addnode.cpp 33.0 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
/*
 * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// Portions of code courtesy of Clifford Click

#include "incls/_precompiled.incl"
#include "incls/_addnode.cpp.incl"

#define MAXFLOAT        ((float)3.40282346638528860e+38)

// Classic Add functionality.  This covers all the usual 'add' behaviors for
// an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
// all inherited from this class.  The various identity values are supplied
// by virtual functions.


//=============================================================================
//------------------------------hash-------------------------------------------
// Hash function over AddNodes.  Needs to be commutative; i.e., I swap
// (commute) inputs to AddNodes willy-nilly so the hash function must return
// the same value in the presence of edge swapping.
uint AddNode::hash() const {
  return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
}

//------------------------------Identity---------------------------------------
// If either input is a constant 0, return the other input.
Node *AddNode::Identity( PhaseTransform *phase ) {
  const Type *zero = add_id();  // The additive identity
  if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
  if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
  return this;
}

//------------------------------commute----------------------------------------
// Commute operands to move loads and constants to the right.
static bool commute( Node *add, int con_left, int con_right ) {
  Node *in1 = add->in(1);
  Node *in2 = add->in(2);

  // Convert "1+x" into "x+1".
  // Right is a constant; leave it
  if( con_right ) return false;
  // Left is a constant; move it right.
  if( con_left ) {
    add->swap_edges(1, 2);
    return true;
  }

  // Convert "Load+x" into "x+Load".
  // Now check for loads
  if( in2->is_Load() ) return false;
  // Left is a Load and Right is not; move it right.
  if( in1->is_Load() ) {
    add->swap_edges(1, 2);
    return true;
  }

  PhiNode *phi;
  // Check for tight loop increments: Loop-phi of Add of loop-phi
  if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
    return false;
  if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
    add->swap_edges(1, 2);
    return true;
  }

  // Otherwise, sort inputs (commutativity) to help value numbering.
  if( in1->_idx > in2->_idx ) {
    add->swap_edges(1, 2);
    return true;
  }
  return false;
}

//------------------------------Idealize---------------------------------------
// If we get here, we assume we are associative!
Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  int con_left  = t1->singleton();
  int con_right = t2->singleton();

  // Check for commutative operation desired
  if( commute(this,con_left,con_right) ) return this;

  AddNode *progress = NULL;             // Progress flag

  // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
  // constant, and the left input is an add of a constant, flatten the
  // expression tree.
  Node *add1 = in(1);
  Node *add2 = in(2);
  int add1_op = add1->Opcode();
  int this_op = Opcode();
  if( con_right && t2 != Type::TOP && // Right input is a constant?
      add1_op == this_op ) { // Left input is an Add?

    // Type of left _in right input
    const Type *t12 = phase->type( add1->in(2) );
    if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
      // Check for rare case of closed data cycle which can happen inside
      // unreachable loops. In these cases the computation is undefined.
#ifdef ASSERT
      Node *add11    = add1->in(1);
      int   add11_op = add11->Opcode();
      if( (add1 == add1->in(1))
         || (add11_op == this_op && add11->in(1) == add1) ) {
        assert(false, "dead loop in AddNode::Ideal");
      }
#endif
      // The Add of the flattened expression
      Node *x1 = add1->in(1);
      Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
      PhaseIterGVN *igvn = phase->is_IterGVN();
      if( igvn ) {
        set_req_X(2,x2,igvn);
        set_req_X(1,x1,igvn);
      } else {
        set_req(2,x2);
        set_req(1,x1);
      }
      progress = this;            // Made progress
      add1 = in(1);
      add1_op = add1->Opcode();
    }
  }

  // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
  if( add1_op == this_op && !con_right ) {
    Node *a12 = add1->in(2);
    const Type *t12 = phase->type( a12 );
    if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) ) {
      add2 = add1->clone();
      add2->set_req(2, in(2));
      add2 = phase->transform(add2);
      set_req(1, add2);
      set_req(2, a12);
      progress = this;
      add2 = a12;
    }
  }

  // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
  int add2_op = add2->Opcode();
  if( add2_op == this_op && !con_left ) {
    Node *a22 = add2->in(2);
    const Type *t22 = phase->type( a22 );
    if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) ) {
      Node *addx = add2->clone();
      addx->set_req(1, in(1));
      addx->set_req(2, add2->in(1));
      addx = phase->transform(addx);
      set_req(1, addx);
      set_req(2, a22);
      progress = this;
    }
  }

  return progress;
}

//------------------------------Value-----------------------------------------
// An add node sums it's two _in.  If one input is an RSD, we must mixin
// the other input's symbols.
const Type *AddNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(1) );
  const Type *t2 = phase->type( in(2) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  // Check for an addition involving the additive identity
  const Type *tadd = add_of_identity( t1, t2 );
  if( tadd ) return tadd;

  return add_ring(t1,t2);               // Local flavor of type addition
}

//------------------------------add_identity-----------------------------------
// Check for addition of the identity
const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
  const Type *zero = add_id();  // The additive identity
  if( t1->higher_equal( zero ) ) return t2;
  if( t2->higher_equal( zero ) ) return t1;

  return NULL;
}


//=============================================================================
//------------------------------Idealize---------------------------------------
Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  int op1 = in(1)->Opcode();
  int op2 = in(2)->Opcode();
  // Fold (con1-x)+con2 into (con1+con2)-x
  if( op1 == Op_SubI ) {
    const Type *t_sub1 = phase->type( in(1)->in(1) );
    const Type *t_2    = phase->type( in(2)        );
    if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
      return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
                              in(1)->in(2) );
    // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
    if( op2 == Op_SubI ) {
      // Check for dead cycle: d = (a-b)+(c-d)
      assert( in(1)->in(2) != this && in(2)->in(2) != this,
              "dead loop in AddINode::Ideal" );
      Node *sub  = new (phase->C, 3) SubINode(NULL, NULL);
      sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in(1)->in(1), in(2)->in(1) ) ));
      sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in(1)->in(2), in(2)->in(2) ) ));
      return sub;
    }
  }

  // Convert "x+(0-y)" into "(x-y)"
  if( op2 == Op_SubI && phase->type(in(2)->in(1)) == TypeInt::ZERO )
    return new (phase->C, 3) SubINode(in(1), in(2)->in(2) );

  // Convert "(0-y)+x" into "(x-y)"
  if( op1 == Op_SubI && phase->type(in(1)->in(1)) == TypeInt::ZERO )
    return new (phase->C, 3) SubINode( in(2), in(1)->in(2) );

  // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
  // Helps with array allocation math constant folding
  // See 4790063:
  // Unrestricted transformation is unsafe for some runtime values of 'x'
  // ( x ==  0, z == 1, y == -1 ) fails
  // ( x == -5, z == 1, y ==  1 ) fails
  // Transform works for small z and small negative y when the addition
  // (x + (y << z)) does not cross zero.
  // Implement support for negative y and (x >= -(y << z))
  // Have not observed cases where type information exists to support
  // positive y and (x <= -(y << z))
  if( op1 == Op_URShiftI && op2 == Op_ConI &&
      in(1)->in(2)->Opcode() == Op_ConI ) {
    jint z = phase->type( in(1)->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
    jint y = phase->type( in(2) )->is_int()->get_con();

    if( z < 5 && -5 < y && y < 0 ) {
      const Type *t_in11 = phase->type(in(1)->in(1));
      if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
        Node *a = phase->transform( new (phase->C, 3) AddINode( in(1)->in(1), phase->intcon(y<<z) ) );
        return new (phase->C, 3) URShiftINode( a, in(1)->in(2) );
      }
    }
  }

  return AddNode::Ideal(phase, can_reshape);
}


//------------------------------Identity---------------------------------------
// Fold (x-y)+y  OR  y+(x-y)  into  x
Node *AddINode::Identity( PhaseTransform *phase ) {
  if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
    return in(1)->in(1);
  }
  else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
    return in(2)->in(1);
  }
  return AddNode::Identity(phase);
}


//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.  Guaranteed never
// to be passed a TOP or BOTTOM type, these are filtered out by
// pre-check.
const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
  const TypeInt *r0 = t0->is_int(); // Handy access
  const TypeInt *r1 = t1->is_int();
  int lo = r0->_lo + r1->_lo;
  int hi = r0->_hi + r1->_hi;
  if( !(r0->is_con() && r1->is_con()) ) {
    // Not both constants, compute approximate result
    if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
      lo = min_jint; hi = max_jint; // Underflow on the low side
    }
    if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
      lo = min_jint; hi = max_jint; // Overflow on the high side
    }
    if( lo > hi ) {               // Handle overflow
      lo = min_jint; hi = max_jint;
    }
  } else {
    // both constants, compute precise result using 'lo' and 'hi'
    // Semantics define overflow and underflow for integer addition
    // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
  }
  return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
}


//=============================================================================
//------------------------------Idealize---------------------------------------
Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  int op1 = in(1)->Opcode();
  int op2 = in(2)->Opcode();
  // Fold (con1-x)+con2 into (con1+con2)-x
  if( op1 == Op_SubL ) {
    const Type *t_sub1 = phase->type( in(1)->in(1) );
    const Type *t_2    = phase->type( in(2)        );
    if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
      return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
                              in(1)->in(2) );
    // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
    if( op2 == Op_SubL ) {
      // Check for dead cycle: d = (a-b)+(c-d)
      assert( in(1)->in(2) != this && in(2)->in(2) != this,
              "dead loop in AddLNode::Ideal" );
      Node *sub  = new (phase->C, 3) SubLNode(NULL, NULL);
      sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(1), in(2)->in(1) ) ));
      sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(2), in(2)->in(2) ) ));
      return sub;
    }
  }

  // Convert "x+(0-y)" into "(x-y)"
  if( op2 == Op_SubL && phase->type(in(2)->in(1)) == TypeLong::ZERO )
    return new (phase->C, 3) SubLNode(in(1), in(2)->in(2) );

  // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
  // into "(X<<1)+Y" and let shift-folding happen.
  if( op2 == Op_AddL &&
      in(2)->in(1) == in(1) &&
      op1 != Op_ConL &&
      0 ) {
    Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in(1),phase->intcon(1)));
    return new (phase->C, 3) AddLNode(shift,in(2)->in(2));
  }

  return AddNode::Ideal(phase, can_reshape);
}


//------------------------------Identity---------------------------------------
// Fold (x-y)+y  OR  y+(x-y)  into  x
Node *AddLNode::Identity( PhaseTransform *phase ) {
  if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
    return in(1)->in(1);
  }
  else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
    return in(2)->in(1);
  }
  return AddNode::Identity(phase);
}


//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.  Guaranteed never
// to be passed a TOP or BOTTOM type, these are filtered out by
// pre-check.
const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
  const TypeLong *r0 = t0->is_long(); // Handy access
  const TypeLong *r1 = t1->is_long();
  jlong lo = r0->_lo + r1->_lo;
  jlong hi = r0->_hi + r1->_hi;
  if( !(r0->is_con() && r1->is_con()) ) {
    // Not both constants, compute approximate result
    if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
      lo =min_jlong; hi = max_jlong; // Underflow on the low side
    }
    if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
      lo = min_jlong; hi = max_jlong; // Overflow on the high side
    }
    if( lo > hi ) {               // Handle overflow
      lo = min_jlong; hi = max_jlong;
    }
  } else {
    // both constants, compute precise result using 'lo' and 'hi'
    // Semantics define overflow and underflow for integer addition
    // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
  }
  return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
}


//=============================================================================
//------------------------------add_of_identity--------------------------------
// Check for addition of the identity
const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
  // x ADD 0  should return x unless 'x' is a -zero
  //
  // const Type *zero = add_id();     // The additive identity
  // jfloat f1 = t1->getf();
  // jfloat f2 = t2->getf();
  //
  // if( t1->higher_equal( zero ) ) return t2;
  // if( t2->higher_equal( zero ) ) return t1;

  return NULL;
}

//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
// This also type-checks the inputs for sanity.  Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
  // We must be adding 2 float constants.
  return TypeF::make( t0->getf() + t1->getf() );
}

//------------------------------Ideal------------------------------------------
Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
    return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
  }

  // Floating point additions are not associative because of boundary conditions (infinity)
  return commute(this,
                 phase->type( in(1) )->singleton(),
                 phase->type( in(2) )->singleton() ) ? this : NULL;
}


//=============================================================================
//------------------------------add_of_identity--------------------------------
// Check for addition of the identity
const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
  // x ADD 0  should return x unless 'x' is a -zero
  //
  // const Type *zero = add_id();     // The additive identity
  // jfloat f1 = t1->getf();
  // jfloat f2 = t2->getf();
  //
  // if( t1->higher_equal( zero ) ) return t2;
  // if( t2->higher_equal( zero ) ) return t1;

  return NULL;
}
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
// This also type-checks the inputs for sanity.  Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
  // We must be adding 2 double constants.
  return TypeD::make( t0->getd() + t1->getd() );
}

//------------------------------Ideal------------------------------------------
Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
    return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
  }

  // Floating point additions are not associative because of boundary conditions (infinity)
  return commute(this,
                 phase->type( in(1) )->singleton(),
                 phase->type( in(2) )->singleton() ) ? this : NULL;
}


//=============================================================================
//------------------------------Identity---------------------------------------
// If one input is a constant 0, return the other input.
Node *AddPNode::Identity( PhaseTransform *phase ) {
  return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
}

//------------------------------Idealize---------------------------------------
Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Bail out if dead inputs
  if( phase->type( in(Address) ) == Type::TOP ) return NULL;

  // If the left input is an add of a constant, flatten the expression tree.
  const Node *n = in(Address);
  if (n->is_AddP() && n->in(Base) == in(Base)) {
    const AddPNode *addp = n->as_AddP(); // Left input is an AddP
    assert( !addp->in(Address)->is_AddP() ||
             addp->in(Address)->as_AddP() != addp,
            "dead loop in AddPNode::Ideal" );
    // Type of left input's right input
    const Type *t = phase->type( addp->in(Offset) );
    if( t == Type::TOP ) return NULL;
    const TypeX *t12 = t->is_intptr_t();
    if( t12->is_con() ) {       // Left input is an add of a constant?
      // If the right input is a constant, combine constants
      const Type *temp_t2 = phase->type( in(Offset) );
      if( temp_t2 == Type::TOP ) return NULL;
      const TypeX *t2 = temp_t2->is_intptr_t();
      if( t2->is_con() ) {
        // The Add of the flattened expression
        set_req(Address, addp->in(Address));
        set_req(Offset , phase->MakeConX(t2->get_con() + t12->get_con()));
        return this;                    // Made progress
      }
      // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
      set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset))));
      set_req(Offset , addp->in(Offset));
      return this;
    }
  }

  // Raw pointers?
  if( in(Base)->bottom_type() == Type::TOP ) {
    // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
    if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
      Node* offset = in(Offset);
      return new (phase->C, 2) CastX2PNode(offset);
    }
  }

  // If the right is an add of a constant, push the offset down.
  // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
  // The idea is to merge array_base+scaled_index groups together,
  // and only have different constant offsets from the same base.
  const Node *add = in(Offset);
  if( add->Opcode() == Op_AddX && add->in(1) != add ) {
    const Type *t22 = phase->type( add->in(2) );
    if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
      set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
      set_req(Offset, add->in(2));
      return this;              // Made progress
    }
  }

  return NULL;                  // No progress
}

//------------------------------bottom_type------------------------------------
// Bottom-type is the pointer-type with unknown offset.
const Type *AddPNode::bottom_type() const {
  if (in(Address) == NULL)  return TypePtr::BOTTOM;
  const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
  if( !tp ) return Type::TOP;   // TOP input means TOP output
  assert( in(Offset)->Opcode() != Op_ConP, "" );
  const Type *t = in(Offset)->bottom_type();
  if( t == Type::TOP )
    return tp->add_offset(Type::OffsetTop);
  const TypeX *tx = t->is_intptr_t();
  intptr_t txoffset = Type::OffsetBot;
  if (tx->is_con()) {   // Left input is an add of a constant?
    txoffset = tx->get_con();
    if (txoffset != (int)txoffset)
      txoffset = Type::OffsetBot;   // oops:  add_offset will choke on it
  }
  return tp->add_offset(txoffset);
}

//------------------------------Value------------------------------------------
const Type *AddPNode::Value( PhaseTransform *phase ) const {
  // Either input is TOP ==> the result is TOP
  const Type *t1 = phase->type( in(Address) );
  const Type *t2 = phase->type( in(Offset) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t2 == Type::TOP ) return Type::TOP;

  // Left input is a pointer
  const TypePtr *p1 = t1->isa_ptr();
  // Right input is an int
  const TypeX *p2 = t2->is_intptr_t();
  // Add 'em
  intptr_t p2offset = Type::OffsetBot;
  if (p2->is_con()) {   // Left input is an add of a constant?
    p2offset = p2->get_con();
    if (p2offset != (int)p2offset)
      p2offset = Type::OffsetBot;   // oops:  add_offset will choke on it
  }
  return p1->add_offset(p2offset);
}

//------------------------Ideal_base_and_offset--------------------------------
// Split an oop pointer into a base and offset.
// (The offset might be Type::OffsetBot in the case of an array.)
// Return the base, or NULL if failure.
Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
                                      // second return value:
                                      intptr_t& offset) {
  if (ptr->is_AddP()) {
    Node* base = ptr->in(AddPNode::Base);
    Node* addr = ptr->in(AddPNode::Address);
    Node* offs = ptr->in(AddPNode::Offset);
    if (base == addr || base->is_top()) {
      offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
      if (offset != Type::OffsetBot) {
        return addr;
      }
    }
  }
  offset = Type::OffsetBot;
  return NULL;
}

//------------------------------match_edge-------------------------------------
// Do we Match on this edge index or not?  Do not match base pointer edge
uint AddPNode::match_edge(uint idx) const {
  return idx > Base;
}

//---------------------------mach_bottom_type----------------------------------
// Utility function for use by ADLC.  Implements bottom_type for matched AddP.
const Type *AddPNode::mach_bottom_type( const MachNode* n) {
  Node* base = n->in(Base);
  const Type *t = base->bottom_type();
  if ( t == Type::TOP ) {
    // an untyped pointer
    return TypeRawPtr::BOTTOM;
  }
  const TypePtr* tp = t->isa_oopptr();
  if ( tp == NULL )  return t;
  if ( tp->_offset == TypePtr::OffsetBot )  return tp;

  // We must carefully add up the various offsets...
  intptr_t offset = 0;
  const TypePtr* tptr = NULL;

  uint numopnds = n->num_opnds();
  uint index = n->oper_input_base();
  for ( uint i = 1; i < numopnds; i++ ) {
    MachOper *opnd = n->_opnds[i];
    // Check for any interesting operand info.
    // In particular, check for both memory and non-memory operands.
    // %%%%% Clean this up: use xadd_offset
    int con = opnd->constant();
    if ( con == TypePtr::OffsetBot )  goto bottom_out;
    offset += con;
    con = opnd->constant_disp();
    if ( con == TypePtr::OffsetBot )  goto bottom_out;
    offset += con;
    if( opnd->scale() != 0 ) goto bottom_out;

    // Check each operand input edge.  Find the 1 allowed pointer
    // edge.  Other edges must be index edges; track exact constant
    // inputs and otherwise assume the worst.
    for ( uint j = opnd->num_edges(); j > 0; j-- ) {
      Node* edge = n->in(index++);
      const Type*    et  = edge->bottom_type();
      const TypeX*   eti = et->isa_intptr_t();
      if ( eti == NULL ) {
        // there must be one pointer among the operands
        guarantee(tptr == NULL, "must be only one pointer operand");
        tptr = et->isa_oopptr();
        guarantee(tptr != NULL, "non-int operand must be pointer");
        continue;
      }
      if ( eti->_hi != eti->_lo )  goto bottom_out;
      offset += eti->_lo;
    }
  }
  guarantee(tptr != NULL, "must be exactly one pointer operand");
  return tptr->add_offset(offset);

 bottom_out:
  return tp->add_offset(TypePtr::OffsetBot);
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *OrINode::Identity( PhaseTransform *phase ) {
  // x | x => x
  if (phase->eqv(in(1), in(2))) {
    return in(1);
  }

  return AddNode::Identity(phase);
}

//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
// the logical operations the ring's ADD is really a logical OR function.
// This also type-checks the inputs for sanity.  Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
  const TypeInt *r0 = t0->is_int(); // Handy access
  const TypeInt *r1 = t1->is_int();

  // If both args are bool, can figure out better types
  if ( r0 == TypeInt::BOOL ) {
    if ( r1 == TypeInt::ONE) {
      return TypeInt::ONE;
    } else if ( r1 == TypeInt::BOOL ) {
      return TypeInt::BOOL;
    }
  } else if ( r0 == TypeInt::ONE ) {
    if ( r1 == TypeInt::BOOL ) {
      return TypeInt::ONE;
    }
  }

  // If either input is not a constant, just return all integers.
  if( !r0->is_con() || !r1->is_con() )
    return TypeInt::INT;        // Any integer, but still no symbols.

  // Otherwise just OR them bits.
  return TypeInt::make( r0->get_con() | r1->get_con() );
}

//=============================================================================
//------------------------------Identity---------------------------------------
Node *OrLNode::Identity( PhaseTransform *phase ) {
  // x | x => x
  if (phase->eqv(in(1), in(2))) {
    return in(1);
  }

  return AddNode::Identity(phase);
}

//------------------------------add_ring---------------------------------------
const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
  const TypeLong *r0 = t0->is_long(); // Handy access
  const TypeLong *r1 = t1->is_long();

  // If either input is not a constant, just return all integers.
  if( !r0->is_con() || !r1->is_con() )
    return TypeLong::LONG;      // Any integer, but still no symbols.

  // Otherwise just OR them bits.
  return TypeLong::make( r0->get_con() | r1->get_con() );
}

//=============================================================================
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
// the logical operations the ring's ADD is really a logical OR function.
// This also type-checks the inputs for sanity.  Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
  const TypeInt *r0 = t0->is_int(); // Handy access
  const TypeInt *r1 = t1->is_int();

  // Complementing a boolean?
  if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
                               || r1 == TypeInt::BOOL))
    return TypeInt::BOOL;

  if( !r0->is_con() || !r1->is_con() ) // Not constants
    return TypeInt::INT;        // Any integer, but still no symbols.

  // Otherwise just XOR them bits.
  return TypeInt::make( r0->get_con() ^ r1->get_con() );
}

//=============================================================================
//------------------------------add_ring---------------------------------------
const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
  const TypeLong *r0 = t0->is_long(); // Handy access
  const TypeLong *r1 = t1->is_long();

  // If either input is not a constant, just return all integers.
  if( !r0->is_con() || !r1->is_con() )
    return TypeLong::LONG;      // Any integer, but still no symbols.

  // Otherwise just OR them bits.
  return TypeLong::make( r0->get_con() ^ r1->get_con() );
}

//=============================================================================
//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
  const TypeInt *r0 = t0->is_int(); // Handy access
  const TypeInt *r1 = t1->is_int();

  // Otherwise just MAX them bits.
  return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
}

//=============================================================================
//------------------------------Idealize---------------------------------------
// MINs show up in range-check loop limit calculations.  Look for
// "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
  Node *progress = NULL;
  // Force a right-spline graph
  Node *l = in(1);
  Node *r = in(2);
  // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
  // to force a right-spline graph for the rest of MinINode::Ideal().
  if( l->Opcode() == Op_MinI ) {
    assert( l != l->in(1), "dead loop in MinINode::Ideal" );
    r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
    l = l->in(1);
    set_req(1, l);
    set_req(2, r);
    return this;
  }

  // Get left input & constant
  Node *x = l;
  int x_off = 0;
  if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
      x->in(2)->is_Con() ) {
    const Type *t = x->in(2)->bottom_type();
    if( t == Type::TOP ) return NULL;  // No progress
    x_off = t->is_int()->get_con();
    x = x->in(1);
  }

  // Scan a right-spline-tree for MINs
  Node *y = r;
  int y_off = 0;
  // Check final part of MIN tree
  if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
      y->in(2)->is_Con() ) {
    const Type *t = y->in(2)->bottom_type();
    if( t == Type::TOP ) return NULL;  // No progress
    y_off = t->is_int()->get_con();
    y = y->in(1);
  }
  if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
    swap_edges(1, 2);
    return this;
  }


  if( r->Opcode() == Op_MinI ) {
    assert( r != r->in(2), "dead loop in MinINode::Ideal" );
    y = r->in(1);
    // Check final part of MIN tree
    if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
        y->in(2)->is_Con() ) {
      const Type *t = y->in(2)->bottom_type();
      if( t == Type::TOP ) return NULL;  // No progress
      y_off = t->is_int()->get_con();
      y = y->in(1);
    }

    if( x->_idx > y->_idx )
      return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));

    // See if covers: MIN2(x+c0,MIN2(y+c1,z))
    if( !phase->eqv(x,y) ) return NULL;
    // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
    // MIN2(x+c0 or x+c1 which less, z).
    return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
  } else {
    // See if covers: MIN2(x+c0,y+c1)
    if( !phase->eqv(x,y) ) return NULL;
    // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
    return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
  }

}

//------------------------------add_ring---------------------------------------
// Supplied function returns the sum of the inputs.
const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
  const TypeInt *r0 = t0->is_int(); // Handy access
  const TypeInt *r1 = t1->is_int();

  // Otherwise just MIN them bits.
  return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
}