metaspace.cpp 93.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright (c) 2011, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */
#include "precompiled.hpp"
#include "gc_interface/collectedHeap.hpp"
#include "memory/binaryTreeDictionary.hpp"
27
#include "memory/freeList.hpp"
28 29 30
#include "memory/collectorPolicy.hpp"
#include "memory/filemap.hpp"
#include "memory/freeList.hpp"
31 32
#include "memory/metablock.hpp"
#include "memory/metachunk.hpp"
33 34 35 36 37 38 39 40 41 42
#include "memory/metaspace.hpp"
#include "memory/metaspaceShared.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "runtime/globals.hpp"
#include "runtime/mutex.hpp"
#include "services/memTracker.hpp"
#include "utilities/copy.hpp"
#include "utilities/debug.hpp"

43 44
typedef BinaryTreeDictionary<Metablock, FreeList> BlockTreeDictionary;
typedef BinaryTreeDictionary<Metachunk, FreeList> ChunkTreeDictionary;
45 46 47 48
// Define this macro to enable slow integrity checking of
// the free chunk lists
const bool metaspace_slow_verify = false;

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

// Parameters for stress mode testing
const uint metadata_deallocate_a_lot_block = 10;
const uint metadata_deallocate_a_lock_chunk = 3;
size_t const allocation_from_dictionary_limit = 64 * K;
const size_t metadata_chunk_initialize = 0xf7f7f7f7;
const size_t metadata_deallocate = 0xf5f5f5f5;

MetaWord* last_allocated = 0;

// Used in declarations in SpaceManager and ChunkManager
enum ChunkIndex {
  SmallIndex = 0,
  MediumIndex = 1,
  HumongousIndex = 2,
64 65
  NumberOfFreeLists = 2,
  NumberOfInUseLists = 3
66 67 68
};

static ChunkIndex next_chunk_index(ChunkIndex i) {
69
  assert(i < NumberOfInUseLists, "Out of bound");
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  return (ChunkIndex) (i+1);
}

// Originally _capacity_until_GC was set to MetaspaceSize here but
// the default MetaspaceSize before argument processing was being
// used which was not the desired value.  See the code
// in should_expand() to see how the initialization is handled
// now.
size_t MetaspaceGC::_capacity_until_GC = 0;
bool MetaspaceGC::_expand_after_GC = false;
uint MetaspaceGC::_shrink_factor = 0;
bool MetaspaceGC::_should_concurrent_collect = false;

// Blocks of space for metadata are allocated out of Metachunks.
//
// Metachunk are allocated out of MetadataVirtualspaces and once
// allocated there is no explicit link between a Metachunk and
// the MetadataVirtualspaces from which it was allocated.
//
// Each SpaceManager maintains a
// list of the chunks it is using and the current chunk.  The current
// chunk is the chunk from which allocations are done.  Space freed in
// a chunk is placed on the free list of blocks (BlockFreelist) and
// reused from there.
//
// Future modification
//
// The Metachunk can conceivable be replaced by the Chunk in
// allocation.hpp.  Note that the latter Chunk is the space for
// allocation (allocations from the chunk are out of the space in
// the Chunk after the header for the Chunk) where as Metachunks
// point to space in a VirtualSpace.  To replace Metachunks with
// Chunks, change Chunks so that they can be allocated out of a VirtualSpace.
103
size_t Metablock::_min_block_byte_size = sizeof(Metablock);
104
#ifdef ASSERT
105 106
  size_t Metablock::_overhead =
    Chunk::aligned_overhead_size(sizeof(Metablock)) / BytesPerWord;
107
#else
108
  size_t Metablock::_overhead = 0;
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
#endif


// Pointer to list of Metachunks.
class ChunkList VALUE_OBJ_CLASS_SPEC {
  // List of free chunks
  Metachunk* _head;

 public:
  // Constructor
  ChunkList() : _head(NULL) {}

  // Accessors
  Metachunk* head() { return _head; }
  void set_head(Metachunk* v) { _head = v; }

  // Link at head of the list
  void add_at_head(Metachunk* head, Metachunk* tail);
  void add_at_head(Metachunk* head);

  size_t sum_list_size();
  size_t sum_list_count();
  size_t sum_list_capacity();
};

// Manages the global free lists of chunks.
// Has three lists of free chunks, and a total size and
// count that includes all three

class ChunkManager VALUE_OBJ_CLASS_SPEC {

  // Free list of chunks of different sizes.
  //   SmallChunk
  //   MediumChunk
  //   HumongousChunk
144 145 146 147
  ChunkList _free_chunks[NumberOfFreeLists];

  //   HumongousChunk
  ChunkTreeDictionary _humongous_dictionary;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

  // ChunkManager in all lists of this type
  size_t _free_chunks_total;
  size_t _free_chunks_count;

  void dec_free_chunks_total(size_t v) {
    assert(_free_chunks_count > 0 &&
             _free_chunks_total > 0,
             "About to go negative");
    Atomic::add_ptr(-1, &_free_chunks_count);
    jlong minus_v = (jlong) - (jlong) v;
    Atomic::add_ptr(minus_v, &_free_chunks_total);
  }

  // Debug support

  size_t sum_free_chunks();
  size_t sum_free_chunks_count();

  void locked_verify_free_chunks_total();
168 169 170 171 172
  void slow_locked_verify_free_chunks_total() {
    if (metaspace_slow_verify) {
      locked_verify_free_chunks_total();
    }
  }
173
  void locked_verify_free_chunks_count();
174 175 176 177 178
  void slow_locked_verify_free_chunks_count() {
    if (metaspace_slow_verify) {
      locked_verify_free_chunks_count();
    }
  }
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  void verify_free_chunks_count();

 public:

  ChunkManager() : _free_chunks_total(0), _free_chunks_count(0) {}

  // add or delete (return) a chunk to the global freelist.
  Metachunk* chunk_freelist_allocate(size_t word_size);
  void chunk_freelist_deallocate(Metachunk* chunk);

  // Total of the space in the free chunks list
  size_t free_chunks_total();
  size_t free_chunks_total_in_bytes();

  // Number of chunks in the free chunks list
  size_t free_chunks_count();

  void inc_free_chunks_total(size_t v, size_t count = 1) {
    Atomic::add_ptr(count, &_free_chunks_count);
    Atomic::add_ptr(v, &_free_chunks_total);
  }
  ChunkList* free_medium_chunks() { return &_free_chunks[1]; }
  ChunkList* free_small_chunks() { return &_free_chunks[0]; }
202 203 204
  ChunkTreeDictionary* humongous_dictionary() {
    return &_humongous_dictionary;
  }
205 206 207 208 209 210 211 212 213 214 215 216 217

  ChunkList* free_chunks(ChunkIndex index);

  // Returns the list for the given chunk word size.
  ChunkList* find_free_chunks_list(size_t word_size);

  // Add and remove from a list by size.  Selects
  // list based on size of chunk.
  void free_chunks_put(Metachunk* chuck);
  Metachunk* free_chunks_get(size_t chunk_word_size);

  // Debug support
  void verify();
218 219 220 221 222
  void slow_verify() {
    if (metaspace_slow_verify) {
      verify();
    }
  }
223
  void locked_verify();
224 225 226 227 228
  void slow_locked_verify() {
    if (metaspace_slow_verify) {
      locked_verify();
    }
  }
229 230 231 232
  void verify_free_chunks_total();

  void locked_print_free_chunks(outputStream* st);
  void locked_print_sum_free_chunks(outputStream* st);
233 234

  void print_on(outputStream* st);
235 236 237 238 239 240
};


// Used to manage the free list of Metablocks (a block corresponds
// to the allocation of a quantum of metadata).
class BlockFreelist VALUE_OBJ_CLASS_SPEC {
241 242
  BlockTreeDictionary* _dictionary;
  static Metablock* initialize_free_chunk(MetaWord* p, size_t word_size);
243 244

  // Accessors
245
  BlockTreeDictionary* dictionary() const { return _dictionary; }
246 247 248 249 250 251

 public:
  BlockFreelist();
  ~BlockFreelist();

  // Get and return a block to the free list
252 253
  MetaWord* get_block(size_t word_size);
  void return_block(MetaWord* p, size_t word_size);
254

255 256
  size_t total_size() {
  if (dictionary() == NULL) {
257
    return 0;
258 259
  } else {
    return dictionary()->total_size();
260
  }
261
}
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524

  void print_on(outputStream* st) const;
};

class VirtualSpaceNode : public CHeapObj<mtClass> {
  friend class VirtualSpaceList;

  // Link to next VirtualSpaceNode
  VirtualSpaceNode* _next;

  // total in the VirtualSpace
  MemRegion _reserved;
  ReservedSpace _rs;
  VirtualSpace _virtual_space;
  MetaWord* _top;

  // Convenience functions for logical bottom and end
  MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
  MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }

  // Convenience functions to access the _virtual_space
  char* low()  const { return virtual_space()->low(); }
  char* high() const { return virtual_space()->high(); }

 public:

  VirtualSpaceNode(size_t byte_size);
  VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs) {}
  ~VirtualSpaceNode();

  // address of next available space in _virtual_space;
  // Accessors
  VirtualSpaceNode* next() { return _next; }
  void set_next(VirtualSpaceNode* v) { _next = v; }

  void set_reserved(MemRegion const v) { _reserved = v; }
  void set_top(MetaWord* v) { _top = v; }

  // Accessors
  MemRegion* reserved() { return &_reserved; }
  VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }

  // Returns true if "word_size" is available in the virtual space
  bool is_available(size_t word_size) { return _top + word_size <= end(); }

  MetaWord* top() const { return _top; }
  void inc_top(size_t word_size) { _top += word_size; }

  // used and capacity in this single entry in the list
  size_t used_words_in_vs() const;
  size_t capacity_words_in_vs() const;

  bool initialize();

  // get space from the virtual space
  Metachunk* take_from_committed(size_t chunk_word_size);

  // Allocate a chunk from the virtual space and return it.
  Metachunk* get_chunk_vs(size_t chunk_word_size);
  Metachunk* get_chunk_vs_with_expand(size_t chunk_word_size);

  // Expands/shrinks the committed space in a virtual space.  Delegates
  // to Virtualspace
  bool expand_by(size_t words, bool pre_touch = false);
  bool shrink_by(size_t words);

  // Debug support
  static void verify_virtual_space_total();
  static void verify_virtual_space_count();
  void mangle();

  void print_on(outputStream* st) const;
};

  // byte_size is the size of the associated virtualspace.
VirtualSpaceNode::VirtualSpaceNode(size_t byte_size) : _top(NULL), _next(NULL), _rs(0) {
  // This allocates memory with mmap.  For DumpSharedspaces, allocate the
  // space at low memory so that other shared images don't conflict.
  // This is the same address as memory needed for UseCompressedOops but
  // compressed oops don't work with CDS (offsets in metadata are wrong), so
  // borrow the same address.
  if (DumpSharedSpaces) {
    char* shared_base = (char*)HeapBaseMinAddress;
    _rs = ReservedSpace(byte_size, 0, false, shared_base, 0);
    if (_rs.is_reserved()) {
      assert(_rs.base() == shared_base, "should match");
    } else {
      // If we are dumping the heap, then allocate a wasted block of address
      // space in order to push the heap to a lower address.  This extra
      // address range allows for other (or larger) libraries to be loaded
      // without them occupying the space required for the shared spaces.
      uintx reserved = 0;
      uintx block_size = 64*1024*1024;
      while (reserved < SharedDummyBlockSize) {
        char* dummy = os::reserve_memory(block_size);
        reserved += block_size;
      }
      _rs = ReservedSpace(byte_size);
    }
    MetaspaceShared::set_shared_rs(&_rs);
  } else {
    _rs = ReservedSpace(byte_size);
  }

  MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
}

// List of VirtualSpaces for metadata allocation.
// It has a  _next link for singly linked list and a MemRegion
// for total space in the VirtualSpace.
class VirtualSpaceList : public CHeapObj<mtClass> {
  friend class VirtualSpaceNode;

  enum VirtualSpaceSizes {
    VirtualSpaceSize = 256 * K
  };

  // Global list of virtual spaces
  // Head of the list
  VirtualSpaceNode* _virtual_space_list;
  // virtual space currently being used for allocations
  VirtualSpaceNode* _current_virtual_space;
  // Free chunk list for all other metadata
  ChunkManager      _chunk_manager;

  // Can this virtual list allocate >1 spaces?  Also, used to determine
  // whether to allocate unlimited small chunks in this virtual space
  bool _is_class;
  bool can_grow() const { return !is_class() || !UseCompressedKlassPointers; }

  // Sum of space in all virtual spaces and number of virtual spaces
  size_t _virtual_space_total;
  size_t _virtual_space_count;

  ~VirtualSpaceList();

  VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }

  void set_virtual_space_list(VirtualSpaceNode* v) {
    _virtual_space_list = v;
  }
  void set_current_virtual_space(VirtualSpaceNode* v) {
    _current_virtual_space = v;
  }

  void link_vs(VirtualSpaceNode* new_entry, size_t vs_word_size);

  // Get another virtual space and add it to the list.  This
  // is typically prompted by a failed attempt to allocate a chunk
  // and is typically followed by the allocation of a chunk.
  bool grow_vs(size_t vs_word_size);

 public:
  VirtualSpaceList(size_t word_size);
  VirtualSpaceList(ReservedSpace rs);

  Metachunk* get_new_chunk(size_t word_size, size_t grow_chunks_by_words);

  VirtualSpaceNode* current_virtual_space() {
    return _current_virtual_space;
  }

  ChunkManager* chunk_manager() { return &_chunk_manager; }
  bool is_class() const { return _is_class; }

  // Allocate the first virtualspace.
  void initialize(size_t word_size);

  size_t virtual_space_total() { return _virtual_space_total; }
  void inc_virtual_space_total(size_t v) {
    Atomic::add_ptr(v, &_virtual_space_total);
  }

  size_t virtual_space_count() { return _virtual_space_count; }
  void inc_virtual_space_count() {
    Atomic::inc_ptr(&_virtual_space_count);
  }

  // Used and capacity in the entire list of virtual spaces.
  // These are global values shared by all Metaspaces
  size_t capacity_words_sum();
  size_t capacity_bytes_sum() { return capacity_words_sum() * BytesPerWord; }
  size_t used_words_sum();
  size_t used_bytes_sum() { return used_words_sum() * BytesPerWord; }

  bool contains(const void *ptr);

  void print_on(outputStream* st) const;

  class VirtualSpaceListIterator : public StackObj {
    VirtualSpaceNode* _virtual_spaces;
   public:
    VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
      _virtual_spaces(virtual_spaces) {}

    bool repeat() {
      return _virtual_spaces != NULL;
    }

    VirtualSpaceNode* get_next() {
      VirtualSpaceNode* result = _virtual_spaces;
      if (_virtual_spaces != NULL) {
        _virtual_spaces = _virtual_spaces->next();
      }
      return result;
    }
  };
};

class Metadebug : AllStatic {
  // Debugging support for Metaspaces
  static int _deallocate_block_a_lot_count;
  static int _deallocate_chunk_a_lot_count;
  static int _allocation_fail_alot_count;

 public:
  static int deallocate_block_a_lot_count() {
    return _deallocate_block_a_lot_count;
  }
  static void set_deallocate_block_a_lot_count(int v) {
    _deallocate_block_a_lot_count = v;
  }
  static void inc_deallocate_block_a_lot_count() {
    _deallocate_block_a_lot_count++;
  }
  static int deallocate_chunk_a_lot_count() {
    return _deallocate_chunk_a_lot_count;
  }
  static void reset_deallocate_chunk_a_lot_count() {
    _deallocate_chunk_a_lot_count = 1;
  }
  static void inc_deallocate_chunk_a_lot_count() {
    _deallocate_chunk_a_lot_count++;
  }

  static void init_allocation_fail_alot_count();
#ifdef ASSERT
  static bool test_metadata_failure();
#endif

  static void deallocate_chunk_a_lot(SpaceManager* sm,
                                     size_t chunk_word_size);
  static void deallocate_block_a_lot(SpaceManager* sm,
                                     size_t chunk_word_size);

};

int Metadebug::_deallocate_block_a_lot_count = 0;
int Metadebug::_deallocate_chunk_a_lot_count = 0;
int Metadebug::_allocation_fail_alot_count = 0;

//  SpaceManager - used by Metaspace to handle allocations
class SpaceManager : public CHeapObj<mtClass> {
  friend class Metaspace;
  friend class Metadebug;

 private:
  // protects allocations and contains.
  Mutex* const _lock;

  // List of chunks in use by this SpaceManager.  Allocations
  // are done from the current chunk.  The list is used for deallocating
  // chunks when the SpaceManager is freed.
525
  Metachunk* _chunks_in_use[NumberOfInUseLists];
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
  Metachunk* _current_chunk;

  // Virtual space where allocation comes from.
  VirtualSpaceList* _vs_list;

  // Number of small chunks to allocate to a manager
  // If class space manager, small chunks are unlimited
  static uint const _small_chunk_limit;
  bool has_small_chunk_limit() { return !vs_list()->is_class(); }

  // Sum of all space in allocated chunks
  size_t _allocation_total;

  // Free lists of blocks are per SpaceManager since they
  // are assumed to be in chunks in use by the SpaceManager
  // and all chunks in use by a SpaceManager are freed when
  // the class loader using the SpaceManager is collected.
  BlockFreelist _block_freelists;

  // protects virtualspace and chunk expansions
  static const char*  _expand_lock_name;
  static const int    _expand_lock_rank;
  static Mutex* const _expand_lock;

  // Accessors
  Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
  void set_chunks_in_use(ChunkIndex index, Metachunk* v) { _chunks_in_use[index] = v; }

  BlockFreelist* block_freelists() const {
    return (BlockFreelist*) &_block_freelists;
  }

  VirtualSpaceList* vs_list() const    { return _vs_list; }

  Metachunk* current_chunk() const { return _current_chunk; }
  void set_current_chunk(Metachunk* v) {
    _current_chunk = v;
  }

  Metachunk* find_current_chunk(size_t word_size);

  // Add chunk to the list of chunks in use
  void add_chunk(Metachunk* v, bool make_current);

  Mutex* lock() const { return _lock; }

 public:
  SpaceManager(Mutex* lock, VirtualSpaceList* vs_list);
  ~SpaceManager();

  enum ChunkSizes {    // in words.
    SmallChunk = 512,
    MediumChunk = 8 * K,
    MediumChunkBunch = 4 * MediumChunk
  };

  // Accessors
  size_t allocation_total() const { return _allocation_total; }
  void inc_allocation_total(size_t v) { Atomic::add_ptr(v, &_allocation_total); }
  static bool is_humongous(size_t word_size) { return word_size > MediumChunk; }

  static Mutex* expand_lock() { return _expand_lock; }

  size_t sum_capacity_in_chunks_in_use() const;
  size_t sum_used_in_chunks_in_use() const;
  size_t sum_free_in_chunks_in_use() const;
  size_t sum_waste_in_chunks_in_use() const;
  size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;

  size_t sum_count_in_chunks_in_use();
  size_t sum_count_in_chunks_in_use(ChunkIndex i);

  // Block allocation and deallocation.
  // Allocates a block from the current chunk
  MetaWord* allocate(size_t word_size);

  // Helper for allocations
603
  MetaWord* allocate_work(size_t word_size);
604 605

  // Returns a block to the per manager freelist
606
  void deallocate(MetaWord* p, size_t word_size);
607 608 609 610 611 612 613 614

  // Based on the allocation size and a minimum chunk size,
  // returned chunk size (for expanding space for chunk allocation).
  size_t calc_chunk_size(size_t allocation_word_size);

  // Called when an allocation from the current chunk fails.
  // Gets a new chunk (may require getting a new virtual space),
  // and allocates from that chunk.
615
  MetaWord* grow_and_allocate(size_t word_size);
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

  // debugging support.

  void dump(outputStream* const out) const;
  void print_on(outputStream* st) const;
  void locked_print_chunks_in_use_on(outputStream* st) const;

  void verify();
#ifdef ASSERT
  void mangle_freed_chunks();
  void verify_allocation_total();
#endif
};

uint const SpaceManager::_small_chunk_limit = 4;

632 633


634 635 636 637 638 639 640 641 642 643 644 645 646 647
const char* SpaceManager::_expand_lock_name =
  "SpaceManager chunk allocation lock";
const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
Mutex* const SpaceManager::_expand_lock =
  new Mutex(SpaceManager::_expand_lock_rank,
            SpaceManager::_expand_lock_name,
            Mutex::_allow_vm_block_flag);

size_t Metachunk::_overhead =
  Chunk::aligned_overhead_size(sizeof(Metachunk)) / BytesPerWord;

// New blocks returned by the Metaspace are zero initialized.
// We should fix the constructors to not assume this instead.
Metablock* Metablock::initialize(MetaWord* p, size_t word_size) {
648 649 650 651
  if (p == NULL) {
    return NULL;
  }

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
  Metablock* result = (Metablock*) p;

  // Clear the memory
  Copy::fill_to_aligned_words((HeapWord*)result, word_size);
#ifdef ASSERT
  result->set_word_size(word_size);
#endif
  return result;
}

// Metachunk methods

Metachunk* Metachunk::initialize(MetaWord* ptr, size_t word_size) {
  // Set bottom, top, and end.  Allow space for the Metachunk itself
  Metachunk* chunk = (Metachunk*) ptr;

  MetaWord* chunk_bottom = ptr + _overhead;
  chunk->set_bottom(ptr);
  chunk->set_top(chunk_bottom);
  MetaWord* chunk_end = ptr + word_size;
  assert(chunk_end > chunk_bottom, "Chunk must be too small");
  chunk->set_end(chunk_end);
  chunk->set_next(NULL);
  chunk->set_word_size(word_size);
#ifdef ASSERT
  size_t data_word_size = pointer_delta(chunk_end, chunk_bottom, sizeof(MetaWord));
  Copy::fill_to_words((HeapWord*) chunk_bottom, data_word_size, metadata_chunk_initialize);
#endif
  return chunk;
}


684 685
MetaWord* Metachunk::allocate(size_t word_size) {
  MetaWord* result = NULL;
686 687
  // If available, bump the pointer to allocate.
  if (free_word_size() >= word_size) {
688
    result = _top;
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
    _top = _top + word_size;
  }
  return result;
}

// _bottom points to the start of the chunk including the overhead.
size_t Metachunk::used_word_size() {
  return pointer_delta(_top, _bottom, sizeof(MetaWord));
}

size_t Metachunk::free_word_size() {
  return pointer_delta(_end, _top, sizeof(MetaWord));
}

size_t Metachunk::capacity_word_size() {
  return pointer_delta(_end, _bottom, sizeof(MetaWord));
}

void Metachunk::print_on(outputStream* st) const {
  st->print_cr("Metachunk:"
               " bottom " PTR_FORMAT " top " PTR_FORMAT
               " end " PTR_FORMAT " size " SIZE_FORMAT,
               bottom(), top(), end(), word_size());
}

714 715 716 717 718 719 720 721 722
#ifdef ASSERT
void Metachunk::mangle() {
  // Mangle the payload of the chunk and not the links that
  // maintain list of chunks.
  HeapWord* start = (HeapWord*)(bottom() + overhead());
  size_t word_size = capacity_word_size() - overhead();
  Copy::fill_to_words(start, word_size, metadata_chunk_initialize);
}
#endif // ASSERT
723 724 725 726 727

void Metachunk::verify() {
#ifdef ASSERT
  // Cannot walk through the blocks unless the blocks have
  // headers with sizes.
728 729 730 731 732 733 734
  assert(_bottom <= _top &&
         _top <= _end,
         "Chunk has been smashed");
  assert(SpaceManager::is_humongous(_word_size) ||
         _word_size == SpaceManager::MediumChunk ||
         _word_size == SpaceManager::SmallChunk,
         "Chunk size is wrong");
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
#endif
  return;
}

// BlockFreelist methods

BlockFreelist::BlockFreelist() : _dictionary(NULL) {}

BlockFreelist::~BlockFreelist() {
  if (_dictionary != NULL) {
    if (Verbose && TraceMetadataChunkAllocation) {
      _dictionary->print_free_lists(gclog_or_tty);
    }
    delete _dictionary;
  }
}

752 753 754 755 756
Metablock* BlockFreelist::initialize_free_chunk(MetaWord* p, size_t word_size) {
  Metablock* block = (Metablock*) p;
  block->set_word_size(word_size);
  block->set_prev(NULL);
  block->set_next(NULL);
757 758 759 760

  return block;
}

761 762
void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
  Metablock* free_chunk = initialize_free_chunk(p, word_size);
763
  if (dictionary() == NULL) {
764
   _dictionary = new BlockTreeDictionary();
765
  }
766
  dictionary()->return_chunk(free_chunk);
767 768
}

769
MetaWord* BlockFreelist::get_block(size_t word_size) {
770 771 772 773
  if (dictionary() == NULL) {
    return NULL;
  }

774 775
  if (word_size < TreeChunk<Metablock, FreeList>::min_size()) {
    // Dark matter.  Too small for dictionary.
776 777 778
    return NULL;
  }

779 780 781 782 783 784 785
  Metablock* free_block =
    dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::exactly);
  if (free_block == NULL) {
    return NULL;
  }

  return (MetaWord*) free_block;
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
}

void BlockFreelist::print_on(outputStream* st) const {
  if (dictionary() == NULL) {
    return;
  }
  dictionary()->print_free_lists(st);
}

// VirtualSpaceNode methods

VirtualSpaceNode::~VirtualSpaceNode() {
  _rs.release();
}

size_t VirtualSpaceNode::used_words_in_vs() const {
  return pointer_delta(top(), bottom(), sizeof(MetaWord));
}

// Space committed in the VirtualSpace
size_t VirtualSpaceNode::capacity_words_in_vs() const {
  return pointer_delta(end(), bottom(), sizeof(MetaWord));
}


// Allocates the chunk from the virtual space only.
// This interface is also used internally for debugging.  Not all
// chunks removed here are necessarily used for allocation.
Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
  // Bottom of the new chunk
  MetaWord* chunk_limit = top();
  assert(chunk_limit != NULL, "Not safe to call this method");

  if (!is_available(chunk_word_size)) {
    if (TraceMetadataChunkAllocation) {
      tty->print("VirtualSpaceNode::take_from_committed() not available %d words ", chunk_word_size);
      // Dump some information about the virtual space that is nearly full
      print_on(tty);
    }
    return NULL;
  }

  // Take the space  (bump top on the current virtual space).
  inc_top(chunk_word_size);

  // Point the chunk at the space
  Metachunk* result = Metachunk::initialize(chunk_limit, chunk_word_size);
  return result;
}


// Expand the virtual space (commit more of the reserved space)
bool VirtualSpaceNode::expand_by(size_t words, bool pre_touch) {
  size_t bytes = words * BytesPerWord;
  bool result =  virtual_space()->expand_by(bytes, pre_touch);
  if (TraceMetavirtualspaceAllocation && !result) {
    gclog_or_tty->print_cr("VirtualSpaceNode::expand_by() failed "
                           "for byte size " SIZE_FORMAT, bytes);
    virtual_space()->print();
  }
  return result;
}

// Shrink the virtual space (commit more of the reserved space)
bool VirtualSpaceNode::shrink_by(size_t words) {
  size_t bytes = words * BytesPerWord;
  virtual_space()->shrink_by(bytes);
  return true;
}

// Add another chunk to the chunk list.

Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
  Metachunk* result = NULL;

  return take_from_committed(chunk_word_size);
}

Metachunk* VirtualSpaceNode::get_chunk_vs_with_expand(size_t chunk_word_size) {
  assert_lock_strong(SpaceManager::expand_lock());

  Metachunk* new_chunk = get_chunk_vs(chunk_word_size);

  if (new_chunk == NULL) {
    // Only a small part of the virtualspace is committed when first
    // allocated so committing more here can be expected.
    size_t page_size_words = os::vm_page_size() / BytesPerWord;
    size_t aligned_expand_vs_by_words = align_size_up(chunk_word_size,
                                                    page_size_words);
    expand_by(aligned_expand_vs_by_words, false);
    new_chunk = get_chunk_vs(chunk_word_size);
  }
  return new_chunk;
}

bool VirtualSpaceNode::initialize() {

  if (!_rs.is_reserved()) {
    return false;
  }

  // Commit only 1 page instead of the whole reserved space _rs.size()
  size_t committed_byte_size = os::vm_page_size();
  bool result = virtual_space()->initialize(_rs, committed_byte_size);
  if (result) {
    set_top((MetaWord*)virtual_space()->low());
    set_reserved(MemRegion((HeapWord*)_rs.base(),
                 (HeapWord*)(_rs.base() + _rs.size())));

896 897 898 899 900 901 902 903
    assert(reserved()->start() == (HeapWord*) _rs.base(),
      err_msg("Reserved start was not set properly " PTR_FORMAT
        " != " PTR_FORMAT, reserved()->start(), _rs.base()));
    assert(reserved()->word_size() == _rs.size() / BytesPerWord,
      err_msg("Reserved size was not set properly " SIZE_FORMAT
        " != " SIZE_FORMAT, reserved()->word_size(),
        _rs.size() / BytesPerWord));
  }
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

  return result;
}

void VirtualSpaceNode::print_on(outputStream* st) const {
  size_t used = used_words_in_vs();
  size_t capacity = capacity_words_in_vs();
  VirtualSpace* vs = virtual_space();
  st->print_cr("   space @ " PTR_FORMAT " " SIZE_FORMAT "K, %3d%% used "
           "[" PTR_FORMAT ", " PTR_FORMAT ", "
           PTR_FORMAT ", " PTR_FORMAT ")",
           vs, capacity / K, used * 100 / capacity,
           bottom(), top(), end(),
           vs->high_boundary());
}

void VirtualSpaceNode::mangle() {
  size_t word_size = capacity_words_in_vs();
  Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
}

// VirtualSpaceList methods
// Space allocated from the VirtualSpace

VirtualSpaceList::~VirtualSpaceList() {
  VirtualSpaceListIterator iter(virtual_space_list());
  while (iter.repeat()) {
    VirtualSpaceNode* vsl = iter.get_next();
    delete vsl;
  }
}

size_t VirtualSpaceList::used_words_sum() {
  size_t allocated_by_vs = 0;
  VirtualSpaceListIterator iter(virtual_space_list());
  while (iter.repeat()) {
    VirtualSpaceNode* vsl = iter.get_next();
    // Sum used region [bottom, top) in each virtualspace
    allocated_by_vs += vsl->used_words_in_vs();
  }
  assert(allocated_by_vs >= chunk_manager()->free_chunks_total(),
    err_msg("Total in free chunks " SIZE_FORMAT
            " greater than total from virtual_spaces " SIZE_FORMAT,
            allocated_by_vs, chunk_manager()->free_chunks_total()));
  size_t used =
    allocated_by_vs - chunk_manager()->free_chunks_total();
  return used;
}

// Space available in all MetadataVirtualspaces allocated
// for metadata.  This is the upper limit on the capacity
// of chunks allocated out of all the MetadataVirtualspaces.
size_t VirtualSpaceList::capacity_words_sum() {
  size_t capacity = 0;
  VirtualSpaceListIterator iter(virtual_space_list());
  while (iter.repeat()) {
    VirtualSpaceNode* vsl = iter.get_next();
    capacity += vsl->capacity_words_in_vs();
  }
  return capacity;
}

VirtualSpaceList::VirtualSpaceList(size_t word_size ) :
                                   _is_class(false),
                                   _virtual_space_list(NULL),
                                   _current_virtual_space(NULL),
                                   _virtual_space_total(0),
                                   _virtual_space_count(0) {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
  bool initialization_succeeded = grow_vs(word_size);

  assert(initialization_succeeded,
    " VirtualSpaceList initialization should not fail");
}

VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
                                   _is_class(true),
                                   _virtual_space_list(NULL),
                                   _current_virtual_space(NULL),
                                   _virtual_space_total(0),
                                   _virtual_space_count(0) {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                   Mutex::_no_safepoint_check_flag);
  VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
  bool succeeded = class_entry->initialize();
  assert(succeeded, " VirtualSpaceList initialization should not fail");
  link_vs(class_entry, rs.size()/BytesPerWord);
}

// Allocate another meta virtual space and add it to the list.
bool VirtualSpaceList::grow_vs(size_t vs_word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
  if (vs_word_size == 0) {
    return false;
  }
  // Reserve the space
  size_t vs_byte_size = vs_word_size * BytesPerWord;
  assert(vs_byte_size % os::vm_page_size() == 0, "Not aligned");

  // Allocate the meta virtual space and initialize it.
  VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
  if (!new_entry->initialize()) {
    delete new_entry;
    return false;
  } else {
    link_vs(new_entry, vs_word_size);
    return true;
  }
}

void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry, size_t vs_word_size) {
  if (virtual_space_list() == NULL) {
      set_virtual_space_list(new_entry);
  } else {
    current_virtual_space()->set_next(new_entry);
  }
  set_current_virtual_space(new_entry);
  inc_virtual_space_total(vs_word_size);
  inc_virtual_space_count();
#ifdef ASSERT
  new_entry->mangle();
#endif
  if (TraceMetavirtualspaceAllocation && Verbose) {
    VirtualSpaceNode* vsl = current_virtual_space();
    vsl->print_on(tty);
  }
}

Metachunk* VirtualSpaceList::get_new_chunk(size_t word_size,
                                           size_t grow_chunks_by_words) {

  // Get a chunk from the chunk freelist
  Metachunk* next = chunk_manager()->chunk_freelist_allocate(grow_chunks_by_words);

  // Allocate a chunk out of the current virtual space.
  if (next == NULL) {
    next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
  }

  if (next == NULL) {
    // Not enough room in current virtual space.  Try to commit
    // more space.
    size_t expand_vs_by_words = MAX2((size_t)SpaceManager::MediumChunkBunch,
                                       grow_chunks_by_words);
    size_t page_size_words = os::vm_page_size() / BytesPerWord;
    size_t aligned_expand_vs_by_words = align_size_up(expand_vs_by_words,
                                                        page_size_words);
    bool vs_expanded =
      current_virtual_space()->expand_by(aligned_expand_vs_by_words, false);
    if (!vs_expanded) {
      // Should the capacity of the metaspaces be expanded for
      // this allocation?  If it's the virtual space for classes and is
      // being used for CompressedHeaders, don't allocate a new virtualspace.
      if (can_grow() && MetaspaceGC::should_expand(this, word_size)) {
        // Get another virtual space.
          size_t grow_vs_words =
            MAX2((size_t)VirtualSpaceSize, aligned_expand_vs_by_words);
        if (grow_vs(grow_vs_words)) {
          // Got it.  It's on the list now.  Get a chunk from it.
          next = current_virtual_space()->get_chunk_vs_with_expand(grow_chunks_by_words);
        }
        if (TraceMetadataHumongousAllocation && SpaceManager::is_humongous(word_size)) {
          gclog_or_tty->print_cr("  aligned_expand_vs_by_words " PTR_FORMAT,
                                 aligned_expand_vs_by_words);
          gclog_or_tty->print_cr("  grow_vs_words " PTR_FORMAT,
                                 grow_vs_words);
        }
      } else {
        // Allocation will fail and induce a GC
        if (TraceMetadataChunkAllocation && Verbose) {
          gclog_or_tty->print_cr("VirtualSpaceList::get_new_chunk():"
            " Fail instead of expand the metaspace");
        }
      }
    } else {
      // The virtual space expanded, get a new chunk
      next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
      assert(next != NULL, "Just expanded, should succeed");
    }
  }

  return next;
}

void VirtualSpaceList::print_on(outputStream* st) const {
  if (TraceMetadataChunkAllocation && Verbose) {
    VirtualSpaceListIterator iter(virtual_space_list());
    while (iter.repeat()) {
      VirtualSpaceNode* node = iter.get_next();
      node->print_on(st);
    }
  }
}

#ifndef PRODUCT
bool VirtualSpaceList::contains(const void *ptr) {
  VirtualSpaceNode* list = virtual_space_list();
  VirtualSpaceListIterator iter(list);
  while (iter.repeat()) {
    VirtualSpaceNode* node = iter.get_next();
    if (node->reserved()->contains(ptr)) {
      return true;
    }
  }
  return false;
}
#endif // PRODUCT


// MetaspaceGC methods

// VM_CollectForMetadataAllocation is the vm operation used to GC.
// Within the VM operation after the GC the attempt to allocate the metadata
// should succeed.  If the GC did not free enough space for the metaspace
// allocation, the HWM is increased so that another virtualspace will be
// allocated for the metadata.  With perm gen the increase in the perm
// gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion.  The
// metaspace policy uses those as the small and large steps for the HWM.
//
// After the GC the compute_new_size() for MetaspaceGC is called to
// resize the capacity of the metaspaces.  The current implementation
// is based on the flags MinHeapFreeRatio and MaxHeapFreeRatio used
// to resize the Java heap by some GC's.  New flags can be implemented
// if really needed.  MinHeapFreeRatio is used to calculate how much
// free space is desirable in the metaspace capacity to decide how much
// to increase the HWM.  MaxHeapFreeRatio is used to decide how much
// free space is desirable in the metaspace capacity before decreasing
// the HWM.

// Calculate the amount to increase the high water mark (HWM).
// Increase by a minimum amount (MinMetaspaceExpansion) so that
// another expansion is not requested too soon.  If that is not
// enough to satisfy the allocation (i.e. big enough for a word_size
// allocation), increase by MaxMetaspaceExpansion.  If that is still
// not enough, expand by the size of the allocation (word_size) plus
// some.
size_t MetaspaceGC::delta_capacity_until_GC(size_t word_size) {
  size_t before_inc = MetaspaceGC::capacity_until_GC();
  size_t min_delta_words = MinMetaspaceExpansion / BytesPerWord;
  size_t max_delta_words = MaxMetaspaceExpansion / BytesPerWord;
  size_t page_size_words = os::vm_page_size() / BytesPerWord;
  size_t size_delta_words = align_size_up(word_size, page_size_words);
  size_t delta_words = MAX2(size_delta_words, min_delta_words);
  if (delta_words > min_delta_words) {
    // Don't want to hit the high water mark on the next
    // allocation so make the delta greater than just enough
    // for this allocation.
    delta_words = MAX2(delta_words, max_delta_words);
    if (delta_words > max_delta_words) {
      // This allocation is large but the next ones are probably not
      // so increase by the minimum.
      delta_words = delta_words + min_delta_words;
    }
  }
  return delta_words;
}

bool MetaspaceGC::should_expand(VirtualSpaceList* vsl, size_t word_size) {

  // Class virtual space should always be expanded.  Call GC for the other
  // metadata virtual space.
  if (vsl == Metaspace::class_space_list()) return true;

  // If the user wants a limit, impose one.
  size_t max_metaspace_size_words = MaxMetaspaceSize / BytesPerWord;
  size_t metaspace_size_words = MetaspaceSize / BytesPerWord;
  if (!FLAG_IS_DEFAULT(MaxMetaspaceSize) &&
      vsl->capacity_words_sum() >= max_metaspace_size_words) {
    return false;
  }

  // If this is part of an allocation after a GC, expand
  // unconditionally.
  if(MetaspaceGC::expand_after_GC()) {
    return true;
  }

  // If the capacity is below the minimum capacity, allow the
  // expansion.  Also set the high-water-mark (capacity_until_GC)
  // to that minimum capacity so that a GC will not be induced
  // until that minimum capacity is exceeded.
  if (vsl->capacity_words_sum() < metaspace_size_words ||
      capacity_until_GC() == 0) {
    set_capacity_until_GC(metaspace_size_words);
    return true;
  } else {
    if (vsl->capacity_words_sum() < capacity_until_GC()) {
      return true;
    } else {
      if (TraceMetadataChunkAllocation && Verbose) {
        gclog_or_tty->print_cr("  allocation request size " SIZE_FORMAT
                        "  capacity_until_GC " SIZE_FORMAT
                        "  capacity_words_sum " SIZE_FORMAT
                        "  used_words_sum " SIZE_FORMAT
                        "  free chunks " SIZE_FORMAT
                        "  free chunks count %d",
                        word_size,
                        capacity_until_GC(),
                        vsl->capacity_words_sum(),
                        vsl->used_words_sum(),
                        vsl->chunk_manager()->free_chunks_total(),
                        vsl->chunk_manager()->free_chunks_count());
      }
      return false;
    }
  }
}

// Variables are in bytes

void MetaspaceGC::compute_new_size() {
  assert(_shrink_factor <= 100, "invalid shrink factor");
  uint current_shrink_factor = _shrink_factor;
  _shrink_factor = 0;

  VirtualSpaceList *vsl = Metaspace::space_list();

  size_t capacity_after_gc = vsl->capacity_bytes_sum();
  // Check to see if these two can be calculated without walking the CLDG
  size_t used_after_gc = vsl->used_bytes_sum();
  size_t capacity_until_GC = vsl->capacity_bytes_sum();
  size_t free_after_gc = capacity_until_GC - used_after_gc;

  const double minimum_free_percentage = MinHeapFreeRatio / 100.0;
  const double maximum_used_percentage = 1.0 - minimum_free_percentage;

  const double min_tmp = used_after_gc / maximum_used_percentage;
  size_t minimum_desired_capacity =
    (size_t)MIN2(min_tmp, double(max_uintx));
  // Don't shrink less than the initial generation size
  minimum_desired_capacity = MAX2(minimum_desired_capacity,
                                  MetaspaceSize);

  if (PrintGCDetails && Verbose) {
    const double free_percentage = ((double)free_after_gc) / capacity_until_GC;
    gclog_or_tty->print_cr("\nMetaspaceGC::compute_new_size: ");
    gclog_or_tty->print_cr("  "
                  "  minimum_free_percentage: %6.2f"
                  "  maximum_used_percentage: %6.2f",
                  minimum_free_percentage,
                  maximum_used_percentage);
    double d_free_after_gc = free_after_gc / (double) K;
    gclog_or_tty->print_cr("  "
                  "   free_after_gc       : %6.1fK"
                  "   used_after_gc       : %6.1fK"
                  "   capacity_after_gc   : %6.1fK"
                  "   metaspace HWM     : %6.1fK",
                  free_after_gc / (double) K,
                  used_after_gc / (double) K,
                  capacity_after_gc / (double) K,
                  capacity_until_GC / (double) K);
    gclog_or_tty->print_cr("  "
                  "   free_percentage: %6.2f",
                  free_percentage);
  }


  if (capacity_until_GC < minimum_desired_capacity) {
    // If we have less capacity below the metaspace HWM, then
    // increment the HWM.
    size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
    // Don't expand unless it's significant
    if (expand_bytes >= MinMetaspaceExpansion) {
      size_t expand_words = expand_bytes / BytesPerWord;
      MetaspaceGC::inc_capacity_until_GC(expand_words);
    }
    if (PrintGCDetails && Verbose) {
      size_t new_capacity_until_GC = MetaspaceGC::capacity_until_GC_in_bytes();
      gclog_or_tty->print_cr("    expanding:"
                    "  minimum_desired_capacity: %6.1fK"
                    "  expand_words: %6.1fK"
                    "  MinMetaspaceExpansion: %6.1fK"
                    "  new metaspace HWM:  %6.1fK",
                    minimum_desired_capacity / (double) K,
                    expand_bytes / (double) K,
                    MinMetaspaceExpansion / (double) K,
                    new_capacity_until_GC / (double) K);
    }
    return;
  }

  // No expansion, now see if we want to shrink
  size_t shrink_words = 0;
  // We would never want to shrink more than this
  size_t max_shrink_words = capacity_until_GC - minimum_desired_capacity;
  assert(max_shrink_words >= 0, err_msg("max_shrink_words " SIZE_FORMAT,
    max_shrink_words));

  // Should shrinking be considered?
  if (MaxHeapFreeRatio < 100) {
    const double maximum_free_percentage = MaxHeapFreeRatio / 100.0;
    const double minimum_used_percentage = 1.0 - maximum_free_percentage;
    const double max_tmp = used_after_gc / minimum_used_percentage;
    size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
    maximum_desired_capacity = MAX2(maximum_desired_capacity,
                                    MetaspaceSize);
    if (PrintGC && Verbose) {
      gclog_or_tty->print_cr("  "
                             "  maximum_free_percentage: %6.2f"
                             "  minimum_used_percentage: %6.2f",
                             maximum_free_percentage,
                             minimum_used_percentage);
      gclog_or_tty->print_cr("  "
                             "  capacity_until_GC: %6.1fK"
                             "  minimum_desired_capacity: %6.1fK"
                             "  maximum_desired_capacity: %6.1fK",
                             capacity_until_GC / (double) K,
                             minimum_desired_capacity / (double) K,
                             maximum_desired_capacity / (double) K);
    }

    assert(minimum_desired_capacity <= maximum_desired_capacity,
           "sanity check");

    if (capacity_until_GC > maximum_desired_capacity) {
      // Capacity too large, compute shrinking size
      shrink_words = capacity_until_GC - maximum_desired_capacity;
      // We don't want shrink all the way back to initSize if people call
      // System.gc(), because some programs do that between "phases" and then
      // we'd just have to grow the heap up again for the next phase.  So we
      // damp the shrinking: 0% on the first call, 10% on the second call, 40%
      // on the third call, and 100% by the fourth call.  But if we recompute
      // size without shrinking, it goes back to 0%.
      shrink_words = shrink_words / 100 * current_shrink_factor;
      assert(shrink_words <= max_shrink_words,
        err_msg("invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
          shrink_words, max_shrink_words));
      if (current_shrink_factor == 0) {
        _shrink_factor = 10;
      } else {
        _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
      }
      if (PrintGCDetails && Verbose) {
        gclog_or_tty->print_cr("  "
                      "  shrinking:"
                      "  initSize: %.1fK"
                      "  maximum_desired_capacity: %.1fK",
                      MetaspaceSize / (double) K,
                      maximum_desired_capacity / (double) K);
        gclog_or_tty->print_cr("  "
                      "  shrink_words: %.1fK"
                      "  current_shrink_factor: %d"
                      "  new shrink factor: %d"
                      "  MinMetaspaceExpansion: %.1fK",
                      shrink_words / (double) K,
                      current_shrink_factor,
                      _shrink_factor,
                      MinMetaspaceExpansion / (double) K);
      }
    }
  }


  // Don't shrink unless it's significant
  if (shrink_words >= MinMetaspaceExpansion) {
    VirtualSpaceNode* csp = vsl->current_virtual_space();
    size_t available_to_shrink = csp->capacity_words_in_vs() -
      csp->used_words_in_vs();
    shrink_words = MIN2(shrink_words, available_to_shrink);
    csp->shrink_by(shrink_words);
    MetaspaceGC::dec_capacity_until_GC(shrink_words);
    if (PrintGCDetails && Verbose) {
      size_t new_capacity_until_GC = MetaspaceGC::capacity_until_GC_in_bytes();
      gclog_or_tty->print_cr("  metaspace HWM: %.1fK", new_capacity_until_GC / (double) K);
    }
  }
  assert(vsl->used_bytes_sum() == used_after_gc &&
         used_after_gc <= vsl->capacity_bytes_sum(),
         "sanity check");

}

// Metadebug methods

void Metadebug::deallocate_chunk_a_lot(SpaceManager* sm,
                                       size_t chunk_word_size){
#ifdef ASSERT
  VirtualSpaceList* vsl = sm->vs_list();
  if (MetaDataDeallocateALot &&
      Metadebug::deallocate_chunk_a_lot_count() % MetaDataDeallocateALotInterval == 0 ) {
    Metadebug::reset_deallocate_chunk_a_lot_count();
    for (uint i = 0; i < metadata_deallocate_a_lock_chunk; i++) {
      Metachunk* dummy_chunk = vsl->current_virtual_space()->take_from_committed(chunk_word_size);
      if (dummy_chunk == NULL) {
        break;
      }
      vsl->chunk_manager()->chunk_freelist_deallocate(dummy_chunk);

      if (TraceMetadataChunkAllocation && Verbose) {
        gclog_or_tty->print("Metadebug::deallocate_chunk_a_lot: %d) ",
                               sm->sum_count_in_chunks_in_use());
        dummy_chunk->print_on(gclog_or_tty);
        gclog_or_tty->print_cr("  Free chunks total %d  count %d",
                               vsl->chunk_manager()->free_chunks_total(),
                               vsl->chunk_manager()->free_chunks_count());
      }
    }
  } else {
    Metadebug::inc_deallocate_chunk_a_lot_count();
  }
#endif
}

void Metadebug::deallocate_block_a_lot(SpaceManager* sm,
                                       size_t raw_word_size){
#ifdef ASSERT
  if (MetaDataDeallocateALot &&
        Metadebug::deallocate_block_a_lot_count() % MetaDataDeallocateALotInterval == 0 ) {
    Metadebug::set_deallocate_block_a_lot_count(0);
    for (uint i = 0; i < metadata_deallocate_a_lot_block; i++) {
1415
      MetaWord* dummy_block = sm->allocate_work(raw_word_size);
1416 1417 1418
      if (dummy_block == 0) {
        break;
      }
1419
      sm->deallocate(dummy_block, raw_word_size);
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
    }
  } else {
    Metadebug::inc_deallocate_block_a_lot_count();
  }
#endif
}

void Metadebug::init_allocation_fail_alot_count() {
  if (MetadataAllocationFailALot) {
    _allocation_fail_alot_count =
      1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
  }
}

#ifdef ASSERT
bool Metadebug::test_metadata_failure() {
  if (MetadataAllocationFailALot &&
      Threads::is_vm_complete()) {
    if (_allocation_fail_alot_count > 0) {
      _allocation_fail_alot_count--;
    } else {
      if (TraceMetadataChunkAllocation && Verbose) {
        gclog_or_tty->print_cr("Metadata allocation failing for "
                               "MetadataAllocationFailALot");
      }
      init_allocation_fail_alot_count();
      return true;
    }
  }
  return false;
}
#endif

// ChunkList methods

size_t ChunkList::sum_list_size() {
  size_t result = 0;
  Metachunk* cur = head();
  while (cur != NULL) {
    result += cur->word_size();
    cur = cur->next();
  }
  return result;
}

size_t ChunkList::sum_list_count() {
  size_t result = 0;
  Metachunk* cur = head();
  while (cur != NULL) {
    result++;
    cur = cur->next();
  }
  return result;
}

size_t ChunkList::sum_list_capacity() {
  size_t result = 0;
  Metachunk* cur = head();
  while (cur != NULL) {
    result += cur->capacity_word_size();
    cur = cur->next();
  }
  return result;
}

void ChunkList::add_at_head(Metachunk* head, Metachunk* tail) {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(tail->next() == NULL, "Not the tail");

  if (TraceMetadataChunkAllocation && Verbose) {
    tty->print("ChunkList::add_at_head: ");
    Metachunk* cur = head;
    while (cur != NULL) {
    tty->print(PTR_FORMAT " (" SIZE_FORMAT ") ", cur, cur->word_size());
      cur = cur->next();
    }
    tty->print_cr("");
  }

  if (tail != NULL) {
    tail->set_next(_head);
  }
  set_head(head);
}

void ChunkList::add_at_head(Metachunk* list) {
  if (list == NULL) {
    // Nothing to add
    return;
  }
  assert_lock_strong(SpaceManager::expand_lock());
  Metachunk* head = list;
  Metachunk* tail = list;
  Metachunk* cur = head->next();
  // Search for the tail since it is not passed.
  while (cur != NULL) {
    tail = cur;
    cur = cur->next();
  }
  add_at_head(head, tail);
}

// ChunkManager methods

// Verification of _free_chunks_total and _free_chunks_count does not
// work with the CMS collector because its use of additional locks
// complicate the mutex deadlock detection but it can still be useful
// for detecting errors in the chunk accounting with other collectors.

size_t ChunkManager::free_chunks_total() {
#ifdef ASSERT
  if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
    MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
1534
    slow_locked_verify_free_chunks_total();
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
  }
#endif
  return _free_chunks_total;
}

size_t ChunkManager::free_chunks_total_in_bytes() {
  return free_chunks_total() * BytesPerWord;
}

size_t ChunkManager::free_chunks_count() {
#ifdef ASSERT
  if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
    MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
    // This lock is only needed in debug because the verification
    // of the _free_chunks_totals walks the list of free chunks
1551
    slow_locked_verify_free_chunks_count();
1552 1553
  }
#endif
1554
  return _free_chunks_count;
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
}

void ChunkManager::locked_verify_free_chunks_total() {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(sum_free_chunks() == _free_chunks_total,
    err_msg("_free_chunks_total " SIZE_FORMAT " is not the"
           " same as sum " SIZE_FORMAT, _free_chunks_total,
           sum_free_chunks()));
}

void ChunkManager::verify_free_chunks_total() {
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify_free_chunks_total();
}

void ChunkManager::locked_verify_free_chunks_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  assert(sum_free_chunks_count() == _free_chunks_count,
    err_msg("_free_chunks_count " SIZE_FORMAT " is not the"
           " same as sum " SIZE_FORMAT, _free_chunks_count,
           sum_free_chunks_count()));
}

void ChunkManager::verify_free_chunks_count() {
#ifdef ASSERT
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify_free_chunks_count();
#endif
}

void ChunkManager::verify() {
1588 1589 1590
  MutexLockerEx cl(SpaceManager::expand_lock(),
                     Mutex::_no_safepoint_check_flag);
  locked_verify();
1591 1592 1593 1594
}

void ChunkManager::locked_verify() {
  locked_verify_free_chunks_count();
1595
  locked_verify_free_chunks_total();
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
}

void ChunkManager::locked_print_free_chunks(outputStream* st) {
  assert_lock_strong(SpaceManager::expand_lock());
  st->print_cr("Free chunk total 0x%x  count 0x%x",
                _free_chunks_total, _free_chunks_count);
}

void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
  assert_lock_strong(SpaceManager::expand_lock());
  st->print_cr("Sum free chunk total 0x%x  count 0x%x",
                sum_free_chunks(), sum_free_chunks_count());
}
ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
  return &_free_chunks[index];
}

// These methods that sum the free chunk lists are used in printing
// methods that are used in product builds.
size_t ChunkManager::sum_free_chunks() {
  assert_lock_strong(SpaceManager::expand_lock());
  size_t result = 0;
  for (ChunkIndex i = SmallIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
    ChunkList* list = free_chunks(i);

    if (list == NULL) {
      continue;
    }

    result = result + list->sum_list_capacity();
  }
1627
  result = result + humongous_dictionary()->total_size();
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
  return result;
}

size_t ChunkManager::sum_free_chunks_count() {
  assert_lock_strong(SpaceManager::expand_lock());
  size_t count = 0;
  for (ChunkIndex i = SmallIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
    ChunkList* list = free_chunks(i);
    if (list == NULL) {
      continue;
    }
    count = count + list->sum_list_count();
  }
1641
  count = count + humongous_dictionary()->total_free_blocks();
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
  return count;
}

ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
  switch (word_size) {
  case SpaceManager::SmallChunk :
      return &_free_chunks[0];
  case SpaceManager::MediumChunk :
      return &_free_chunks[1];
  default:
    assert(word_size > SpaceManager::MediumChunk, "List inconsistency");
    return &_free_chunks[2];
  }
}

void ChunkManager::free_chunks_put(Metachunk* chunk) {
  assert_lock_strong(SpaceManager::expand_lock());
  ChunkList* free_list = find_free_chunks_list(chunk->word_size());
  chunk->set_next(free_list->head());
  free_list->set_head(chunk);
  // chunk is being returned to the chunk free list
  inc_free_chunks_total(chunk->capacity_word_size());
1664
  slow_locked_verify();
1665 1666 1667 1668 1669 1670 1671
}

void ChunkManager::chunk_freelist_deallocate(Metachunk* chunk) {
  // The deallocation of a chunk originates in the freelist
  // manangement code for a Metaspace and does not hold the
  // lock.
  assert(chunk != NULL, "Deallocating NULL");
1672 1673
  assert_lock_strong(SpaceManager::expand_lock());
  slow_locked_verify();
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
  if (TraceMetadataChunkAllocation) {
    tty->print_cr("ChunkManager::chunk_freelist_deallocate: chunk "
                  PTR_FORMAT "  size " SIZE_FORMAT,
                  chunk, chunk->word_size());
  }
  free_chunks_put(chunk);
}

Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
  assert_lock_strong(SpaceManager::expand_lock());

1685
  slow_locked_verify();
1686

1687 1688 1689 1690
  Metachunk* chunk = NULL;
  if (!SpaceManager::is_humongous(word_size)) {
    ChunkList* free_list = find_free_chunks_list(word_size);
    assert(free_list != NULL, "Sanity check");
1691

1692 1693 1694 1695 1696 1697
    chunk = free_list->head();
    debug_only(Metachunk* debug_head = chunk;)

    if (chunk == NULL) {
      return NULL;
    }
1698 1699 1700 1701

    // Remove the chunk as the head of the list.
    free_list->set_head(chunk->next());
    chunk->set_next(NULL);
1702 1703
    // Chunk has been removed from the chunks free list.
    dec_free_chunks_total(chunk->capacity_word_size());
1704 1705 1706 1707 1708 1709 1710

    if (TraceMetadataChunkAllocation && Verbose) {
      tty->print_cr("ChunkManager::free_chunks_get: free_list "
                    PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
                    free_list, chunk, chunk->word_size());
    }
  } else {
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
    chunk = humongous_dictionary()->get_chunk(
      word_size,
      FreeBlockDictionary<Metachunk>::atLeast);

    if (chunk != NULL) {
      if (TraceMetadataHumongousAllocation) {
        size_t waste = chunk->word_size() - word_size;
        tty->print_cr("Free list allocate humongous chunk size " SIZE_FORMAT
                      " for requested size " SIZE_FORMAT
                      " waste " SIZE_FORMAT,
                      chunk->word_size(), word_size, waste);
1722
      }
1723 1724 1725 1726 1727
      // Chunk is being removed from the chunks free list.
      dec_free_chunks_total(chunk->capacity_word_size());
#ifdef ASSERT
      chunk->set_is_free(false);
#endif
1728 1729
    }
  }
1730
  slow_locked_verify();
1731 1732 1733 1734 1735
  return chunk;
}

Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
  assert_lock_strong(SpaceManager::expand_lock());
1736
  slow_locked_verify();
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

  // Take from the beginning of the list
  Metachunk* chunk = free_chunks_get(word_size);
  if (chunk == NULL) {
    return NULL;
  }

  assert(word_size <= chunk->word_size() ||
           SpaceManager::is_humongous(chunk->word_size()),
           "Non-humongous variable sized chunk");
  if (TraceMetadataChunkAllocation) {
    tty->print("ChunkManager::chunk_freelist_allocate: chunk "
               PTR_FORMAT "  size " SIZE_FORMAT " ",
               chunk, chunk->word_size());
    locked_print_free_chunks(tty);
  }

  return chunk;
}

1757 1758 1759 1760 1761 1762
void ChunkManager::print_on(outputStream* out) {
  if (PrintFLSStatistics != 0) {
    humongous_dictionary()->report_statistics();
  }
}

1763 1764 1765 1766 1767
// SpaceManager methods

size_t SpaceManager::sum_free_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t free = 0;
1768
  for (ChunkIndex i = SmallIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    Metachunk* chunk = chunks_in_use(i);
    while (chunk != NULL) {
      free += chunk->free_word_size();
      chunk = chunk->next();
    }
  }
  return free;
}

size_t SpaceManager::sum_waste_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t result = 0;
1781 1782 1783
  for (ChunkIndex i = SmallIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {


1784 1785
   result += sum_waste_in_chunks_in_use(i);
  }
1786

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
  return result;
}

size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
  size_t result = 0;
  size_t count = 0;
  Metachunk* chunk = chunks_in_use(index);
  // Count the free space in all the chunk but not the
  // current chunk from which allocations are still being done.
  if (chunk != NULL) {
1797 1798 1799 1800
    Metachunk* prev = chunk;
    while (chunk != NULL && chunk != current_chunk()) {
      result += chunk->free_word_size();
      prev = chunk;
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
      chunk = chunk->next();
      count++;
    }
  }
  return result;
}

size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t sum = 0;
1811
  for (ChunkIndex i = SmallIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
    Metachunk* chunk = chunks_in_use(i);
    while (chunk != NULL) {
      // Just changed this sum += chunk->capacity_word_size();
      // sum += chunk->word_size() - Metachunk::overhead();
      sum += chunk->capacity_word_size();
      chunk = chunk->next();
    }
  }
  return sum;
}

size_t SpaceManager::sum_count_in_chunks_in_use() {
  size_t count = 0;
1825
  for (ChunkIndex i = SmallIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1826 1827
    count = count + sum_count_in_chunks_in_use(i);
  }
1828

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
  return count;
}

size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
  size_t count = 0;
  Metachunk* chunk = chunks_in_use(i);
  while (chunk != NULL) {
    count++;
    chunk = chunk->next();
  }
  return count;
}


size_t SpaceManager::sum_used_in_chunks_in_use() const {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  size_t used = 0;
1846
  for (ChunkIndex i = SmallIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
    Metachunk* chunk = chunks_in_use(i);
    while (chunk != NULL) {
      used += chunk->used_word_size();
      chunk = chunk->next();
    }
  }
  return used;
}

void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {

  Metachunk* small_chunk = chunks_in_use(SmallIndex);
  st->print_cr("SpaceManager: small chunk " PTR_FORMAT
               " free " SIZE_FORMAT,
               small_chunk,
               small_chunk->free_word_size());

  Metachunk* medium_chunk = chunks_in_use(MediumIndex);
  st->print("medium chunk " PTR_FORMAT, medium_chunk);
  Metachunk* tail = current_chunk();
  st->print_cr(" current chunk " PTR_FORMAT, tail);

  Metachunk* head = chunks_in_use(HumongousIndex);
  st->print_cr("humongous chunk " PTR_FORMAT, head);

  vs_list()->chunk_manager()->locked_print_free_chunks(st);
  vs_list()->chunk_manager()->locked_print_sum_free_chunks(st);
}

size_t SpaceManager::calc_chunk_size(size_t word_size) {

  // Decide between a small chunk and a medium chunk.  Up to
  // _small_chunk_limit small chunks can be allocated but
  // once a medium chunk has been allocated, no more small
  // chunks will be allocated.
  size_t chunk_word_size;
  if (chunks_in_use(MediumIndex) == NULL &&
      (!has_small_chunk_limit() ||
       sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit)) {
    chunk_word_size = (size_t) SpaceManager::SmallChunk;
    if (word_size + Metachunk::overhead() > SpaceManager::SmallChunk) {
      chunk_word_size = MediumChunk;
    }
  } else {
    chunk_word_size = MediumChunk;
  }

  // Might still need a humongous chunk
  chunk_word_size =
    MAX2((size_t) chunk_word_size, word_size + Metachunk::overhead());

  if (TraceMetadataHumongousAllocation &&
      SpaceManager::is_humongous(word_size)) {
    gclog_or_tty->print_cr("Metadata humongous allocation:");
    gclog_or_tty->print_cr("  word_size " PTR_FORMAT, word_size);
    gclog_or_tty->print_cr("  chunk_word_size " PTR_FORMAT,
                           chunk_word_size);
1904
    gclog_or_tty->print_cr("    chunk overhead " PTR_FORMAT,
1905 1906 1907 1908 1909
                           Metachunk::overhead());
  }
  return chunk_word_size;
}

1910
MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
  assert(vs_list()->current_virtual_space() != NULL,
         "Should have been set");
  assert(current_chunk() == NULL ||
         current_chunk()->allocate(word_size) == NULL,
         "Don't need to expand");
  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);

  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("SpaceManager::grow_and_allocate for " SIZE_FORMAT
                           " words " SIZE_FORMAT " space left",
                            word_size, current_chunk() != NULL ?
                              current_chunk()->free_word_size() : 0);
  }

  // Get another chunk out of the virtual space
  size_t grow_chunks_by_words = calc_chunk_size(word_size);
  Metachunk* next = vs_list()->get_new_chunk(word_size, grow_chunks_by_words);

  // If a chunk was available, add it to the in-use chunk list
  // and do an allocation from it.
  if (next != NULL) {
    Metadebug::deallocate_chunk_a_lot(this, grow_chunks_by_words);
    // Add to this manager's list of chunks in use.
    add_chunk(next, false);
    return next->allocate(word_size);
  }
  return NULL;
}

void SpaceManager::print_on(outputStream* st) const {

  for (ChunkIndex i = SmallIndex;
1943
       i < NumberOfInUseLists ;
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
       i = next_chunk_index(i) ) {
    st->print_cr("  chunks_in_use " PTR_FORMAT " chunk size " PTR_FORMAT,
                 chunks_in_use(i),
                 chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
  }
  st->print_cr("    waste:  Small " SIZE_FORMAT " Medium " SIZE_FORMAT
               " Humongous " SIZE_FORMAT,
               sum_waste_in_chunks_in_use(SmallIndex),
               sum_waste_in_chunks_in_use(MediumIndex),
               sum_waste_in_chunks_in_use(HumongousIndex));
1954 1955 1956 1957 1958
  // block free lists
  if (block_freelists() != NULL) {
    st->print_cr("total in block free lists " SIZE_FORMAT,
      block_freelists()->total_size());
  }
1959 1960 1961 1962 1963 1964 1965
}

SpaceManager::SpaceManager(Mutex* lock, VirtualSpaceList* vs_list) :
  _vs_list(vs_list),
  _allocation_total(0),
  _lock(lock) {
  Metadebug::init_allocation_fail_alot_count();
1966
  for (ChunkIndex i = SmallIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
    _chunks_in_use[i] = NULL;
  }
  _current_chunk = NULL;
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("SpaceManager(): " PTR_FORMAT, this);
  }
}

SpaceManager::~SpaceManager() {
  MutexLockerEx fcl(SpaceManager::expand_lock(),
                    Mutex::_no_safepoint_check_flag);

  ChunkManager* chunk_manager = vs_list()->chunk_manager();

1981
  chunk_manager->slow_locked_verify();
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print_cr("~SpaceManager(): " PTR_FORMAT, this);
    locked_print_chunks_in_use_on(gclog_or_tty);
  }

  // Have to update before the chunks_in_use lists are emptied
  // below.
  chunk_manager->inc_free_chunks_total(sum_capacity_in_chunks_in_use(),
                                       sum_count_in_chunks_in_use());

#ifdef ASSERT
  // Mangle freed memory.
  mangle_freed_chunks();
#endif // ASSERT

  // Add all the chunks in use by this space manager
  // to the global list of free chunks.

  // Small chunks.  There is one _current_chunk for each
  // Metaspace.  It could point to a small or medium chunk.
  // Rather than determine which it is, follow the list of
  // small chunks to add them to the free list
  Metachunk* small_chunk = chunks_in_use(SmallIndex);
  chunk_manager->free_small_chunks()->add_at_head(small_chunk);
  set_chunks_in_use(SmallIndex, NULL);

  // After the small chunk are the medium chunks
  Metachunk* medium_chunk = chunks_in_use(MediumIndex);
  assert(medium_chunk == NULL ||
         medium_chunk->word_size() == MediumChunk,
         "Chunk is on the wrong list");

  if (medium_chunk != NULL) {
    Metachunk* head = medium_chunk;
    // If there is a medium chunk then the _current_chunk can only
    // point to the last medium chunk.
    Metachunk* tail = current_chunk();
    chunk_manager->free_medium_chunks()->add_at_head(head, tail);
    set_chunks_in_use(MediumIndex, NULL);
  }

  // Humongous chunks
  // Humongous chunks are never the current chunk.
  Metachunk* humongous_chunks = chunks_in_use(HumongousIndex);

2028 2029 2030 2031 2032 2033 2034
  while (humongous_chunks != NULL) {
#ifdef ASSERT
    humongous_chunks->set_is_free(true);
#endif
    Metachunk* next_humongous_chunks = humongous_chunks->next();
    chunk_manager->humongous_dictionary()->return_chunk(humongous_chunks);
    humongous_chunks = next_humongous_chunks;
2035
  }
2036
  set_chunks_in_use(HumongousIndex, NULL);
2037
  chunk_manager->slow_locked_verify();
2038 2039
}

2040
void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2041
  assert_lock_strong(_lock);
2042 2043 2044 2045
  size_t min_size = TreeChunk<Metablock, FreeList>::min_size();
  assert(word_size >= min_size,
    err_msg("Should not deallocate dark matter " SIZE_FORMAT, word_size));
  block_freelists()->return_block(p, word_size);
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
}

// Adds a chunk to the list of chunks in use.
void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {

  assert(new_chunk != NULL, "Should not be NULL");
  assert(new_chunk->next() == NULL, "Should not be on a list");

  new_chunk->reset_empty();

  // Find the correct list and and set the current
  // chunk for that list.
  switch (new_chunk->word_size()) {
  case SpaceManager::SmallChunk :
    if (chunks_in_use(SmallIndex) == NULL) {
      // First chunk to add to the list
      set_chunks_in_use(SmallIndex, new_chunk);
    } else {
      assert(current_chunk()->word_size() == SpaceManager::SmallChunk,
        err_msg( "Incorrect mix of sizes in chunk list "
        SIZE_FORMAT " new chunk " SIZE_FORMAT,
        current_chunk()->word_size(), new_chunk->word_size()));
      current_chunk()->set_next(new_chunk);
    }
    // Make current chunk
    set_current_chunk(new_chunk);
    break;
  case SpaceManager::MediumChunk :
    if (chunks_in_use(MediumIndex) == NULL) {
      // About to add the first medium chunk so teminate the
      // small chunk list.  In general once medium chunks are
      // being added, we're past the need for small chunks.
      if (current_chunk() != NULL) {
        // Only a small chunk or the initial chunk could be
        // the current chunk if this is the first medium chunk.
        assert(current_chunk()->word_size() == SpaceManager::SmallChunk ||
          chunks_in_use(SmallIndex) == NULL,
          err_msg("Should be a small chunk or initial chunk, current chunk "
          SIZE_FORMAT " new chunk " SIZE_FORMAT,
          current_chunk()->word_size(), new_chunk->word_size()));
        current_chunk()->set_next(NULL);
      }
      // First chunk to add to the list
      set_chunks_in_use(MediumIndex, new_chunk);

    } else {
      // As a minimum the first medium chunk added would
      // have become the _current_chunk
      // so the _current_chunk has to be non-NULL here
      // (although not necessarily still the first medium chunk).
      assert(current_chunk()->word_size() == SpaceManager::MediumChunk,
             "A medium chunk should the current chunk");
      current_chunk()->set_next(new_chunk);
    }
    // Make current chunk
    set_current_chunk(new_chunk);
    break;
  default: {
    // For null class loader data and DumpSharedSpaces, the first chunk isn't
    // small, so small will be null.  Link this first chunk as the current
    // chunk.
    if (make_current) {
      // Set as the current chunk but otherwise treat as a humongous chunk.
      set_current_chunk(new_chunk);
    }
    // Link at head.  The _current_chunk only points to a humongous chunk for
    // the null class loader metaspace (class and data virtual space managers)
    // any humongous chunks so will not point to the tail
    // of the humongous chunks list.
    new_chunk->set_next(chunks_in_use(HumongousIndex));
    set_chunks_in_use(HumongousIndex, new_chunk);

    assert(new_chunk->word_size() > MediumChunk, "List inconsistency");
  }
  }

  assert(new_chunk->is_empty(), "Not ready for reuse");
  if (TraceMetadataChunkAllocation && Verbose) {
    gclog_or_tty->print("SpaceManager::add_chunk: %d) ",
                        sum_count_in_chunks_in_use());
    new_chunk->print_on(gclog_or_tty);
    vs_list()->chunk_manager()->locked_print_free_chunks(tty);
  }
}

MetaWord* SpaceManager::allocate(size_t word_size) {
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);

  // If only the dictionary is going to be used (i.e., no
  // indexed free list), then there is a minimum size requirement.
  // MinChunkSize is a placeholder for the real minimum size JJJ
2137 2138 2139 2140 2141 2142 2143
  size_t byte_size = word_size * BytesPerWord;

  size_t byte_size_with_overhead = byte_size + Metablock::overhead();

  size_t raw_bytes_size = MAX2(byte_size_with_overhead,
                               Metablock::min_block_byte_size());
  raw_bytes_size = ARENA_ALIGN(raw_bytes_size);
2144 2145 2146 2147
  size_t raw_word_size = raw_bytes_size / BytesPerWord;
  assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");

  BlockFreelist* fl =  block_freelists();
2148
  MetaWord* p = NULL;
2149 2150 2151 2152 2153
  // Allocation from the dictionary is expensive in the sense that
  // the dictionary has to be searched for a size.  Don't allocate
  // from the dictionary until it starts to get fat.  Is this
  // a reasonable policy?  Maybe an skinny dictionary is fast enough
  // for allocations.  Do some profiling.  JJJ
2154 2155
  if (fl->total_size() > allocation_from_dictionary_limit) {
    p = fl->get_block(raw_word_size);
2156
  }
2157 2158
  if (p == NULL) {
    p = allocate_work(raw_word_size);
2159 2160 2161
  }
  Metadebug::deallocate_block_a_lot(this, raw_word_size);

2162
  return p;
2163 2164 2165 2166
}

// Returns the address of spaced allocated for "word_size".
// This methods does not know about blocks (Metablocks)
2167
MetaWord* SpaceManager::allocate_work(size_t word_size) {
2168 2169 2170 2171 2172 2173 2174
  assert_lock_strong(_lock);
#ifdef ASSERT
  if (Metadebug::test_metadata_failure()) {
    return NULL;
  }
#endif
  // Is there space in the current chunk?
2175
  MetaWord* result = NULL;
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

  // For DumpSharedSpaces, only allocate out of the current chunk which is
  // never null because we gave it the size we wanted.   Caller reports out
  // of memory if this returns null.
  if (DumpSharedSpaces) {
    assert(current_chunk() != NULL, "should never happen");
    inc_allocation_total(word_size);
    return current_chunk()->allocate(word_size); // caller handles null result
  }
  if (current_chunk() != NULL) {
    result = current_chunk()->allocate(word_size);
  }

  if (result == NULL) {
    result = grow_and_allocate(word_size);
  }
  if (result > 0) {
    inc_allocation_total(word_size);
2194 2195
    assert(result != (MetaWord*) chunks_in_use(MediumIndex),
           "Head of the list is being allocated");
2196 2197 2198 2199 2200 2201 2202 2203 2204
  }

  return result;
}

void SpaceManager::verify() {
  // If there are blocks in the dictionary, then
  // verfication of chunks does not work since
  // being in the dictionary alters a chunk.
2205
  if (block_freelists()->total_size() == 0) {
2206 2207 2208 2209 2210
    // Skip the small chunks because their next link points to
    // medium chunks.  This is because the small chunk is the
    // current chunk (for allocations) until it is full and the
    // the addition of the next chunk does not NULL the next
    // like of the small chunk.
2211
    for (ChunkIndex i = MediumIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
      Metachunk* curr = chunks_in_use(i);
      while (curr != NULL) {
        curr->verify();
        curr = curr->next();
      }
    }
  }
}

#ifdef ASSERT
void SpaceManager::verify_allocation_total() {
#if 0
  // Verification is only guaranteed at a safepoint.
  if (SafepointSynchronize::is_at_safepoint()) {
    gclog_or_tty->print_cr("Chunk " PTR_FORMAT " allocation_total " SIZE_FORMAT
                           " sum_used_in_chunks_in_use " SIZE_FORMAT,
                           this,
                           allocation_total(),
                           sum_used_in_chunks_in_use());
  }
  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
  assert(allocation_total() == sum_used_in_chunks_in_use(),
    err_msg("allocation total is not consistent %d vs %d",
            allocation_total(), sum_used_in_chunks_in_use()));
#endif
}

#endif

void SpaceManager::dump(outputStream* const out) const {
  size_t curr_total = 0;
  size_t waste = 0;
  uint i = 0;
  size_t used = 0;
  size_t capacity = 0;

  // Add up statistics for all chunks in this SpaceManager.
  for (ChunkIndex index = SmallIndex;
2250
       index < NumberOfInUseLists;
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
       index = next_chunk_index(index)) {
    for (Metachunk* curr = chunks_in_use(index);
         curr != NULL;
         curr = curr->next()) {
      out->print("%d) ", i++);
      curr->print_on(out);
      if (TraceMetadataChunkAllocation && Verbose) {
        block_freelists()->print_on(out);
      }
      curr_total += curr->word_size();
      used += curr->used_word_size();
      capacity += curr->capacity_word_size();
      waste += curr->free_word_size() + curr->overhead();;
    }
  }

  size_t free = current_chunk()->free_word_size();
  // Free space isn't wasted.
  waste -= free;

  out->print_cr("total of all chunks "  SIZE_FORMAT " used " SIZE_FORMAT
                " free " SIZE_FORMAT " capacity " SIZE_FORMAT
                " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
}

2276
#ifdef ASSERT
2277 2278
void SpaceManager::mangle_freed_chunks() {
  for (ChunkIndex index = SmallIndex;
2279
       index < NumberOfInUseLists;
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
       index = next_chunk_index(index)) {
    for (Metachunk* curr = chunks_in_use(index);
         curr != NULL;
         curr = curr->next()) {
      // Try to detect incorrectly terminated small chunk
      // list.
      assert(index == MediumIndex || curr != chunks_in_use(MediumIndex),
             err_msg("Mangling medium chunks in small chunks? "
                     "curr " PTR_FORMAT " medium list " PTR_FORMAT,
                     curr, chunks_in_use(MediumIndex)));
      curr->mangle();
    }
  }
}
2294
#endif // ASSERT
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351


// MetaspaceAux

size_t MetaspaceAux::used_in_bytes(Metaspace::MetadataType mdtype) {
  size_t used = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    // Sum allocation_total for each metaspace
    if (msp != NULL) {
      used += msp->used_words(mdtype);
    }
  }
  return used * BytesPerWord;
}

size_t MetaspaceAux::free_in_bytes(Metaspace::MetadataType mdtype) {
  size_t free = 0;
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
      free += msp->free_words(mdtype);
    }
  }
  return free * BytesPerWord;
}

// The total words available for metadata allocation.  This
// uses Metaspace capacity_words() which is the total words
// in chunks allocated for a Metaspace.
size_t MetaspaceAux::capacity_in_bytes(Metaspace::MetadataType mdtype) {
  size_t capacity = free_chunks_total(mdtype);
  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
      capacity += msp->capacity_words(mdtype);
    }
  }
  return capacity * BytesPerWord;
}

size_t MetaspaceAux::reserved_in_bytes(Metaspace::MetadataType mdtype) {
  size_t reserved = (mdtype == Metaspace::ClassType) ?
                       Metaspace::class_space_list()->virtual_space_total() :
                       Metaspace::space_list()->virtual_space_total();
  return reserved * BytesPerWord;
}

size_t MetaspaceAux::min_chunk_size() { return SpaceManager::MediumChunk; }

size_t MetaspaceAux::free_chunks_total(Metaspace::MetadataType mdtype) {
  ChunkManager* chunk = (mdtype == Metaspace::ClassType) ?
                            Metaspace::class_space_list()->chunk_manager() :
                            Metaspace::space_list()->chunk_manager();
2352
  chunk->slow_verify();
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
  return chunk->free_chunks_total();
}

size_t MetaspaceAux::free_chunks_total_in_bytes(Metaspace::MetadataType mdtype) {
  return free_chunks_total(mdtype) * BytesPerWord;
}

void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
  gclog_or_tty->print(", [Metaspace:");
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print(" "  SIZE_FORMAT
                        "->" SIZE_FORMAT
                        "("  SIZE_FORMAT "/" SIZE_FORMAT ")",
                        prev_metadata_used,
                        used_in_bytes(),
                        capacity_in_bytes(),
                        reserved_in_bytes());
  } else {
    gclog_or_tty->print(" "  SIZE_FORMAT "K"
                        "->" SIZE_FORMAT "K"
                        "("  SIZE_FORMAT "K/" SIZE_FORMAT "K)",
                        prev_metadata_used / K,
                        used_in_bytes()/ K,
                        capacity_in_bytes()/K,
                        reserved_in_bytes()/ K);
  }

  gclog_or_tty->print("]");
}

// This is printed when PrintGCDetails
void MetaspaceAux::print_on(outputStream* out) {
  Metaspace::MetadataType ct = Metaspace::ClassType;
  Metaspace::MetadataType nct = Metaspace::NonClassType;

  out->print_cr(" Metaspace total "
                SIZE_FORMAT "K, used " SIZE_FORMAT "K,"
                " reserved " SIZE_FORMAT "K",
J
jmasa 已提交
2391
                capacity_in_bytes()/K, used_in_bytes()/K, reserved_in_bytes()/K);
2392 2393 2394
  out->print_cr("  data space     "
                SIZE_FORMAT "K, used " SIZE_FORMAT "K,"
                " reserved " SIZE_FORMAT "K",
J
jmasa 已提交
2395
                capacity_in_bytes(nct)/K, used_in_bytes(nct)/K, reserved_in_bytes(nct)/K);
2396 2397 2398
  out->print_cr("  class space    "
                SIZE_FORMAT "K, used " SIZE_FORMAT "K,"
                " reserved " SIZE_FORMAT "K",
J
jmasa 已提交
2399
                capacity_in_bytes(ct)/K, used_in_bytes(ct)/K, reserved_in_bytes(ct)/K);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
}

// Print information for class space and data space separately.
// This is almost the same as above.
void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
  size_t free_chunks_capacity_bytes = free_chunks_total_in_bytes(mdtype);
  size_t capacity_bytes = capacity_in_bytes(mdtype);
  size_t used_bytes = used_in_bytes(mdtype);
  size_t free_bytes = free_in_bytes(mdtype);
  size_t used_and_free = used_bytes + free_bytes +
                           free_chunks_capacity_bytes;
  out->print_cr("  Chunk accounting: used in chunks " SIZE_FORMAT
             "K + unused in chunks " SIZE_FORMAT "K  + "
             " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
             "K  capacity in allocated chunks " SIZE_FORMAT "K",
             used_bytes / K,
             free_bytes / K,
             free_chunks_capacity_bytes / K,
             used_and_free / K,
             capacity_bytes / K);
  assert(used_and_free == capacity_bytes, "Accounting is wrong");
}

// Print total fragmentation for class and data metaspaces separately
void MetaspaceAux::print_waste(outputStream* out) {

  size_t small_waste = 0, medium_waste = 0, large_waste = 0;
  size_t cls_small_waste = 0, cls_medium_waste = 0, cls_large_waste = 0;

  ClassLoaderDataGraphMetaspaceIterator iter;
  while (iter.repeat()) {
    Metaspace* msp = iter.get_next();
    if (msp != NULL) {
      small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
      medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
      large_waste += msp->vsm()->sum_waste_in_chunks_in_use(HumongousIndex);

      cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
      cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
      cls_large_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(HumongousIndex);
    }
  }
  out->print_cr("Total fragmentation waste (words) doesn't count free space");
  out->print("  data: small " SIZE_FORMAT " medium " SIZE_FORMAT,
             small_waste, medium_waste);
  out->print_cr(" class: small " SIZE_FORMAT, cls_small_waste);
}

// Dump global metaspace things from the end of ClassLoaderDataGraph
void MetaspaceAux::dump(outputStream* out) {
  out->print_cr("All Metaspace:");
  out->print("data space: "); print_on(out, Metaspace::NonClassType);
  out->print("class space: "); print_on(out, Metaspace::ClassType);
  print_waste(out);
}

2456 2457 2458 2459 2460
void MetaspaceAux::verify_free_chunks() {
  Metaspace::space_list()->chunk_manager()->verify();
  Metaspace::class_space_list()->chunk_manager()->verify();
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
// Metaspace methods

size_t Metaspace::_first_chunk_word_size = 0;

Metaspace::Metaspace(Mutex* lock, size_t word_size) {
  initialize(lock, word_size);
}

Metaspace::Metaspace(Mutex* lock) {
  initialize(lock);
}

Metaspace::~Metaspace() {
  delete _vsm;
  delete _class_vsm;
}

VirtualSpaceList* Metaspace::_space_list = NULL;
VirtualSpaceList* Metaspace::_class_space_list = NULL;

#define VIRTUALSPACEMULTIPLIER 2

void Metaspace::global_initialize() {
  // Initialize the alignment for shared spaces.
  int max_alignment = os::vm_page_size();
  MetaspaceShared::set_max_alignment(max_alignment);

  if (DumpSharedSpaces) {
    SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment);
    SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment);
    SharedMiscDataSize  = align_size_up(SharedMiscDataSize, max_alignment);
    SharedMiscCodeSize  = align_size_up(SharedMiscCodeSize, max_alignment);

    // Initialize with the sum of the shared space sizes.  The read-only
    // and read write metaspace chunks will be allocated out of this and the
    // remainder is the misc code and data chunks.
    size_t total = align_size_up(SharedReadOnlySize + SharedReadWriteSize +
                                 SharedMiscDataSize + SharedMiscCodeSize,
                                 os::vm_allocation_granularity());
    size_t word_size = total/wordSize;
    _space_list = new VirtualSpaceList(word_size);
  } else {
    // If using shared space, open the file that contains the shared space
    // and map in the memory before initializing the rest of metaspace (so
    // the addresses don't conflict)
    if (UseSharedSpaces) {
      FileMapInfo* mapinfo = new FileMapInfo();
      memset(mapinfo, 0, sizeof(FileMapInfo));

      // Open the shared archive file, read and validate the header. If
      // initialization fails, shared spaces [UseSharedSpaces] are
      // disabled and the file is closed.
      // Map in spaces now also
      if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
        FileMapInfo::set_current_info(mapinfo);
      } else {
        assert(!mapinfo->is_open() && !UseSharedSpaces,
               "archive file not closed or shared spaces not disabled.");
      }
    }

    // Initialize this before initializing the VirtualSpaceList
    _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
    // Arbitrarily set the initial virtual space to a multiple
    // of the boot class loader size.
    size_t word_size = VIRTUALSPACEMULTIPLIER * Metaspace::first_chunk_word_size();
    // Initialize the list of virtual spaces.
    _space_list = new VirtualSpaceList(word_size);
  }
}

// For UseCompressedKlassPointers the class space is reserved as a piece of the
// Java heap because the compression algorithm is the same for each.  The
// argument passed in is at the top of the compressed space
void Metaspace::initialize_class_space(ReservedSpace rs) {
  // The reserved space size may be bigger because of alignment, esp with UseLargePages
  assert(rs.size() >= ClassMetaspaceSize, err_msg("%d != %d", rs.size(), ClassMetaspaceSize));
  _class_space_list = new VirtualSpaceList(rs);
}


void Metaspace::initialize(Mutex* lock, size_t initial_size) {
2543 2544
  // Use SmallChunk size if not specified.   If specified, use this size for
  // the data metaspace.
2545 2546 2547 2548
  size_t word_size;
  size_t class_word_size;
  if (initial_size == 0) {
    word_size = (size_t) SpaceManager::SmallChunk;
2549
    class_word_size = (size_t) SpaceManager::SmallChunk;
2550 2551
  } else {
    word_size = initial_size;
2552 2553 2554 2555 2556
    // Make the first class chunk bigger than a medium chunk so it's not put
    // on the medium chunk list.   The next chunk will be small and progress
    // from there.  This size calculated by -version.
    class_word_size = MIN2((size_t)SpaceManager::MediumChunk*5,
                           (ClassMetaspaceSize/BytesPerWord)*2);
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
  }

  assert(space_list() != NULL,
    "Metadata VirtualSpaceList has not been initialized");

  _vsm = new SpaceManager(lock, space_list());
  if (_vsm == NULL) {
    return;
  }

  assert(class_space_list() != NULL,
    "Class VirtualSpaceList has not been initialized");

  // Allocate SpaceManager for classes.
  _class_vsm = new SpaceManager(lock, class_space_list());
  if (_class_vsm == NULL) {
    return;
  }

  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);

  // Allocate chunk for metadata objects
  Metachunk* new_chunk =
     space_list()->current_virtual_space()->get_chunk_vs_with_expand(word_size);
  assert(!DumpSharedSpaces || new_chunk != NULL, "should have enough space for both chunks");
  if (new_chunk != NULL) {
    // Add to this manager's list of chunks in use and current_chunk().
    vsm()->add_chunk(new_chunk, true);
  }

  // Allocate chunk for class metadata objects
  Metachunk* class_chunk =
     class_space_list()->current_virtual_space()->get_chunk_vs_with_expand(class_word_size);
  if (class_chunk != NULL) {
    class_vsm()->add_chunk(class_chunk, true);
  }
}

MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
  // DumpSharedSpaces doesn't use class metadata area (yet)
  if (mdtype == ClassType && !DumpSharedSpaces) {
2598
    return  class_vsm()->allocate(word_size);
2599
  } else {
2600
    return  vsm()->allocate(word_size);
2601 2602 2603
  }
}

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
  MetaWord* result;
  MetaspaceGC::set_expand_after_GC(true);
  size_t before_inc = MetaspaceGC::capacity_until_GC();
  size_t delta_words = MetaspaceGC::delta_capacity_until_GC(word_size);
  MetaspaceGC::inc_capacity_until_GC(delta_words);
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print_cr("Increase capacity to GC from " SIZE_FORMAT
      " to " SIZE_FORMAT, before_inc, MetaspaceGC::capacity_until_GC());
  }
2614

2615 2616 2617 2618 2619
  result = allocate(word_size, mdtype);

  return result;
}

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
// Space allocated in the Metaspace.  This may
// be across several metadata virtual spaces.
char* Metaspace::bottom() const {
  assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
  return (char*)vsm()->current_chunk()->bottom();
}

size_t Metaspace::used_words(MetadataType mdtype) const {
  // return vsm()->allocation_total();
  return mdtype == ClassType ? class_vsm()->sum_used_in_chunks_in_use() :
                               vsm()->sum_used_in_chunks_in_use();  // includes overhead!
}

size_t Metaspace::free_words(MetadataType mdtype) const {
  return mdtype == ClassType ? class_vsm()->sum_free_in_chunks_in_use() :
                               vsm()->sum_free_in_chunks_in_use();
}

// Space capacity in the Metaspace.  It includes
// space in the list of chunks from which allocations
// have been made. Don't include space in the global freelist and
// in the space available in the dictionary which
// is already counted in some chunk.
size_t Metaspace::capacity_words(MetadataType mdtype) const {
  return mdtype == ClassType ? class_vsm()->sum_capacity_in_chunks_in_use() :
                               vsm()->sum_capacity_in_chunks_in_use();
}

void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
  if (SafepointSynchronize::is_at_safepoint()) {
    assert(Thread::current()->is_VM_thread(), "should be the VM thread");
2651 2652 2653 2654 2655 2656 2657 2658 2659
    // Don't take Heap_lock
    MutexLocker ml(vsm()->lock());
    if (word_size < TreeChunk<Metablock, FreeList>::min_size()) {
      // Dark matter.  Too small for dictionary.
#ifdef ASSERT
      Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
#endif
      return;
    }
2660
    if (is_class) {
2661
       class_vsm()->deallocate(ptr, word_size);
2662
    } else {
2663
      vsm()->deallocate(ptr, word_size);
2664 2665 2666 2667
    }
  } else {
    MutexLocker ml(vsm()->lock());

2668 2669 2670 2671 2672 2673 2674
    if (word_size < TreeChunk<Metablock, FreeList>::min_size()) {
      // Dark matter.  Too small for dictionary.
#ifdef ASSERT
      Copy::fill_to_words((HeapWord*)ptr, word_size, 0xf5f5f5f5);
#endif
      return;
    }
2675
    if (is_class) {
2676
      class_vsm()->deallocate(ptr, word_size);
2677
    } else {
2678
      vsm()->deallocate(ptr, word_size);
2679 2680 2681 2682
    }
  }
}

2683
Metablock* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
                              bool read_only, MetadataType mdtype, TRAPS) {
  if (HAS_PENDING_EXCEPTION) {
    assert(false, "Should not allocate with exception pending");
    return NULL;  // caller does a CHECK_NULL too
  }

  // SSS: Should we align the allocations and make sure the sizes are aligned.
  MetaWord* result = NULL;

  assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
        "ClassLoaderData::the_null_class_loader_data() should have been used.");
  // Allocate in metaspaces without taking out a lock, because it deadlocks
  // with the SymbolTable_lock.  Dumping is single threaded for now.  We'll have
  // to revisit this for application class data sharing.
  if (DumpSharedSpaces) {
    if (read_only) {
      result = loader_data->ro_metaspace()->allocate(word_size, NonClassType);
    } else {
      result = loader_data->rw_metaspace()->allocate(word_size, NonClassType);
    }
    if (result == NULL) {
      report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
    }
2707
    return Metablock::initialize(result, word_size);
2708 2709 2710 2711 2712 2713 2714
  }

  result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);

  if (result == NULL) {
    // Try to clean out some memory and retry.
    result =
2715
      Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
        loader_data, word_size, mdtype);

    // If result is still null, we are out of memory.
    if (result == NULL) {
      // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
      report_java_out_of_memory("Metadata space");

      if (JvmtiExport::should_post_resource_exhausted()) {
        JvmtiExport::post_resource_exhausted(
            JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
            "Metadata space");
      }
      THROW_OOP_0(Universe::out_of_memory_error_perm_gen());
    }
  }
2731
  return Metablock::initialize(result, word_size);
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
}

void Metaspace::print_on(outputStream* out) const {
  // Print both class virtual space counts and metaspace.
  if (Verbose) {
      vsm()->print_on(out);
      class_vsm()->print_on(out);
  }
}

#ifndef PRODUCT
bool Metaspace::contains(const void * ptr) const {
  if (MetaspaceShared::is_in_shared_space(ptr)) {
    return true;
  }
  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
  return space_list()->contains(ptr) || class_space_list()->contains(ptr);
}
#endif

void Metaspace::verify() {
  vsm()->verify();
  class_vsm()->verify();
}

void Metaspace::dump(outputStream* const out) const {
  if (UseMallocOnly) {
    // Just print usage for now
    out->print_cr("usage %d", used_words(Metaspace::NonClassType));
  }
  out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, vsm());
  vsm()->dump(out);
  out->print_cr("\nClass space manager: " INTPTR_FORMAT, class_vsm());
  class_vsm()->dump(out);
}