roots_end = os::elapsedTime();
  g1_policy()->reset_obj_copy_time(worker_i);
  double obj_copy_time_sec =
    buf_scan_non_heap_roots.closure_app_seconds() +
    buf_scan_perm.closure_app_seconds();
  g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  double ext_root_time_ms =
    ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);

  // Scan strong roots in mark stack.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
    concurrent_mark()->oops_do(scan_non_heap_roots);
  }
  double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);

  // XXX What should this be doing in the parallel case?
  g1_policy()->record_collection_pause_end_CH_strong_roots();
  if (scan_so != NULL) {
    scan_scan_only_set(scan_so, worker_i);
  }
  // Now scan the complement of the collection set.
  if (scan_rs != NULL) {
    g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  }
  // Finish with the ref_processor roots.
  if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
    ref_processor()->oops_do(scan_non_heap_roots);
  }
  g1_policy()->record_collection_pause_end_G1_strong_roots();
  _process_strong_tasks->all_tasks_completed();
}

void
G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
                                       OopsInHeapRegionClosure* oc,
                                       int worker_i) {
  HeapWord* startAddr = r->bottom();
  HeapWord* endAddr = r->used_region().end();

  oc->set_region(r);

  HeapWord* p = r->bottom();
  HeapWord* t = r->top();
  guarantee( p == r->next_top_at_mark_start(), "invariant" );
  while (p < t) {
    oop obj = oop(p);
    p += obj->oop_iterate(oc);
  }
}

void
G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
                                    int worker_i) {
  double start = os::elapsedTime();

  BufferingOopsInHeapRegionClosure boc(oc);

  FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
  FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());

  OopsInHeapRegionClosure *foc;
4195
  if (g1_policy()->during_initial_mark_pause())
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
    foc = &scan_and_mark;
  else
    foc = &scan_only;

  HeapRegion* hr;
  int n = 0;
  while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
    scan_scan_only_region(hr, foc, worker_i);
    ++n;
  }
  boc.done();

  double closure_app_s = boc.closure_app_seconds();
  g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
  double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
  g1_policy()->record_scan_only_time(worker_i, ms, n);
}

void
G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
                                       OopClosure* non_root_closure) {
4217 4218
  CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
}


class SaveMarksClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion* r) {
    r->save_marks();
    return false;
  }
};

void G1CollectedHeap::save_marks() {
  if (ParallelGCThreads == 0) {
    SaveMarksClosure sm;
    heap_region_iterate(&sm);
  }
  // We do this even in the parallel case
  perm_gen()->save_marks();
}

void G1CollectedHeap::evacuate_collection_set() {
  set_evacuation_failed(false);

  g1_rem_set()->prepare_for_oops_into_collection_set_do();
  concurrent_g1_refine()->set_use_cache(false);
4244 4245
  concurrent_g1_refine()->clear_hot_cache_claimed_index();

4246 4247 4248 4249 4250 4251 4252 4253
  int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  set_par_threads(n_workers);
  G1ParTask g1_par_task(this, n_workers, _task_queues);

  init_for_evac_failure(NULL);

  rem_set()->prepare_for_younger_refs_iterate(true);

4254 4255
  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  double start_par = os::elapsedTime();
4256 4257
  if (ParallelGCThreads > 0) {
    // The individual threads will set their evac-failure closures.
4258
    StrongRootsScope srs(this);
4259 4260
    workers()->run_task(&g1_par_task);
  } else {
4261
    StrongRootsScope srs(this);
4262 4263 4264 4265 4266 4267 4268 4269 4270
    g1_par_task.work(0);
  }

  double par_time = (os::elapsedTime() - start_par) * 1000.0;
  g1_policy()->record_par_time(par_time);
  set_par_threads(0);
  // Is this the right thing to do here?  We don't save marks
  // on individual heap regions when we allocate from
  // them in parallel, so this seems like the correct place for this.
4271
  retire_all_alloc_regions();
4272 4273 4274 4275 4276
  {
    G1IsAliveClosure is_alive(this);
    G1KeepAliveClosure keep_alive(this);
    JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  }
4277
  release_gc_alloc_regions(false /* totally */);
4278
  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4279

4280
  concurrent_g1_refine()->clear_hot_cache();
4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
  concurrent_g1_refine()->set_use_cache(true);

  finalize_for_evac_failure();

  // Must do this before removing self-forwarding pointers, which clears
  // the per-region evac-failure flags.
  concurrent_mark()->complete_marking_in_collection_set();

  if (evacuation_failed()) {
    remove_self_forwarding_pointers();
    if (PrintGCDetails) {
      gclog_or_tty->print(" (evacuation failed)");
    } else if (PrintGC) {
      gclog_or_tty->print("--");
    }
  }

4298 4299 4300 4301
  if (G1DeferredRSUpdate) {
    RedirtyLoggedCardTableEntryFastClosure redirty;
    dirty_card_queue_set().set_closure(&redirty);
    dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4302 4303 4304

    DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
    dcq.merge_bufferlists(&dirty_card_queue_set());
4305 4306
    assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  }
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
  COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
}

void G1CollectedHeap::free_region(HeapRegion* hr) {
  size_t pre_used = 0;
  size_t cleared_h_regions = 0;
  size_t freed_regions = 0;
  UncleanRegionList local_list;

  HeapWord* start = hr->bottom();
  HeapWord* end   = hr->prev_top_at_mark_start();
  size_t used_bytes = hr->used();
  size_t live_bytes = hr->max_live_bytes();
  if (used_bytes > 0) {
    guarantee( live_bytes <= used_bytes, "invariant" );
  } else {
    guarantee( live_bytes == 0, "invariant" );
  }

  size_t garbage_bytes = used_bytes - live_bytes;
  if (garbage_bytes > 0)
    g1_policy()->decrease_known_garbage_bytes(garbage_bytes);

  free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
                   &local_list);
  finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
                          &local_list);
}

void
G1CollectedHeap::free_region_work(HeapRegion* hr,
                                  size_t& pre_used,
                                  size_t& cleared_h_regions,
                                  size_t& freed_regions,
                                  UncleanRegionList* list,
                                  bool par) {
  pre_used += hr->used();
  if (hr->isHumongous()) {
    assert(hr->startsHumongous(),
           "Only the start of a humongous region should be freed.");
    int ind = _hrs->find(hr);
    assert(ind != -1, "Should have an index.");
    // Clear the start region.
    hr->hr_clear(par, true /*clear_space*/);
    list->insert_before_head(hr);
    cleared_h_regions++;
    freed_regions++;
    // Clear any continued regions.
    ind++;
    while ((size_t)ind < n_regions()) {
      HeapRegion* hrc = _hrs->at(ind);
      if (!hrc->continuesHumongous()) break;
      // Otherwise, does continue the H region.
      assert(hrc->humongous_start_region() == hr, "Huh?");
      hrc->hr_clear(par, true /*clear_space*/);
      cleared_h_regions++;
      freed_regions++;
      list->insert_before_head(hrc);
      ind++;
    }
  } else {
    hr->hr_clear(par, true /*clear_space*/);
    list->insert_before_head(hr);
    freed_regions++;
    // If we're using clear2, this should not be enabled.
    // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
  }
}

void G1CollectedHeap::finish_free_region_work(size_t pre_used,
                                              size_t cleared_h_regions,
                                              size_t freed_regions,
                                              UncleanRegionList* list) {
  if (list != NULL && list->sz() > 0) {
    prepend_region_list_on_unclean_list(list);
  }
  // Acquire a lock, if we're parallel, to update possibly-shared
  // variables.
  Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
  {
    MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
    _summary_bytes_used -= pre_used;
    _num_humongous_regions -= (int) cleared_h_regions;
    _free_regions += freed_regions;
  }
}


void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  while (list != NULL) {
    guarantee( list->is_young(), "invariant" );

    HeapWord* bottom = list->bottom();
    HeapWord* end = list->end();
    MemRegion mr(bottom, end);
    ct_bs->dirty(mr);

    list = list->get_next_young_region();
  }
}

4408 4409 4410 4411

class G1ParCleanupCTTask : public AbstractGangTask {
  CardTableModRefBS* _ct_bs;
  G1CollectedHeap* _g1h;
4412 4413
  HeapRegion* volatile _so_head;
  HeapRegion* volatile _su_head;
4414 4415
public:
  G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
4416 4417 4418
                     G1CollectedHeap* g1h,
                     HeapRegion* scan_only_list,
                     HeapRegion* survivor_list) :
4419 4420
    AbstractGangTask("G1 Par Cleanup CT Task"),
    _ct_bs(ct_bs),
4421 4422 4423
    _g1h(g1h),
    _so_head(scan_only_list),
    _su_head(survivor_list)
4424 4425 4426 4427 4428 4429 4430
  { }

  void work(int i) {
    HeapRegion* r;
    while (r = _g1h->pop_dirty_cards_region()) {
      clear_cards(r);
    }
4431 4432 4433
    // Redirty the cards of the scan-only and survivor regions.
    dirty_list(&this->_so_head);
    dirty_list(&this->_su_head);
4434
  }
4435

4436 4437 4438 4439 4440 4441
  void clear_cards(HeapRegion* r) {
    // Cards for Survivor and Scan-Only regions will be dirtied later.
    if (!r->is_scan_only() && !r->is_survivor()) {
      _ct_bs->clear(MemRegion(r->bottom(), r->end()));
    }
  }
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457

  void dirty_list(HeapRegion* volatile * head_ptr) {
    HeapRegion* head;
    do {
      // Pop region off the list.
      head = *head_ptr;
      if (head != NULL) {
        HeapRegion* r = (HeapRegion*)
          Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
        if (r == head) {
          assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
          _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
        }
      }
    } while (*head_ptr != NULL);
  }
4458 4459 4460
};


4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
  CardTableModRefBS* _ct_bs;
public:
  G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs)
    : _ct_bs(ct_bs)
  { }
  virtual bool doHeapRegion(HeapRegion* r)
  {
    MemRegion mr(r->bottom(), r->end());
    if (r->is_scan_only() || r->is_survivor()) {
      _ct_bs->verify_dirty_region(mr);
    } else {
      _ct_bs->verify_clean_region(mr);
    }
    return false;
  }
};
#endif

4481 4482 4483 4484
void G1CollectedHeap::cleanUpCardTable() {
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  double start = os::elapsedTime();

4485
  // Iterate over the dirty cards region list.
4486 4487 4488
  G1ParCleanupCTTask cleanup_task(ct_bs, this,
                                  _young_list->first_scan_only_region(),
                                  _young_list->first_survivor_region());
4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
  if (ParallelGCThreads > 0) {
    set_par_threads(workers()->total_workers());
    workers()->run_task(&cleanup_task);
    set_par_threads(0);
  } else {
    while (_dirty_cards_region_list) {
      HeapRegion* r = _dirty_cards_region_list;
      cleanup_task.clear_cards(r);
      _dirty_cards_region_list = r->get_next_dirty_cards_region();
      if (_dirty_cards_region_list == r) {
        // The last region.
        _dirty_cards_region_list = NULL;
      }
      r->set_next_dirty_cards_region(NULL);
    }
4504 4505 4506 4507 4508
    // now, redirty the cards of the scan-only and survivor regions
    // (it seemed faster to do it this way, instead of iterating over
    // all regions and then clearing / dirtying as appropriate)
    dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
    dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
4509
  }
4510 4511
  double elapsed = os::elapsedTime() - start;
  g1_policy()->record_clear_ct_time( elapsed * 1000.0);
4512 4513 4514 4515 4516 4517
#ifndef PRODUCT
  if (G1VerifyCTCleanup || VerifyAfterGC) {
    G1VerifyCardTableCleanup cleanup_verifier(ct_bs);
    heap_region_iterate(&cleanup_verifier);
  }
#endif
4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
}

void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
  if (g1_policy()->should_do_collection_pause(word_size)) {
    do_collection_pause();
  }
}

void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  double young_time_ms     = 0.0;
  double non_young_time_ms = 0.0;

  G1CollectorPolicy* policy = g1_policy();

  double start_sec = os::elapsedTime();
  bool non_young = true;

  HeapRegion* cur = cs_head;
  int age_bound = -1;
  size_t rs_lengths = 0;

  while (cur != NULL) {
    if (non_young) {
      if (cur->is_young()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        non_young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = false;
      }
    } else {
      if (!cur->is_on_free_list()) {
        double end_sec = os::elapsedTime();
        double elapsed_ms = (end_sec - start_sec) * 1000.0;
        young_time_ms += elapsed_ms;

        start_sec = os::elapsedTime();
        non_young = true;
      }
    }

    rs_lengths += cur->rem_set()->occupied();

    HeapRegion* next = cur->next_in_collection_set();
    assert(cur->in_collection_set(), "bad CS");
    cur->set_next_in_collection_set(NULL);
    cur->set_in_collection_set(false);

    if (cur->is_young()) {
      int index = cur->young_index_in_cset();
      guarantee( index != -1, "invariant" );
      guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
      size_t words_survived = _surviving_young_words[index];
      cur->record_surv_words_in_group(words_survived);
    } else {
      int index = cur->young_index_in_cset();
      guarantee( index == -1, "invariant" );
    }

    assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
            (!cur->is_young() && cur->young_index_in_cset() == -1),
            "invariant" );

    if (!cur->evacuation_failed()) {
      // And the region is empty.
      assert(!cur->is_empty(),
             "Should not have empty regions in a CS.");
      free_region(cur);
    } else {
      guarantee( !cur->is_scan_only(), "should not be scan only" );
      cur->uninstall_surv_rate_group();
      if (cur->is_young())
        cur->set_young_index_in_cset(-1);
      cur->set_not_young();
      cur->set_evacuation_failed(false);
    }
    cur = next;
  }

  policy->record_max_rs_lengths(rs_lengths);
  policy->cset_regions_freed();

  double end_sec = os::elapsedTime();
  double elapsed_ms = (end_sec - start_sec) * 1000.0;
  if (non_young)
    non_young_time_ms += elapsed_ms;
  else
    young_time_ms += elapsed_ms;

  policy->record_young_free_cset_time_ms(young_time_ms);
  policy->record_non_young_free_cset_time_ms(non_young_time_ms);
}

HeapRegion*
G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
  assert(ZF_mon->owned_by_self(), "Precondition");
  HeapRegion* res = pop_unclean_region_list_locked();
  if (res != NULL) {
    assert(!res->continuesHumongous() &&
           res->zero_fill_state() != HeapRegion::Allocated,
           "Only free regions on unclean list.");
    if (zero_filled) {
      res->ensure_zero_filled_locked();
      res->set_zero_fill_allocated();
    }
  }
  return res;
}

HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
  MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
  return alloc_region_from_unclean_list_locked(zero_filled);
}

void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  put_region_on_unclean_list_locked(r);
  if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
}

void G1CollectedHeap::set_unclean_regions_coming(bool b) {
  MutexLockerEx x(Cleanup_mon);
  set_unclean_regions_coming_locked(b);
}

void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
  assert(Cleanup_mon->owned_by_self(), "Precondition");
  _unclean_regions_coming = b;
  // Wake up mutator threads that might be waiting for completeCleanup to
  // finish.
  if (!b) Cleanup_mon->notify_all();
}

void G1CollectedHeap::wait_for_cleanup_complete() {
  MutexLockerEx x(Cleanup_mon);
  wait_for_cleanup_complete_locked();
}

void G1CollectedHeap::wait_for_cleanup_complete_locked() {
  assert(Cleanup_mon->owned_by_self(), "precondition");
  while (_unclean_regions_coming) {
    Cleanup_mon->wait();
  }
}

void
G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
  assert(ZF_mon->owned_by_self(), "precondition.");
  _unclean_region_list.insert_before_head(r);
}

void
G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  prepend_region_list_on_unclean_list_locked(list);
  if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
}

void
G1CollectedHeap::
prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
  assert(ZF_mon->owned_by_self(), "precondition.");
  _unclean_region_list.prepend_list(list);
}

HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
  assert(ZF_mon->owned_by_self(), "precondition.");
  HeapRegion* res = _unclean_region_list.pop();
  if (res != NULL) {
    // Inform ZF thread that there's a new unclean head.
    if (_unclean_region_list.hd() != NULL && should_zf())
      ZF_mon->notify_all();
  }
  return res;
}

HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
  assert(ZF_mon->owned_by_self(), "precondition.");
  return _unclean_region_list.hd();
}


bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
  assert(ZF_mon->owned_by_self(), "Precondition");
  HeapRegion* r = peek_unclean_region_list_locked();
  if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
    // Result of below must be equal to "r", since we hold the lock.
    (void)pop_unclean_region_list_locked();
    put_free_region_on_list_locked(r);
    return true;
  } else {
    return false;
  }
}

bool G1CollectedHeap::move_cleaned_region_to_free_list() {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  return move_cleaned_region_to_free_list_locked();
}


void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
  assert(ZF_mon->owned_by_self(), "precondition.");
  assert(_free_region_list_size == free_region_list_length(), "Inv");
  assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
        "Regions on free list must be zero filled");
  assert(!r->isHumongous(), "Must not be humongous.");
  assert(r->is_empty(), "Better be empty");
  assert(!r->is_on_free_list(),
         "Better not already be on free list");
  assert(!r->is_on_unclean_list(),
         "Better not already be on unclean list");
  r->set_on_free_list(true);
  r->set_next_on_free_list(_free_region_list);
  _free_region_list = r;
  _free_region_list_size++;
  assert(_free_region_list_size == free_region_list_length(), "Inv");
}

void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  put_free_region_on_list_locked(r);
}

HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
  assert(ZF_mon->owned_by_self(), "precondition.");
  assert(_free_region_list_size == free_region_list_length(), "Inv");
  HeapRegion* res = _free_region_list;
  if (res != NULL) {
    _free_region_list = res->next_from_free_list();
    _free_region_list_size--;
    res->set_on_free_list(false);
    res->set_next_on_free_list(NULL);
    assert(_free_region_list_size == free_region_list_length(), "Inv");
  }
  return res;
}


HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
  // By self, or on behalf of self.
  assert(Heap_lock->is_locked(), "Precondition");
  HeapRegion* res = NULL;
  bool first = true;
  while (res == NULL) {
    if (zero_filled || !first) {
      MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
      res = pop_free_region_list_locked();
      if (res != NULL) {
        assert(!res->zero_fill_is_allocated(),
               "No allocated regions on free list.");
        res->set_zero_fill_allocated();
      } else if (!first) {
        break;  // We tried both, time to return NULL.
      }
    }

    if (res == NULL) {
      res = alloc_region_from_unclean_list(zero_filled);
    }
    assert(res == NULL ||
           !zero_filled ||
           res->zero_fill_is_allocated(),
           "We must have allocated the region we're returning");
    first = false;
  }
  return res;
}

void G1CollectedHeap::remove_allocated_regions_from_lists() {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  {
    HeapRegion* prev = NULL;
    HeapRegion* cur = _unclean_region_list.hd();
    while (cur != NULL) {
      HeapRegion* next = cur->next_from_unclean_list();
      if (cur->zero_fill_is_allocated()) {
        // Remove from the list.
        if (prev == NULL) {
          (void)_unclean_region_list.pop();
        } else {
          _unclean_region_list.delete_after(prev);
        }
        cur->set_on_unclean_list(false);
        cur->set_next_on_unclean_list(NULL);
      } else {
        prev = cur;
      }
      cur = next;
    }
    assert(_unclean_region_list.sz() == unclean_region_list_length(),
           "Inv");
  }

  {
    HeapRegion* prev = NULL;
    HeapRegion* cur = _free_region_list;
    while (cur != NULL) {
      HeapRegion* next = cur->next_from_free_list();
      if (cur->zero_fill_is_allocated()) {
        // Remove from the list.
        if (prev == NULL) {
          _free_region_list = cur->next_from_free_list();
        } else {
          prev->set_next_on_free_list(cur->next_from_free_list());
        }
        cur->set_on_free_list(false);
        cur->set_next_on_free_list(NULL);
        _free_region_list_size--;
      } else {
        prev = cur;
      }
      cur = next;
    }
    assert(_free_region_list_size == free_region_list_length(), "Inv");
  }
}

bool G1CollectedHeap::verify_region_lists() {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  return verify_region_lists_locked();
}

bool G1CollectedHeap::verify_region_lists_locked() {
  HeapRegion* unclean = _unclean_region_list.hd();
  while (unclean != NULL) {
    guarantee(unclean->is_on_unclean_list(), "Well, it is!");
    guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
    guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
              "Everything else is possible.");
    unclean = unclean->next_from_unclean_list();
  }
  guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");

  HeapRegion* free_r = _free_region_list;
  while (free_r != NULL) {
    assert(free_r->is_on_free_list(), "Well, it is!");
    assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
    switch (free_r->zero_fill_state()) {
    case HeapRegion::NotZeroFilled:
    case HeapRegion::ZeroFilling:
      guarantee(false, "Should not be on free list.");
      break;
    default:
      // Everything else is possible.
      break;
    }
    free_r = free_r->next_from_free_list();
  }
  guarantee(_free_region_list_size == free_region_list_length(), "Inv");
  // If we didn't do an assertion...
  return true;
}

size_t G1CollectedHeap::free_region_list_length() {
  assert(ZF_mon->owned_by_self(), "precondition.");
  size_t len = 0;
  HeapRegion* cur = _free_region_list;
  while (cur != NULL) {
    len++;
    cur = cur->next_from_free_list();
  }
  return len;
}

size_t G1CollectedHeap::unclean_region_list_length() {
  assert(ZF_mon->owned_by_self(), "precondition.");
  return _unclean_region_list.length();
}

size_t G1CollectedHeap::n_regions() {
  return _hrs->length();
}

size_t G1CollectedHeap::max_regions() {
  return
    (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
    HeapRegion::GrainBytes;
}

size_t G1CollectedHeap::free_regions() {
  /* Possibly-expensive assert.
  assert(_free_regions == count_free_regions(),
         "_free_regions is off.");
  */
  return _free_regions;
}

bool G1CollectedHeap::should_zf() {
  return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
}

class RegionCounter: public HeapRegionClosure {
  size_t _n;
public:
  RegionCounter() : _n(0) {}
  bool doHeapRegion(HeapRegion* r) {
4916
    if (r->is_empty()) {
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
      assert(!r->isHumongous(), "H regions should not be empty.");
      _n++;
    }
    return false;
  }
  int res() { return (int) _n; }
};

size_t G1CollectedHeap::count_free_regions() {
  RegionCounter rc;
  heap_region_iterate(&rc);
  size_t n = rc.res();
  if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
    n--;
  return n;
}

size_t G1CollectedHeap::count_free_regions_list() {
  size_t n = 0;
  size_t o = 0;
  ZF_mon->lock_without_safepoint_check();
  HeapRegion* cur = _free_region_list;
  while (cur != NULL) {
    cur = cur->next_from_free_list();
    n++;
  }
  size_t m = unclean_region_list_length();
  ZF_mon->unlock();
  return n + m;
}

bool G1CollectedHeap::should_set_young_locked() {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  return  (g1_policy()->in_young_gc_mode() &&
           g1_policy()->should_add_next_region_to_young_list());
}

void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  _young_list->push_region(hr);
  g1_policy()->set_region_short_lived(hr);
}

class NoYoungRegionsClosure: public HeapRegionClosure {
private:
  bool _success;
public:
  NoYoungRegionsClosure() : _success(true) { }
  bool doHeapRegion(HeapRegion* r) {
    if (r->is_young()) {
      gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
                             r->bottom(), r->end());
      _success = false;
    }
    return false;
  }
  bool success() { return _success; }
};

bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
                                             bool check_sample) {
  bool ret = true;

  ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
  if (!ignore_scan_only_list) {
    NoYoungRegionsClosure closure;
    heap_region_iterate(&closure);
    ret = ret && closure.success();
  }

  return ret;
}

void G1CollectedHeap::empty_young_list() {
  assert(heap_lock_held_for_gc(),
              "the heap lock should already be held by or for this thread");
  assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");

  _young_list->empty_list();
}

bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  bool no_allocs = true;
  for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    no_allocs = r == NULL || r->saved_mark_at_top();
  }
  return no_allocs;
}

5009
void G1CollectedHeap::retire_all_alloc_regions() {
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
  for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
    HeapRegion* r = _gc_alloc_regions[ap];
    if (r != NULL) {
      // Check for aliases.
      bool has_processed_alias = false;
      for (int i = 0; i < ap; ++i) {
        if (_gc_alloc_regions[i] == r) {
          has_processed_alias = true;
          break;
        }
      }
      if (!has_processed_alias) {
5022
        retire_alloc_region(r, false /* par */);
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
      }
    }
  }
}


// Done at the start of full GC.
void G1CollectedHeap::tear_down_region_lists() {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  while (pop_unclean_region_list_locked() != NULL) ;
  assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
         "Postconditions of loop.")
  while (pop_free_region_list_locked() != NULL) ;
  assert(_free_region_list == NULL, "Postcondition of loop.");
  if (_free_region_list_size != 0) {
    gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
5039
    print_on(gclog_or_tty, true /* extended */);
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
  }
  assert(_free_region_list_size == 0, "Postconditions of loop.");
}


class RegionResetter: public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _n;
public:
  RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->top() > r->bottom()) {
      if (r->top() < r->end()) {
        Copy::fill_to_words(r->top(),
                          pointer_delta(r->end(), r->top()));
      }
      r->set_zero_fill_allocated();
    } else {
      assert(r->is_empty(), "tautology");
5060 5061
      _n++;
      switch (r->zero_fill_state()) {
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
        case HeapRegion::NotZeroFilled:
        case HeapRegion::ZeroFilling:
          _g1->put_region_on_unclean_list_locked(r);
          break;
        case HeapRegion::Allocated:
          r->set_zero_fill_complete();
          // no break; go on to put on free list.
        case HeapRegion::ZeroFilled:
          _g1->put_free_region_on_list_locked(r);
          break;
      }
    }
    return false;
  }

  int getFreeRegionCount() {return _n;}
};

// Done at the end of full GC.
void G1CollectedHeap::rebuild_region_lists() {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  // This needs to go at the end of the full GC.
  RegionResetter rs;
  heap_region_iterate(&rs);
  _free_regions = rs.getFreeRegionCount();
  // Tell the ZF thread it may have work to do.
  if (should_zf()) ZF_mon->notify_all();
}

class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
  G1CollectedHeap* _g1;
  int _n;
public:
  UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    if (r->top() > r->bottom()) {
      // There are assertions in "set_zero_fill_needed()" below that
      // require top() == bottom(), so this is technically illegal.
      // We'll skirt the law here, by making that true temporarily.
      DEBUG_ONLY(HeapWord* save_top = r->top();
                 r->set_top(r->bottom()));
      r->set_zero_fill_needed();
      DEBUG_ONLY(r->set_top(save_top));
    }
    return false;
  }
};

// Done at the start of full GC.
void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
  MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
  // This needs to go at the end of the full GC.
  UsedRegionsNeedZeroFillSetter rs;
  heap_region_iterate(&rs);
}

void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  _refine_cte_cl->set_concurrent(concurrent);
}

#ifndef PRODUCT

class PrintHeapRegionClosure: public HeapRegionClosure {
public:
  bool doHeapRegion(HeapRegion *r) {
    gclog_or_tty->print("Region: "PTR_FORMAT":", r);
    if (r != NULL) {
      if (r->is_on_free_list())
        gclog_or_tty->print("Free ");
      if (r->is_young())
        gclog_or_tty->print("Young ");
      if (r->isHumongous())
        gclog_or_tty->print("Is Humongous ");
      r->print();
    }
    return false;
  }
};

class SortHeapRegionClosure : public HeapRegionClosure {
  size_t young_regions,free_regions, unclean_regions;
  size_t hum_regions, count;
  size_t unaccounted, cur_unclean, cur_alloc;
  size_t total_free;
  HeapRegion* cur;
public:
  SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
    free_regions(0), unclean_regions(0),
    hum_regions(0),
    count(0), unaccounted(0),
    cur_alloc(0), total_free(0)
  {}
  bool doHeapRegion(HeapRegion *r) {
    count++;
    if (r->is_on_free_list()) free_regions++;
    else if (r->is_on_unclean_list()) unclean_regions++;
    else if (r->isHumongous())  hum_regions++;
    else if (r->is_young()) young_regions++;
    else if (r == cur) cur_alloc++;
    else unaccounted++;
    return false;
  }
  void print() {
    total_free = free_regions + unclean_regions;
    gclog_or_tty->print("%d regions\n", count);
    gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
                        total_free, free_regions, unclean_regions);
    gclog_or_tty->print("%d humongous %d young\n",
                        hum_regions, young_regions);
    gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
    gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
  }
};

void G1CollectedHeap::print_region_counts() {
  SortHeapRegionClosure sc(_cur_alloc_region);
  PrintHeapRegionClosure cl;
  heap_region_iterate(&cl);
  heap_region_iterate(&sc);
  sc.print();
  print_region_accounting_info();
};

bool G1CollectedHeap::regions_accounted_for() {
  // TODO: regions accounting for young/survivor/tenured
  return true;
}

bool G1CollectedHeap::print_region_accounting_info() {
  gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
                         free_regions(),
                         count_free_regions(), count_free_regions_list(),
                         _free_region_list_size, _unclean_region_list.sz());
  gclog_or_tty->print_cr("cur_alloc: %d.",
                         (_cur_alloc_region == NULL ? 0 : 1));
  gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);

  // TODO: check regions accounting for young/survivor/tenured
  return true;
}

bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  HeapRegion* hr = heap_region_containing(p);
  if (hr == NULL) {
    return is_in_permanent(p);
  } else {
    return hr->is_in(p);
  }
}
Y
ysr 已提交
5212
#endif // !PRODUCT
5213 5214 5215 5216

void G1CollectedHeap::g1_unimplemented() {
  // Unimplemented();
}