blockOffsetTable.hpp 19.8 KB
Newer Older
D
duke 已提交
1
/*
X
xdono 已提交
2
 * Copyright 2000-2008 Sun Microsystems, Inc.  All Rights Reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// The CollectedHeap type requires subtypes to implement a method
// "block_start".  For some subtypes, notably generational
// systems using card-table-based write barriers, the efficiency of this
// operation may be important.  Implementations of the "BlockOffsetArray"
// class may be useful in providing such efficient implementations.
//
// BlockOffsetTable (abstract)
//   - BlockOffsetArray (abstract)
//     - BlockOffsetArrayNonContigSpace
//     - BlockOffsetArrayContigSpace
//

class ContiguousSpace;
class SerializeOopClosure;

//////////////////////////////////////////////////////////////////////////
// The BlockOffsetTable "interface"
//////////////////////////////////////////////////////////////////////////
class BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
  friend class VMStructs;
protected:
  // These members describe the region covered by the table.

  // The space this table is covering.
  HeapWord* _bottom;    // == reserved.start
  HeapWord* _end;       // End of currently allocated region.

public:
  // Initialize the table to cover the given space.
  // The contents of the initial table are undefined.
  BlockOffsetTable(HeapWord* bottom, HeapWord* end):
    _bottom(bottom), _end(end) {
    assert(_bottom <= _end, "arguments out of order");
  }

  // Note that the committed size of the covered space may have changed,
  // so the table size might also wish to change.
  virtual void resize(size_t new_word_size) = 0;

  virtual void set_bottom(HeapWord* new_bottom) {
    assert(new_bottom <= _end, "new_bottom > _end");
    _bottom = new_bottom;
    resize(pointer_delta(_end, _bottom));
  }

  // Requires "addr" to be contained by a block, and returns the address of
  // the start of that block.
  virtual HeapWord* block_start_unsafe(const void* addr) const = 0;

  // Returns the address of the start of the block containing "addr", or
  // else "null" if it is covered by no block.
  HeapWord* block_start(const void* addr) const;
};

//////////////////////////////////////////////////////////////////////////
// One implementation of "BlockOffsetTable," the BlockOffsetArray,
// divides the covered region into "N"-word subregions (where
// "N" = 2^"LogN".  An array with an entry for each such subregion
// indicates how far back one must go to find the start of the
// chunk that includes the first word of the subregion.
//
// Each BlockOffsetArray is owned by a Space.  However, the actual array
// may be shared by several BlockOffsetArrays; this is useful
// when a single resizable area (such as a generation) is divided up into
// several spaces in which contiguous allocation takes place.  (Consider,
// for example, the garbage-first generation.)

// Here is the shared array type.
//////////////////////////////////////////////////////////////////////////
// BlockOffsetSharedArray
//////////////////////////////////////////////////////////////////////////
class BlockOffsetSharedArray: public CHeapObj {
  friend class BlockOffsetArray;
  friend class BlockOffsetArrayNonContigSpace;
  friend class BlockOffsetArrayContigSpace;
  friend class VMStructs;

 private:
  enum SomePrivateConstants {
    LogN = 9,
    LogN_words = LogN - LogHeapWordSize,
    N_bytes = 1 << LogN,
    N_words = 1 << LogN_words
  };

  // The reserved region covered by the shared array.
  MemRegion _reserved;

  // End of the current committed region.
  HeapWord* _end;

  // Array for keeping offsets for retrieving object start fast given an
  // address.
  VirtualSpace _vs;
  u_char* _offset_array;          // byte array keeping backwards offsets

 protected:
  // Bounds checking accessors:
  // For performance these have to devolve to array accesses in product builds.
  u_char offset_array(size_t index) const {
    assert(index < _vs.committed_size(), "index out of range");
    return _offset_array[index];
  }
  void set_offset_array(size_t index, u_char offset) {
    assert(index < _vs.committed_size(), "index out of range");
    _offset_array[index] = offset;
  }
  void set_offset_array(size_t index, HeapWord* high, HeapWord* low) {
    assert(index < _vs.committed_size(), "index out of range");
    assert(high >= low, "addresses out of order");
    assert(pointer_delta(high, low) <= N_words, "offset too large");
    _offset_array[index] = (u_char)pointer_delta(high, low);
  }
  void set_offset_array(HeapWord* left, HeapWord* right, u_char offset) {
    assert(index_for(right - 1) < _vs.committed_size(),
           "right address out of range");
    assert(left  < right, "Heap addresses out of order");
    size_t num_cards = pointer_delta(right, left) >> LogN_words;
    memset(&_offset_array[index_for(left)], offset, num_cards);
  }

  void set_offset_array(size_t left, size_t right, u_char offset) {
    assert(right < _vs.committed_size(), "right address out of range");
    assert(left  <= right, "indexes out of order");
    size_t num_cards = right - left + 1;
    memset(&_offset_array[left], offset, num_cards);
  }

  void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
    assert(index < _vs.committed_size(), "index out of range");
    assert(high >= low, "addresses out of order");
    assert(pointer_delta(high, low) <= N_words, "offset too large");
    assert(_offset_array[index] == pointer_delta(high, low),
           "Wrong offset");
  }

  bool is_card_boundary(HeapWord* p) const;

  // Return the number of slots needed for an offset array
  // that covers mem_region_words words.
  // We always add an extra slot because if an object
  // ends on a card boundary we put a 0 in the next
  // offset array slot, so we want that slot always
  // to be reserved.

  size_t compute_size(size_t mem_region_words) {
    size_t number_of_slots = (mem_region_words / N_words) + 1;
    return ReservedSpace::allocation_align_size_up(number_of_slots);
  }

public:
  // Initialize the table to cover from "base" to (at least)
  // "base + init_word_size".  In the future, the table may be expanded
  // (see "resize" below) up to the size of "_reserved" (which must be at
  // least "init_word_size".)  The contents of the initial table are
  // undefined; it is the responsibility of the constituent
  // BlockOffsetTable(s) to initialize cards.
  BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);

  // Notes a change in the committed size of the region covered by the
  // table.  The "new_word_size" may not be larger than the size of the
  // reserved region this table covers.
  void resize(size_t new_word_size);

  void set_bottom(HeapWord* new_bottom);

  // Updates all the BlockOffsetArray's sharing this shared array to
  // reflect the current "top"'s of their spaces.
  void update_offset_arrays();   // Not yet implemented!

  // Return the appropriate index into "_offset_array" for "p".
  size_t index_for(const void* p) const;

  // Return the address indicating the start of the region corresponding to
  // "index" in "_offset_array".
  HeapWord* address_for_index(size_t index) const;

202 203 204 205 206 207
  // Return the address "p" incremented by the size of
  // a region.  This method does not align the address
  // returned to the start of a region.  It is a simple
  // primitive.
  HeapWord* inc_by_region_size(HeapWord* p) const { return p + N_words; }

D
duke 已提交
208 209 210 211 212 213 214 215 216
  // Shared space support
  void serialize(SerializeOopClosure* soc, HeapWord* start, HeapWord* end);
};

//////////////////////////////////////////////////////////////////////////
// The BlockOffsetArray whose subtypes use the BlockOffsetSharedArray.
//////////////////////////////////////////////////////////////////////////
class BlockOffsetArray: public BlockOffsetTable {
  friend class VMStructs;
217
  friend class G1BlockOffsetArray; // temp. until we restructure and cleanup
D
duke 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
 protected:
  // The following enums are used by do_block_internal() below
  enum Action {
    Action_single,      // BOT records a single block (see single_block())
    Action_mark,        // BOT marks the start of a block (see mark_block())
    Action_check        // Check that BOT records block correctly
                        // (see verify_single_block()).
  };

  enum SomePrivateConstants {
    N_words = BlockOffsetSharedArray::N_words,
    LogN    = BlockOffsetSharedArray::LogN,
    // entries "e" of at least N_words mean "go back by Base^(e-N_words)."
    // All entries are less than "N_words + N_powers".
    LogBase = 4,
    Base = (1 << LogBase),
    N_powers = 14
  };

  static size_t power_to_cards_back(uint i) {
    return 1 << (LogBase * i);
  }
  static size_t power_to_words_back(uint i) {
    return power_to_cards_back(i) * N_words;
  }
  static size_t entry_to_cards_back(u_char entry) {
    assert(entry >= N_words, "Precondition");
    return power_to_cards_back(entry - N_words);
  }
  static size_t entry_to_words_back(u_char entry) {
    assert(entry >= N_words, "Precondition");
    return power_to_words_back(entry - N_words);
  }

  // The shared array, which is shared with other BlockOffsetArray's
  // corresponding to different spaces within a generation or span of
  // memory.
  BlockOffsetSharedArray* _array;

  // The space that owns this subregion.
  Space* _sp;

  // If true, array entries are initialized to 0; otherwise, they are
  // initialized to point backwards to the beginning of the covered region.
  bool _init_to_zero;

  // Sets the entries
  // corresponding to the cards starting at "start" and ending at "end"
  // to point back to the card before "start": the interval [start, end)
  // is right-open.
  void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end);
  // Same as above, except that the args here are a card _index_ interval
  // that is closed: [start_index, end_index]
  void set_remainder_to_point_to_start_incl(size_t start, size_t end);

  // A helper function for BOT adjustment/verification work
  void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action);

 public:
  // The space may not have its bottom and top set yet, which is why the
  // region is passed as a parameter.  If "init_to_zero" is true, the
  // elements of the array are initialized to zero.  Otherwise, they are
  // initialized to point backwards to the beginning.
  BlockOffsetArray(BlockOffsetSharedArray* array, MemRegion mr,
                   bool init_to_zero);

  // Note: this ought to be part of the constructor, but that would require
  // "this" to be passed as a parameter to a member constructor for
  // the containing concrete subtype of Space.
  // This would be legal C++, but MS VC++ doesn't allow it.
  void set_space(Space* sp) { _sp = sp; }

  // Resets the covered region to the given "mr".
  void set_region(MemRegion mr) {
    _bottom = mr.start();
    _end = mr.end();
  }

  // Note that the committed size of the covered space may have changed,
  // so the table size might also wish to change.
  virtual void resize(size_t new_word_size) {
    HeapWord* new_end = _bottom + new_word_size;
    if (_end < new_end && !init_to_zero()) {
      // verify that the old and new boundaries are also card boundaries
      assert(_array->is_card_boundary(_end),
             "_end not a card boundary");
      assert(_array->is_card_boundary(new_end),
             "new _end would not be a card boundary");
      // set all the newly added cards
      _array->set_offset_array(_end, new_end, N_words);
    }
    _end = new_end;  // update _end
  }

  // Adjust the BOT to show that it has a single block in the
  // range [blk_start, blk_start + size). All necessary BOT
  // cards are adjusted, but _unallocated_block isn't.
  void single_block(HeapWord* blk_start, HeapWord* blk_end);
  void single_block(HeapWord* blk, size_t size) {
    single_block(blk, blk + size);
  }

  // When the alloc_block() call returns, the block offset table should
  // have enough information such that any subsequent block_start() call
  // with an argument equal to an address that is within the range
  // [blk_start, blk_end) would return the value blk_start, provided
  // there have been no calls in between that reset this information
  // (e.g. see BlockOffsetArrayNonContigSpace::single_block() call
  // for an appropriate range covering the said interval).
  // These methods expect to be called with [blk_start, blk_end)
  // representing a block of memory in the heap.
  virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
  void alloc_block(HeapWord* blk, size_t size) {
    alloc_block(blk, blk + size);
  }

  // If true, initialize array slots with no allocated blocks to zero.
  // Otherwise, make them point back to the front.
  bool init_to_zero() { return _init_to_zero; }

  // Debugging
  // Return the index of the last entry in the "active" region.
  virtual size_t last_active_index() const = 0;
  // Verify the block offset table
  void verify() const;
  void check_all_cards(size_t left_card, size_t right_card) const;
};

////////////////////////////////////////////////////////////////////////////
// A subtype of BlockOffsetArray that takes advantage of the fact
// that its underlying space is a NonContiguousSpace, so that some
// specialized interfaces can be made available for spaces that
// manipulate the table.
////////////////////////////////////////////////////////////////////////////
class BlockOffsetArrayNonContigSpace: public BlockOffsetArray {
  friend class VMStructs;
 private:
  // The portion [_unallocated_block, _sp.end()) of the space that
  // is a single block known not to contain any objects.
  // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
  HeapWord* _unallocated_block;

 public:
  BlockOffsetArrayNonContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
    BlockOffsetArray(array, mr, false),
    _unallocated_block(_bottom) { }

  // accessor
  HeapWord* unallocated_block() const {
    assert(BlockOffsetArrayUseUnallocatedBlock,
           "_unallocated_block is not being maintained");
    return _unallocated_block;
  }

  void set_unallocated_block(HeapWord* block) {
    assert(BlockOffsetArrayUseUnallocatedBlock,
           "_unallocated_block is not being maintained");
    assert(block >= _bottom && block <= _end, "out of range");
    _unallocated_block = block;
  }

  // These methods expect to be called with [blk_start, blk_end)
  // representing a block of memory in the heap.
  void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
  void alloc_block(HeapWord* blk, size_t size) {
    alloc_block(blk, blk + size);
  }

  // The following methods are useful and optimized for a
  // non-contiguous space.

  // Given a block [blk_start, blk_start + full_blk_size), and
  // a left_blk_size < full_blk_size, adjust the BOT to show two
  // blocks [blk_start, blk_start + left_blk_size) and
  // [blk_start + left_blk_size, blk_start + full_blk_size).
  // It is assumed (and verified in the non-product VM) that the
  // BOT was correct for the original block.
  void split_block(HeapWord* blk_start, size_t full_blk_size,
                           size_t left_blk_size);

  // Adjust BOT to show that it has a block in the range
  // [blk_start, blk_start + size). Only the first card
  // of BOT is touched. It is assumed (and verified in the
  // non-product VM) that the remaining cards of the block
  // are correct.
  void mark_block(HeapWord* blk_start, HeapWord* blk_end);
  void mark_block(HeapWord* blk, size_t size) {
    mark_block(blk, blk + size);
  }

  // Adjust _unallocated_block to indicate that a particular
  // block has been newly allocated or freed. It is assumed (and
  // verified in the non-product VM) that the BOT is correct for
  // the given block.
  void allocated(HeapWord* blk_start, HeapWord* blk_end) {
    // Verify that the BOT shows [blk, blk + blk_size) to be one block.
    verify_single_block(blk_start, blk_end);
    if (BlockOffsetArrayUseUnallocatedBlock) {
      _unallocated_block = MAX2(_unallocated_block, blk_end);
    }
  }

  void allocated(HeapWord* blk, size_t size) {
    allocated(blk, blk + size);
  }

  void freed(HeapWord* blk_start, HeapWord* blk_end);
  void freed(HeapWord* blk, size_t size) {
    freed(blk, blk + size);
  }

  HeapWord* block_start_unsafe(const void* addr) const;

  // Requires "addr" to be the start of a card and returns the
  // start of the block that contains the given address.
  HeapWord* block_start_careful(const void* addr) const;


  // Verification & debugging: ensure that the offset table reflects
  // the fact that the block [blk_start, blk_end) or [blk, blk + size)
  // is a single block of storage. NOTE: can't const this because of
  // call to non-const do_block_internal() below.
  void verify_single_block(HeapWord* blk_start, HeapWord* blk_end)
    PRODUCT_RETURN;
  void verify_single_block(HeapWord* blk, size_t size) PRODUCT_RETURN;

  // Verify that the given block is before _unallocated_block
  void verify_not_unallocated(HeapWord* blk_start, HeapWord* blk_end)
    const PRODUCT_RETURN;
  void verify_not_unallocated(HeapWord* blk, size_t size)
    const PRODUCT_RETURN;

  // Debugging support
  virtual size_t last_active_index() const;
};

////////////////////////////////////////////////////////////////////////////
// A subtype of BlockOffsetArray that takes advantage of the fact
// that its underlying space is a ContiguousSpace, so that its "active"
// region can be more efficiently tracked (than for a non-contiguous space).
////////////////////////////////////////////////////////////////////////////
class BlockOffsetArrayContigSpace: public BlockOffsetArray {
  friend class VMStructs;
 private:
  // allocation boundary at which offset array must be updated
  HeapWord* _next_offset_threshold;
  size_t    _next_offset_index;      // index corresponding to that boundary

  // Work function when allocation start crosses threshold.
  void alloc_block_work(HeapWord* blk_start, HeapWord* blk_end);

 public:
  BlockOffsetArrayContigSpace(BlockOffsetSharedArray* array, MemRegion mr):
    BlockOffsetArray(array, mr, true) {
    _next_offset_threshold = NULL;
    _next_offset_index = 0;
  }

  void set_contig_space(ContiguousSpace* sp) { set_space((Space*)sp); }

  // Initialize the threshold for an empty heap.
  HeapWord* initialize_threshold();
  // Zero out the entry for _bottom (offset will be zero)
  void      zero_bottom_entry();

  // Return the next threshold, the point at which the table should be
  // updated.
  HeapWord* threshold() const { return _next_offset_threshold; }

  // In general, these methods expect to be called with
  // [blk_start, blk_end) representing a block of memory in the heap.
  // In this implementation, however, we are OK even if blk_start and/or
  // blk_end are NULL because NULL is represented as 0, and thus
  // never exceeds the "_next_offset_threshold".
  void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
    if (blk_end > _next_offset_threshold) {
      alloc_block_work(blk_start, blk_end);
    }
  }
  void alloc_block(HeapWord* blk, size_t size) {
    alloc_block(blk, blk + size);
  }

  HeapWord* block_start_unsafe(const void* addr) const;

  void serialize(SerializeOopClosure* soc);

  // Debugging support
  virtual size_t last_active_index() const;
};