vframeArray.cpp 22.2 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/*
 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_vframeArray.cpp.incl"


int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }

void vframeArrayElement::free_monitors(JavaThread* jt) {
  if (_monitors != NULL) {
     MonitorChunk* chunk = _monitors;
     _monitors = NULL;
     jt->remove_monitor_chunk(chunk);
     delete chunk;
  }
}

void vframeArrayElement::fill_in(compiledVFrame* vf) {

// Copy the information from the compiled vframe to the
// interpreter frame we will be creating to replace vf

  _method = vf->method();
  _bci    = vf->raw_bci();
47
  _reexecute = vf->should_reexecute();
D
duke 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

  int index;

  // Get the monitors off-stack

  GrowableArray<MonitorInfo*>* list = vf->monitors();
  if (list->is_empty()) {
    _monitors = NULL;
  } else {

    // Allocate monitor chunk
    _monitors = new MonitorChunk(list->length());
    vf->thread()->add_monitor_chunk(_monitors);

    // Migrate the BasicLocks from the stack to the monitor chunk
    for (index = 0; index < list->length(); index++) {
      MonitorInfo* monitor = list->at(index);
65
      assert(!monitor->owner_is_scalar_replaced(), "object should be reallocated already");
D
duke 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
      assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
      BasicObjectLock* dest = _monitors->at(index);
      dest->set_obj(monitor->owner());
      monitor->lock()->move_to(monitor->owner(), dest->lock());
    }
  }

  // Convert the vframe locals and expressions to off stack
  // values. Because we will not gc all oops can be converted to
  // intptr_t (i.e. a stack slot) and we are fine. This is
  // good since we are inside a HandleMark and the oops in our
  // collection would go away between packing them here and
  // unpacking them in unpack_on_stack.

  // First the locals go off-stack

  // FIXME this seems silly it creates a StackValueCollection
  // in order to get the size to then copy them and
  // convert the types to intptr_t size slots. Seems like it
  // could do it in place... Still uses less memory than the
  // old way though

  StackValueCollection *locs = vf->locals();
  _locals = new StackValueCollection(locs->size());
  for(index = 0; index < locs->size(); index++) {
    StackValue* value = locs->at(index);
    switch(value->type()) {
      case T_OBJECT:
94
        assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
D
duke 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        // preserve object type
        _locals->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
        break;
      case T_CONFLICT:
        // A dead local.  Will be initialized to null/zero.
        _locals->add( new StackValue());
        break;
      case T_INT:
        _locals->add( new StackValue(value->get_int()));
        break;
      default:
        ShouldNotReachHere();
    }
  }

  // Now the expressions off-stack
  // Same silliness as above

  StackValueCollection *exprs = vf->expressions();
  _expressions = new StackValueCollection(exprs->size());
  for(index = 0; index < exprs->size(); index++) {
    StackValue* value = exprs->at(index);
    switch(value->type()) {
      case T_OBJECT:
119
        assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
D
duke 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        // preserve object type
        _expressions->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
        break;
      case T_CONFLICT:
        // A dead stack element.  Will be initialized to null/zero.
        // This can occur when the compiler emits a state in which stack
        // elements are known to be dead (because of an imminent exception).
        _expressions->add( new StackValue());
        break;
      case T_INT:
        _expressions->add( new StackValue(value->get_int()));
        break;
      default:
        ShouldNotReachHere();
    }
  }
}

int unpack_counter = 0;

void vframeArrayElement::unpack_on_stack(int callee_parameters,
                                         int callee_locals,
                                         frame* caller,
                                         bool is_top_frame,
                                         int exec_mode) {
  JavaThread* thread = (JavaThread*) Thread::current();

  // Look at bci and decide on bcp and continuation pc
  address bcp;
  // C++ interpreter doesn't need a pc since it will figure out what to do when it
  // begins execution
  address pc;
152 153
  bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
                             // rather than the one associated with bcp
D
duke 已提交
154 155 156 157
  if (raw_bci() == SynchronizationEntryBCI) {
    // We are deoptimizing while hanging in prologue code for synchronized method
    bcp = method()->bcp_from(0); // first byte code
    pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
158 159 160 161
  } else if (should_reexecute()) { //reexecute this bytecode
    assert(is_top_frame, "reexecute allowed only for the top frame");
    bcp = method()->bcp_from(bci());
    pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
D
duke 已提交
162 163
  } else {
    bcp = method()->bcp_from(bci());
164 165
    pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
    use_next_mdp = true;
D
duke 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
  }
  assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");

  // Monitorenter and pending exceptions:
  //
  // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
  // because there is no safepoint at the null pointer check (it is either handled explicitly
  // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
  // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
  // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
  // the monitorenter to place it in the proper exception range.
  //
  // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
  // in which case bcp should point to the monitorenter since it is within the exception's range.

  assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
  // TIERED Must know the compiler of the deoptee QQQ
  COMPILER2_PRESENT(guarantee(*bcp != Bytecodes::_monitorenter || exec_mode != Deoptimization::Unpack_exception,
                              "shouldn't get exception during monitorenter");)

  int popframe_preserved_args_size_in_bytes = 0;
  int popframe_preserved_args_size_in_words = 0;
  if (is_top_frame) {
  JvmtiThreadState *state = thread->jvmti_thread_state();
    if (JvmtiExport::can_pop_frame() &&
        (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
      if (thread->has_pending_popframe()) {
        // Pop top frame after deoptimization
#ifndef CC_INTERP
        pc = Interpreter::remove_activation_preserving_args_entry();
#else
        // Do an uncommon trap type entry. c++ interpreter will know
        // to pop frame and preserve the args
        pc = Interpreter::deopt_entry(vtos, 0);
        use_next_mdp = false;
#endif
      } else {
        // Reexecute invoke in top frame
        pc = Interpreter::deopt_entry(vtos, 0);
        use_next_mdp = false;
        popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
        // Note: the PopFrame-related extension of the expression stack size is done in
        // Deoptimization::fetch_unroll_info_helper
        popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
      }
    } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
      // Force early return from top frame after deoptimization
#ifndef CC_INTERP
      pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
#else
     // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64)
#endif
    } else {
      // Possibly override the previous pc computation of the top (youngest) frame
      switch (exec_mode) {
      case Deoptimization::Unpack_deopt:
        // use what we've got
        break;
      case Deoptimization::Unpack_exception:
        // exception is pending
        pc = SharedRuntime::raw_exception_handler_for_return_address(pc);
        // [phh] We're going to end up in some handler or other, so it doesn't
        // matter what mdp we point to.  See exception_handler_for_exception()
        // in interpreterRuntime.cpp.
        break;
      case Deoptimization::Unpack_uncommon_trap:
      case Deoptimization::Unpack_reexecute:
        // redo last byte code
        pc  = Interpreter::deopt_entry(vtos, 0);
        use_next_mdp = false;
        break;
      default:
        ShouldNotReachHere();
      }
    }
  }

  // Setup the interpreter frame

  assert(method() != NULL, "method must exist");
  int temps = expressions()->size();

  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();

  Interpreter::layout_activation(method(),
                                 temps + callee_parameters,
                                 popframe_preserved_args_size_in_words,
                                 locks,
                                 callee_parameters,
                                 callee_locals,
                                 caller,
                                 iframe(),
                                 is_top_frame);

  // Update the pc in the frame object and overwrite the temporary pc
  // we placed in the skeletal frame now that we finally know the
  // exact interpreter address we should use.

  _frame.patch_pc(thread, pc);

  assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");

  BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
  for (int index = 0; index < locks; index++) {
    top = iframe()->previous_monitor_in_interpreter_frame(top);
    BasicObjectLock* src = _monitors->at(index);
    top->set_obj(src->obj());
    src->lock()->move_to(src->obj(), top->lock());
  }
  if (ProfileInterpreter) {
    iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
  }
  iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
  if (ProfileInterpreter) {
    methodDataOop mdo = method()->method_data();
    if (mdo != NULL) {
      int bci = iframe()->interpreter_frame_bci();
      if (use_next_mdp) ++bci;
      address mdp = mdo->bci_to_dp(bci);
      iframe()->interpreter_frame_set_mdp(mdp);
    }
  }

  // Unpack expression stack
  // If this is an intermediate frame (i.e. not top frame) then this
  // only unpacks the part of the expression stack not used by callee
  // as parameters. The callee parameters are unpacked as part of the
  // callee locals.
  int i;
  for(i = 0; i < expressions()->size(); i++) {
    StackValue *value = expressions()->at(i);
    intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
    switch(value->type()) {
      case T_INT:
        *addr = value->get_int();
        break;
      case T_OBJECT:
        *addr = value->get_int(T_OBJECT);
        break;
      case T_CONFLICT:
        // A dead stack slot.  Initialize to null in case it is an oop.
        *addr = NULL_WORD;
        break;
      default:
        ShouldNotReachHere();
    }
    if (TaggedStackInterpreter) {
      // Write tag to the stack
      iframe()->interpreter_frame_set_expression_stack_tag(i,
                                  frame::tag_for_basic_type(value->type()));
    }
  }


  // Unpack the locals
  for(i = 0; i < locals()->size(); i++) {
    StackValue *value = locals()->at(i);
    intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
    switch(value->type()) {
      case T_INT:
        *addr = value->get_int();
        break;
      case T_OBJECT:
        *addr = value->get_int(T_OBJECT);
        break;
      case T_CONFLICT:
        // A dead location. If it is an oop then we need a NULL to prevent GC from following it
        *addr = NULL_WORD;
        break;
      default:
        ShouldNotReachHere();
    }
    if (TaggedStackInterpreter) {
      // Write tag to stack
      iframe()->interpreter_frame_set_local_tag(i,
                                  frame::tag_for_basic_type(value->type()));
    }
  }

  if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
    // An interpreted frame was popped but it returns to a deoptimized
    // frame. The incoming arguments to the interpreted activation
    // were preserved in thread-local storage by the
    // remove_activation_preserving_args_entry in the interpreter; now
    // we put them back into the just-unpacked interpreter frame.
    // Note that this assumes that the locals arena grows toward lower
    // addresses.
    if (popframe_preserved_args_size_in_words != 0) {
      void* saved_args = thread->popframe_preserved_args();
      assert(saved_args != NULL, "must have been saved by interpreter");
#ifdef ASSERT
      int stack_words = Interpreter::stackElementWords();
      assert(popframe_preserved_args_size_in_words <=
             iframe()->interpreter_frame_expression_stack_size()*stack_words,
             "expression stack size should have been extended");
#endif // ASSERT
      int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
      intptr_t* base;
      if (frame::interpreter_frame_expression_stack_direction() < 0) {
        base = iframe()->interpreter_frame_expression_stack_at(top_element);
      } else {
        base = iframe()->interpreter_frame_expression_stack();
      }
      Copy::conjoint_bytes(saved_args,
                           base,
                           popframe_preserved_args_size_in_bytes);
      thread->popframe_free_preserved_args();
    }
  }

#ifndef PRODUCT
  if (TraceDeoptimization && Verbose) {
    ttyLocker ttyl;
    tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
    iframe()->print_on(tty);
    RegisterMap map(thread);
    vframe* f = vframe::new_vframe(iframe(), &map, thread);
    f->print();
    iframe()->interpreter_frame_print_on(tty);

    tty->print_cr("locals size     %d", locals()->size());
    tty->print_cr("expression size %d", expressions()->size());

    method()->print_value();
    tty->cr();
    // method()->print_codes();
  } else if (TraceDeoptimization) {
    tty->print("     ");
    method()->print_value();
    Bytecodes::Code code = Bytecodes::java_code_at(bcp);
    int bci = method()->bci_from(bcp);
    tty->print(" - %s", Bytecodes::name(code));
    tty->print(" @ bci %d ", bci);
    tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
  }
#endif // PRODUCT

  // The expression stack and locals are in the resource area don't leave
  // a dangling pointer in the vframeArray we leave around for debug
  // purposes

  _locals = _expressions = NULL;

}

int vframeArrayElement::on_stack_size(int callee_parameters,
                                      int callee_locals,
                                      bool is_top_frame,
                                      int popframe_extra_stack_expression_els) const {
  assert(method()->max_locals() == locals()->size(), "just checking");
  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
  int temps = expressions()->size();
  return Interpreter::size_activation(method(),
                                      temps + callee_parameters,
                                      popframe_extra_stack_expression_els,
                                      locks,
                                      callee_parameters,
                                      callee_locals,
                                      is_top_frame);
}



vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
                                   RegisterMap *reg_map, frame sender, frame caller, frame self) {

  // Allocate the vframeArray
  vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
                                                     sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
                                                     "vframeArray::allocate");
  result->_frames = chunk->length();
  result->_owner_thread = thread;
  result->_sender = sender;
  result->_caller = caller;
  result->_original = self;
  result->set_unroll_block(NULL); // initialize it
  result->fill_in(thread, frame_size, chunk, reg_map);
  return result;
}

void vframeArray::fill_in(JavaThread* thread,
                          int frame_size,
                          GrowableArray<compiledVFrame*>* chunk,
                          const RegisterMap *reg_map) {
  // Set owner first, it is used when adding monitor chunks

  _frame_size = frame_size;
  for(int i = 0; i < chunk->length(); i++) {
    element(i)->fill_in(chunk->at(i));
  }

  // Copy registers for callee-saved registers
  if (reg_map != NULL) {
    for(int i = 0; i < RegisterMap::reg_count; i++) {
#ifdef AMD64
      // The register map has one entry for every int (32-bit value), so
      // 64-bit physical registers have two entries in the map, one for
      // each half.  Ignore the high halves of 64-bit registers, just like
      // frame::oopmapreg_to_location does.
      //
      // [phh] FIXME: this is a temporary hack!  This code *should* work
      // correctly w/o this hack, possibly by changing RegisterMap::pd_location
      // in frame_amd64.cpp and the values of the phantom high half registers
      // in amd64.ad.
      //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
        intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
        _callee_registers[i] = src != NULL ? *src : NULL_WORD;
        //      } else {
        //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
        //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
        //      }
#else
      jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
#endif
      if (src == NULL) {
        set_location_valid(i, false);
      } else {
        set_location_valid(i, true);
        jint* dst = (jint*) register_location(i);
        *dst = *src;
      }
    }
  }
}

void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode) {
  // stack picture
  //   unpack_frame
  //   [new interpreter frames ] (frames are skeletal but walkable)
  //   caller_frame
  //
  //  This routine fills in the missing data for the skeletal interpreter frames
  //  in the above picture.

  // Find the skeletal interpreter frames to unpack into
  RegisterMap map(JavaThread::current(), false);
  // Get the youngest frame we will unpack (last to be unpacked)
  frame me = unpack_frame.sender(&map);
  int index;
  for (index = 0; index < frames(); index++ ) {
    *element(index)->iframe() = me;
    // Get the caller frame (possibly skeletal)
    me = me.sender(&map);
  }

  frame caller_frame = me;

  // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee

  // Unpack the frames from the oldest (frames() -1) to the youngest (0)

  for (index = frames() - 1; index >= 0 ; index--) {
    int callee_parameters = index == 0 ? 0 : element(index-1)->method()->size_of_parameters();
    int callee_locals     = index == 0 ? 0 : element(index-1)->method()->max_locals();
    element(index)->unpack_on_stack(callee_parameters,
                                    callee_locals,
                                    &caller_frame,
                                    index == 0,
                                    exec_mode);
    if (index == frames() - 1) {
      Deoptimization::unwind_callee_save_values(element(index)->iframe(), this);
    }
    caller_frame = *element(index)->iframe();
  }


  deallocate_monitor_chunks();
}

void vframeArray::deallocate_monitor_chunks() {
  JavaThread* jt = JavaThread::current();
  for (int index = 0; index < frames(); index++ ) {
     element(index)->free_monitors(jt);
  }
}

#ifndef PRODUCT

bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
  if (owner_thread() != thread) return false;
  int index = 0;
#if 0 // FIXME can't do this comparison

  // Compare only within vframe array.
  for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
    if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
    index++;
  }
  if (index != chunk->length()) return false;
#endif

  return true;
}

#endif

address vframeArray::register_location(int i) const {
  assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
  return (address) & _callee_registers[i];
}


#ifndef PRODUCT

// Printing

// Note: we cannot have print_on as const, as we allocate inside the method
void vframeArray::print_on_2(outputStream* st)  {
  st->print_cr(" - sp: " INTPTR_FORMAT, sp());
  st->print(" - thread: ");
  Thread::current()->print();
  st->print_cr(" - frame size: %d", frame_size());
  for (int index = 0; index < frames() ; index++ ) {
    element(index)->print(st);
  }
}

void vframeArrayElement::print(outputStream* st) {
  st->print_cr(" - interpreter_frame -> sp: ", INTPTR_FORMAT, iframe()->sp());
}

void vframeArray::print_value_on(outputStream* st) const {
  st->print_cr("vframeArray [%d] ", frames());
}


#endif