sharedRuntimeTrig.cpp 31.9 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28
#include "precompiled.hpp"
#include "prims/jni.h"
#include "runtime/interfaceSupport.hpp"
#include "runtime/sharedRuntime.hpp"
D
duke 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

// This file contains copies of the fdlibm routines used by
// StrictMath. It turns out that it is almost always required to use
// these runtime routines; the Intel CPU doesn't meet the Java
// specification for sin/cos outside a certain limited argument range,
// and the SPARC CPU doesn't appear to have sin/cos instructions. It
// also turns out that avoiding the indirect call through function
// pointer out to libjava.so in SharedRuntime speeds these routines up
// by roughly 15% on both Win32/x86 and Solaris/SPARC.

// Enabling optimizations in this file causes incorrect code to be
// generated; can not figure out how to turn down optimization for one
// file in the IDE on Windows
#ifdef WIN32
# pragma optimize ( "", off )
#endif

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
/* The above workaround now causes more problems with the latest MS compiler.
 * Visual Studio 2010's /GS option tries to guard against buffer overruns.
 * /GS is on by default if you specify optimizations, which we do globally
 * via /W3 /O2. However the above selective turning off of optimizations means
 * that /GS issues a warning "4748". And since we treat warnings as errors (/WX)
 * then the compilation fails. There are several possible solutions
 * (1) Remove that pragma above as obsolete with VS2010 - requires testing.
 * (2) Stop treating warnings as errors - would be a backward step
 * (3) Disable /GS - may help performance but you lose the security checks
 * (4) Disable the warning with "#pragma warning( disable : 4748 )"
 * (5) Disable planting the code with  __declspec(safebuffers)
 * I've opted for (5) although we should investigate the local performance
 * benefits of (1) and global performance benefit of (3).
 */
#if defined(WIN32) && (defined(_MSC_VER) && (_MSC_VER >= 1600))
#define SAFEBUF __declspec(safebuffers)
#else
#define SAFEBUF
#endif

D
duke 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#include <math.h>

// VM_LITTLE_ENDIAN is #defined appropriately in the Makefiles
// [jk] this is not 100% correct because the float word order may different
// from the byte order (e.g. on ARM)
#ifdef VM_LITTLE_ENDIAN
# define __HI(x) *(1+(int*)&x)
# define __LO(x) *(int*)&x
#else
# define __HI(x) *(int*)&x
# define __LO(x) *(1+(int*)&x)
#endif

static double copysignA(double x, double y) {
  __HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
  return x;
}

/*
 * scalbn (double x, int n)
 * scalbn(x,n) returns x* 2**n  computed by  exponent
 * manipulation rather than by actually performing an
 * exponentiation or a multiplication.
 */

static const double
two54   =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
twom54  =  5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
hugeX  = 1.0e+300,
tiny   = 1.0e-300;

static double scalbnA (double x, int n) {
  int  k,hx,lx;
  hx = __HI(x);
  lx = __LO(x);
  k = (hx&0x7ff00000)>>20;              /* extract exponent */
  if (k==0) {                           /* 0 or subnormal x */
    if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
    x *= two54;
    hx = __HI(x);
    k = ((hx&0x7ff00000)>>20) - 54;
    if (n< -50000) return tiny*x;       /*underflow*/
  }
  if (k==0x7ff) return x+x;             /* NaN or Inf */
  k = k+n;
  if (k >  0x7fe) return hugeX*copysignA(hugeX,x); /* overflow  */
  if (k > 0)                            /* normal result */
    {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
  if (k <= -54) {
    if (n > 50000)      /* in case integer overflow in n+k */
      return hugeX*copysignA(hugeX,x);  /*overflow*/
    else return tiny*copysignA(tiny,x); /*underflow*/
  }
  k += 54;                              /* subnormal result */
  __HI(x) = (hx&0x800fffff)|(k<<20);
  return x*twom54;
}

/*
 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
 * double x[],y[]; int e0,nx,prec; int ipio2[];
 *
 * __kernel_rem_pio2 return the last three digits of N with
 *              y = x - N*pi/2
 * so that |y| < pi/2.
 *
 * The method is to compute the integer (mod 8) and fraction parts of
 * (2/pi)*x without doing the full multiplication. In general we
 * skip the part of the product that are known to be a huge integer (
 * more accurately, = 0 mod 8 ). Thus the number of operations are
 * independent of the exponent of the input.
 *
 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
 *
 * Input parameters:
 *      x[]     The input value (must be positive) is broken into nx
 *              pieces of 24-bit integers in double precision format.
 *              x[i] will be the i-th 24 bit of x. The scaled exponent
 *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
 *              match x's up to 24 bits.
 *
 *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
 *                      e0 = ilogb(z)-23
 *                      z  = scalbn(z,-e0)
 *              for i = 0,1,2
 *                      x[i] = floor(z)
 *                      z    = (z-x[i])*2**24
 *
 *
 *      y[]     ouput result in an array of double precision numbers.
 *              The dimension of y[] is:
 *                      24-bit  precision       1
 *                      53-bit  precision       2
 *                      64-bit  precision       2
 *                      113-bit precision       3
 *              The actual value is the sum of them. Thus for 113-bit
 *              precsion, one may have to do something like:
 *
 *              long double t,w,r_head, r_tail;
 *              t = (long double)y[2] + (long double)y[1];
 *              w = (long double)y[0];
 *              r_head = t+w;
 *              r_tail = w - (r_head - t);
 *
 *      e0      The exponent of x[0]
 *
 *      nx      dimension of x[]
 *
 *      prec    an interger indicating the precision:
 *                      0       24  bits (single)
 *                      1       53  bits (double)
 *                      2       64  bits (extended)
 *                      3       113 bits (quad)
 *
 *      ipio2[]
 *              integer array, contains the (24*i)-th to (24*i+23)-th
 *              bit of 2/pi after binary point. The corresponding
 *              floating value is
 *
 *                      ipio2[i] * 2^(-24(i+1)).
 *
 * External function:
 *      double scalbn(), floor();
 *
 *
 * Here is the description of some local variables:
 *
 *      jk      jk+1 is the initial number of terms of ipio2[] needed
 *              in the computation. The recommended value is 2,3,4,
 *              6 for single, double, extended,and quad.
 *
 *      jz      local integer variable indicating the number of
 *              terms of ipio2[] used.
 *
 *      jx      nx - 1
 *
 *      jv      index for pointing to the suitable ipio2[] for the
 *              computation. In general, we want
 *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
 *              is an integer. Thus
 *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
 *              Hence jv = max(0,(e0-3)/24).
 *
 *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
 *
 *      q[]     double array with integral value, representing the
 *              24-bits chunk of the product of x and 2/pi.
 *
 *      q0      the corresponding exponent of q[0]. Note that the
 *              exponent for q[i] would be q0-24*i.
 *
 *      PIo2[]  double precision array, obtained by cutting pi/2
 *              into 24 bits chunks.
 *
 *      f[]     ipio2[] in floating point
 *
 *      iq[]    integer array by breaking up q[] in 24-bits chunk.
 *
 *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
 *
 *      ih      integer. If >0 it indicats q[] is >= 0.5, hence
 *              it also indicates the *sign* of the result.
 *
 */


/*
 * Constants:
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */


static const int init_jk[] = {2,3,4,6}; /* initial value for jk */

static const double PIo2[] = {
  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
};

static const double
zeroB   = 0.0,
one     = 1.0,
two24B  = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
twon24  = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */

260
static SAFEBUF int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2) {
D
duke 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
  int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
  double z,fw,f[20],fq[20],q[20];

  /* initialize jk*/
  jk = init_jk[prec];
  jp = jk;

  /* determine jx,jv,q0, note that 3>q0 */
  jx =  nx-1;
  jv = (e0-3)/24; if(jv<0) jv=0;
  q0 =  e0-24*(jv+1);

  /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
  j = jv-jx; m = jx+jk;
  for(i=0;i<=m;i++,j++) f[i] = (j<0)? zeroB : (double) ipio2[j];

  /* compute q[0],q[1],...q[jk] */
  for (i=0;i<=jk;i++) {
    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
  }

  jz = jk;
recompute:
  /* distill q[] into iq[] reversingly */
  for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
    fw    =  (double)((int)(twon24* z));
    iq[i] =  (int)(z-two24B*fw);
    z     =  q[j-1]+fw;
  }

  /* compute n */
  z  = scalbnA(z,q0);           /* actual value of z */
  z -= 8.0*floor(z*0.125);              /* trim off integer >= 8 */
  n  = (int) z;
  z -= (double)n;
  ih = 0;
  if(q0>0) {    /* need iq[jz-1] to determine n */
    i  = (iq[jz-1]>>(24-q0)); n += i;
    iq[jz-1] -= i<<(24-q0);
    ih = iq[jz-1]>>(23-q0);
  }
  else if(q0==0) ih = iq[jz-1]>>23;
  else if(z>=0.5) ih=2;

  if(ih>0) {    /* q > 0.5 */
    n += 1; carry = 0;
    for(i=0;i<jz ;i++) {        /* compute 1-q */
      j = iq[i];
      if(carry==0) {
        if(j!=0) {
          carry = 1; iq[i] = 0x1000000- j;
        }
      } else  iq[i] = 0xffffff - j;
    }
    if(q0>0) {          /* rare case: chance is 1 in 12 */
      switch(q0) {
      case 1:
        iq[jz-1] &= 0x7fffff; break;
      case 2:
        iq[jz-1] &= 0x3fffff; break;
      }
    }
    if(ih==2) {
      z = one - z;
      if(carry!=0) z -= scalbnA(one,q0);
    }
  }

  /* check if recomputation is needed */
  if(z==zeroB) {
    j = 0;
    for (i=jz-1;i>=jk;i--) j |= iq[i];
    if(j==0) { /* need recomputation */
      for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */

      for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
        f[jx+i] = (double) ipio2[jv+i];
        for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
        q[i] = fw;
      }
      jz += k;
      goto recompute;
    }
  }

  /* chop off zero terms */
  if(z==0.0) {
    jz -= 1; q0 -= 24;
    while(iq[jz]==0) { jz--; q0-=24;}
  } else { /* break z into 24-bit if neccessary */
    z = scalbnA(z,-q0);
    if(z>=two24B) {
      fw = (double)((int)(twon24*z));
      iq[jz] = (int)(z-two24B*fw);
      jz += 1; q0 += 24;
      iq[jz] = (int) fw;
    } else iq[jz] = (int) z ;
  }

  /* convert integer "bit" chunk to floating-point value */
  fw = scalbnA(one,q0);
  for(i=jz;i>=0;i--) {
    q[i] = fw*(double)iq[i]; fw*=twon24;
  }

  /* compute PIo2[0,...,jp]*q[jz,...,0] */
  for(i=jz;i>=0;i--) {
    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
    fq[jz-i] = fw;
  }

  /* compress fq[] into y[] */
  switch(prec) {
  case 0:
    fw = 0.0;
    for (i=jz;i>=0;i--) fw += fq[i];
    y[0] = (ih==0)? fw: -fw;
    break;
  case 1:
  case 2:
    fw = 0.0;
    for (i=jz;i>=0;i--) fw += fq[i];
    y[0] = (ih==0)? fw: -fw;
    fw = fq[0]-fw;
    for (i=1;i<=jz;i++) fw += fq[i];
    y[1] = (ih==0)? fw: -fw;
    break;
  case 3:       /* painful */
    for (i=jz;i>0;i--) {
      fw      = fq[i-1]+fq[i];
      fq[i]  += fq[i-1]-fw;
      fq[i-1] = fw;
    }
    for (i=jz;i>1;i--) {
      fw      = fq[i-1]+fq[i];
      fq[i]  += fq[i-1]-fw;
      fq[i-1] = fw;
    }
    for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
    if(ih==0) {
      y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
    } else {
      y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
    }
  }
  return n&7;
}


/*
 * ====================================================
412
 * Copyright (c) 1993 Oracle and/or its affilates. All rights reserved.
D
duke 已提交
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 *
 */

/* __ieee754_rem_pio2(x,y)
 *
 * return the remainder of x rem pi/2 in y[0]+y[1]
 * use __kernel_rem_pio2()
 */

/*
 * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
 */
static const int two_over_pi[] = {
  0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
  0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
  0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
  0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
  0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
  0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
  0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
  0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
  0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
  0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
  0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
};

static const int npio2_hw[] = {
  0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
  0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
  0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
  0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
  0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
  0x404858EB, 0x404921FB,
};

/*
 * invpio2:  53 bits of 2/pi
 * pio2_1:   first  33 bit of pi/2
 * pio2_1t:  pi/2 - pio2_1
 * pio2_2:   second 33 bit of pi/2
 * pio2_2t:  pi/2 - (pio2_1+pio2_2)
 * pio2_3:   third  33 bit of pi/2
 * pio2_3t:  pi/2 - (pio2_1+pio2_2+pio2_3)
 */

static const double
zeroA =  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
half =  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
two24A =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
invpio2 =  6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
pio2_1  =  1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
pio2_1t =  6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
pio2_2  =  6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
pio2_2t =  2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
pio2_3  =  2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
pio2_3t =  8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */

476
static SAFEBUF int __ieee754_rem_pio2(double x, double *y) {
D
duke 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
  double z,w,t,r,fn;
  double tx[3];
  int e0,i,j,nx,n,ix,hx,i0;

  i0 = ((*(int*)&two24A)>>30)^1;        /* high word index */
  hx = *(i0+(int*)&x);          /* high word of x */
  ix = hx&0x7fffffff;
  if(ix<=0x3fe921fb)   /* |x| ~<= pi/4 , no need for reduction */
    {y[0] = x; y[1] = 0; return 0;}
  if(ix<0x4002d97c) {  /* |x| < 3pi/4, special case with n=+-1 */
    if(hx>0) {
      z = x - pio2_1;
      if(ix!=0x3ff921fb) {    /* 33+53 bit pi is good enough */
        y[0] = z - pio2_1t;
        y[1] = (z-y[0])-pio2_1t;
      } else {                /* near pi/2, use 33+33+53 bit pi */
        z -= pio2_2;
        y[0] = z - pio2_2t;
        y[1] = (z-y[0])-pio2_2t;
      }
      return 1;
    } else {    /* negative x */
      z = x + pio2_1;
      if(ix!=0x3ff921fb) {    /* 33+53 bit pi is good enough */
        y[0] = z + pio2_1t;
        y[1] = (z-y[0])+pio2_1t;
      } else {                /* near pi/2, use 33+33+53 bit pi */
        z += pio2_2;
        y[0] = z + pio2_2t;
        y[1] = (z-y[0])+pio2_2t;
      }
      return -1;
    }
  }
  if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
    t  = fabsd(x);
    n  = (int) (t*invpio2+half);
    fn = (double)n;
    r  = t-fn*pio2_1;
    w  = fn*pio2_1t;    /* 1st round good to 85 bit */
    if(n<32&&ix!=npio2_hw[n-1]) {
      y[0] = r-w;       /* quick check no cancellation */
    } else {
      j  = ix>>20;
      y[0] = r-w;
      i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
      if(i>16) {  /* 2nd iteration needed, good to 118 */
        t  = r;
        w  = fn*pio2_2;
        r  = t-w;
        w  = fn*pio2_2t-((t-r)-w);
        y[0] = r-w;
        i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
        if(i>49)  {     /* 3rd iteration need, 151 bits acc */
          t  = r;       /* will cover all possible cases */
          w  = fn*pio2_3;
          r  = t-w;
          w  = fn*pio2_3t-((t-r)-w);
          y[0] = r-w;
        }
      }
    }
    y[1] = (r-y[0])-w;
    if(hx<0)    {y[0] = -y[0]; y[1] = -y[1]; return -n;}
    else         return n;
  }
  /*
   * all other (large) arguments
   */
  if(ix>=0x7ff00000) {          /* x is inf or NaN */
    y[0]=y[1]=x-x; return 0;
  }
  /* set z = scalbn(|x|,ilogb(x)-23) */
  *(1-i0+(int*)&z) = *(1-i0+(int*)&x);
  e0    = (ix>>20)-1046;        /* e0 = ilogb(z)-23; */
  *(i0+(int*)&z) = ix - (e0<<20);
  for(i=0;i<2;i++) {
    tx[i] = (double)((int)(z));
    z     = (z-tx[i])*two24A;
  }
  tx[2] = z;
  nx = 3;
  while(tx[nx-1]==zeroA) nx--;  /* skip zero term */
  n  =  __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
  if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
  return n;
}


/* __kernel_sin( x, y, iy)
 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
 *
 * Algorithm
 *      1. Since sin(-x) = -sin(x), we need only to consider positive x.
 *      2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
 *      3. sin(x) is approximated by a polynomial of degree 13 on
 *         [0,pi/4]
 *                               3            13
 *              sin(x) ~ x + S1*x + ... + S6*x
 *         where
 *
 *      |sin(x)         2     4     6     8     10     12  |     -58
 *      |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
 *      |  x                                               |
 *
 *      4. sin(x+y) = sin(x) + sin'(x')*y
 *                  ~ sin(x) + (1-x*x/2)*y
 *         For better accuracy, let
 *                   3      2      2      2      2
 *              r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
 *         then                   3    2
 *              sin(x) = x + (S1*x + (x *(r-y/2)+y))
 */

static const double
S1  = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
S2  =  8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
S3  = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
S4  =  2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
S5  = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
S6  =  1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */

static double __kernel_sin(double x, double y, int iy)
{
        double z,r,v;
        int ix;
        ix = __HI(x)&0x7fffffff;        /* high word of x */
        if(ix<0x3e400000)                       /* |x| < 2**-27 */
           {if((int)x==0) return x;}            /* generate inexact */
        z       =  x*x;
        v       =  z*x;
        r       =  S2+z*(S3+z*(S4+z*(S5+z*S6)));
        if(iy==0) return x+v*(S1+z*r);
        else      return x-((z*(half*y-v*r)-y)-v*S1);
}

/*
 * __kernel_cos( x,  y )
 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 *
 * Algorithm
 *      1. Since cos(-x) = cos(x), we need only to consider positive x.
 *      2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
 *      3. cos(x) is approximated by a polynomial of degree 14 on
 *         [0,pi/4]
 *                                       4            14
 *              cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
 *         where the remez error is
 *
 *      |              2     4     6     8     10    12     14 |     -58
 *      |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
 *      |                                                      |
 *
 *                     4     6     8     10    12     14
 *      4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
 *             cos(x) = 1 - x*x/2 + r
 *         since cos(x+y) ~ cos(x) - sin(x)*y
 *                        ~ cos(x) - x*y,
 *         a correction term is necessary in cos(x) and hence
 *              cos(x+y) = 1 - (x*x/2 - (r - x*y))
 *         For better accuracy when x > 0.3, let qx = |x|/4 with
 *         the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
 *         Then
 *              cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
 *         Note that 1-qx and (x*x/2-qx) is EXACT here, and the
 *         magnitude of the latter is at least a quarter of x*x/2,
 *         thus, reducing the rounding error in the subtraction.
 */

static const double
C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */

static double __kernel_cos(double x, double y)
{
  double a,hz,z,r,qx;
  int ix;
  ix = __HI(x)&0x7fffffff;      /* ix = |x|'s high word*/
  if(ix<0x3e400000) {                   /* if x < 2**27 */
    if(((int)x)==0) return one;         /* generate inexact */
  }
  z  = x*x;
  r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
  if(ix < 0x3FD33333)                   /* if |x| < 0.3 */
    return one - (0.5*z - (z*r - x*y));
  else {
    if(ix > 0x3fe90000) {               /* x > 0.78125 */
      qx = 0.28125;
    } else {
      __HI(qx) = ix-0x00200000; /* x/4 */
      __LO(qx) = 0;
    }
    hz = 0.5*z-qx;
    a  = one-qx;
    return a - (hz - (z*r-x*y));
  }
}

/* __kernel_tan( x, y, k )
 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * Input k indicates whether tan (if k=1) or
 * -1/tan (if k= -1) is returned.
 *
 * Algorithm
 *      1. Since tan(-x) = -tan(x), we need only to consider positive x.
 *      2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
 *      3. tan(x) is approximated by a odd polynomial of degree 27 on
 *         [0,0.67434]
 *                               3             27
 *              tan(x) ~ x + T1*x + ... + T13*x
 *         where
 *
 *              |tan(x)         2     4            26   |     -59.2
 *              |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
 *              |  x                                    |
 *
 *         Note: tan(x+y) = tan(x) + tan'(x)*y
 *                        ~ tan(x) + (1+x*x)*y
 *         Therefore, for better accuracy in computing tan(x+y), let
 *                   3      2      2       2       2
 *              r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
 *         then
 *                                  3    2
 *              tan(x+y) = x + (T1*x + (x *(r+y)+y))
 *
 *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
 *              tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
 *                     = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
 */

static const double
pio4  =  7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
pio4lo=  3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
T[] =  {
  3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
  1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
  5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
  2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
  8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
  3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
  1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
  5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
  2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
  7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
  7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
 -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
  2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
};

static double __kernel_tan(double x, double y, int iy)
{
  double z,r,v,w,s;
  int ix,hx;
  hx = __HI(x);   /* high word of x */
  ix = hx&0x7fffffff;     /* high word of |x| */
  if(ix<0x3e300000) {                     /* x < 2**-28 */
    if((int)x==0) {                       /* generate inexact */
      if (((ix | __LO(x)) | (iy + 1)) == 0)
        return one / fabsd(x);
      else {
        if (iy == 1)
          return x;
        else {    /* compute -1 / (x+y) carefully */
          double a, t;

          z = w = x + y;
          __LO(z) = 0;
          v = y - (z - x);
          t = a = -one / w;
          __LO(t) = 0;
          s = one + t * z;
          return t + a * (s + t * v);
        }
      }
    }
  }
  if(ix>=0x3FE59428) {                    /* |x|>=0.6744 */
    if(hx<0) {x = -x; y = -y;}
    z = pio4-x;
    w = pio4lo-y;
    x = z+w; y = 0.0;
  }
  z       =  x*x;
  w       =  z*z;
  /* Break x^5*(T[1]+x^2*T[2]+...) into
   *    x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
   *    x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
   */
  r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
  v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
  s = z*x;
  r = y + z*(s*(r+v)+y);
  r += T[0]*s;
  w = x+r;
  if(ix>=0x3FE59428) {
    v = (double)iy;
    return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
  }
  if(iy==1) return w;
  else {          /* if allow error up to 2 ulp,
                     simply return -1.0/(x+r) here */
    /*  compute -1.0/(x+r) accurately */
    double a,t;
    z  = w;
    __LO(z) = 0;
    v  = r-(z - x);     /* z+v = r+x */
    t = a  = -1.0/w;    /* a = -1.0/w */
    __LO(t) = 0;
    s  = 1.0+t*z;
    return t+a*(s+t*v);
  }
}


//----------------------------------------------------------------------
//
// Routines for new sin/cos implementation
//
//----------------------------------------------------------------------

/* sin(x)
 * Return sine function of x.
 *
 * kernel function:
 *      __kernel_sin            ... sine function on [-pi/4,pi/4]
 *      __kernel_cos            ... cose function on [-pi/4,pi/4]
 *      __ieee754_rem_pio2      ... argument reduction routine
 *
 * Method.
 *      Let S,C and T denote the sin, cos and tan respectively on
 *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
 *      in [-pi/4 , +pi/4], and let n = k mod 4.
 *      We have
 *
 *          n        sin(x)      cos(x)        tan(x)
 *     ----------------------------------------------------------
 *          0          S           C             T
 *          1          C          -S            -1/T
 *          2         -S          -C             T
 *          3         -C           S            -1/T
 *     ----------------------------------------------------------
 *
 * Special cases:
 *      Let trig be any of sin, cos, or tan.
 *      trig(+-INF)  is NaN, with signals;
 *      trig(NaN)    is that NaN;
 *
 * Accuracy:
 *      TRIG(x) returns trig(x) nearly rounded
 */

JRT_LEAF(jdouble, SharedRuntime::dsin(jdouble x))
  double y[2],z=0.0;
  int n, ix;

  /* High word of x. */
  ix = __HI(x);

  /* |x| ~< pi/4 */
  ix &= 0x7fffffff;
  if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);

  /* sin(Inf or NaN) is NaN */
  else if (ix>=0x7ff00000) return x-x;

  /* argument reduction needed */
  else {
    n = __ieee754_rem_pio2(x,y);
    switch(n&3) {
    case 0: return  __kernel_sin(y[0],y[1],1);
    case 1: return  __kernel_cos(y[0],y[1]);
    case 2: return -__kernel_sin(y[0],y[1],1);
    default:
      return -__kernel_cos(y[0],y[1]);
    }
  }
JRT_END

/* cos(x)
 * Return cosine function of x.
 *
 * kernel function:
 *      __kernel_sin            ... sine function on [-pi/4,pi/4]
 *      __kernel_cos            ... cosine function on [-pi/4,pi/4]
 *      __ieee754_rem_pio2      ... argument reduction routine
 *
 * Method.
 *      Let S,C and T denote the sin, cos and tan respectively on
 *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
 *      in [-pi/4 , +pi/4], and let n = k mod 4.
 *      We have
 *
 *          n        sin(x)      cos(x)        tan(x)
 *     ----------------------------------------------------------
 *          0          S           C             T
 *          1          C          -S            -1/T
 *          2         -S          -C             T
 *          3         -C           S            -1/T
 *     ----------------------------------------------------------
 *
 * Special cases:
 *      Let trig be any of sin, cos, or tan.
 *      trig(+-INF)  is NaN, with signals;
 *      trig(NaN)    is that NaN;
 *
 * Accuracy:
 *      TRIG(x) returns trig(x) nearly rounded
 */

JRT_LEAF(jdouble, SharedRuntime::dcos(jdouble x))
  double y[2],z=0.0;
  int n, ix;

  /* High word of x. */
  ix = __HI(x);

  /* |x| ~< pi/4 */
  ix &= 0x7fffffff;
  if(ix <= 0x3fe921fb) return __kernel_cos(x,z);

  /* cos(Inf or NaN) is NaN */
  else if (ix>=0x7ff00000) return x-x;

  /* argument reduction needed */
  else {
    n = __ieee754_rem_pio2(x,y);
    switch(n&3) {
    case 0: return  __kernel_cos(y[0],y[1]);
    case 1: return -__kernel_sin(y[0],y[1],1);
    case 2: return -__kernel_cos(y[0],y[1]);
    default:
      return  __kernel_sin(y[0],y[1],1);
    }
  }
JRT_END

/* tan(x)
 * Return tangent function of x.
 *
 * kernel function:
 *      __kernel_tan            ... tangent function on [-pi/4,pi/4]
 *      __ieee754_rem_pio2      ... argument reduction routine
 *
 * Method.
 *      Let S,C and T denote the sin, cos and tan respectively on
 *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
 *      in [-pi/4 , +pi/4], and let n = k mod 4.
 *      We have
 *
 *          n        sin(x)      cos(x)        tan(x)
 *     ----------------------------------------------------------
 *          0          S           C             T
 *          1          C          -S            -1/T
 *          2         -S          -C             T
 *          3         -C           S            -1/T
 *     ----------------------------------------------------------
 *
 * Special cases:
 *      Let trig be any of sin, cos, or tan.
 *      trig(+-INF)  is NaN, with signals;
 *      trig(NaN)    is that NaN;
 *
 * Accuracy:
 *      TRIG(x) returns trig(x) nearly rounded
 */

JRT_LEAF(jdouble, SharedRuntime::dtan(jdouble x))
  double y[2],z=0.0;
  int n, ix;

  /* High word of x. */
  ix = __HI(x);

  /* |x| ~< pi/4 */
  ix &= 0x7fffffff;
  if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);

  /* tan(Inf or NaN) is NaN */
  else if (ix>=0x7ff00000) return x-x;            /* NaN */

  /* argument reduction needed */
  else {
    n = __ieee754_rem_pio2(x,y);
    return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
                                                     -1 -- n odd */
  }
JRT_END


#ifdef WIN32
# pragma optimize ( "", on )
#endif