vframeArray.hpp 7.1 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// A vframeArray is an array used for momentarily storing off stack Java method activations
// during deoptimization. Essentially it is an array of vframes where each vframe
// data is stored off stack. This structure will never exist across a safepoint so
// there is no need to gc any oops that are stored in the structure.


class LocalsClosure;
class ExpressionStackClosure;
class MonitorStackClosure;
class MonitorArrayElement;
class StackValueCollection;

// A vframeArrayElement is an element of a vframeArray. Each element
// represent an interpreter frame which will eventually be created.

class vframeArrayElement : public _ValueObj {
  private:

    frame _frame;                                                // the interpreter frame we will unpack into
    int _bci;                                                    // raw bci for this vframe
    methodOop  _method;                                          // the method for this vframe
    MonitorChunk* _monitors;                                     // active monitors for this vframe
    StackValueCollection* _locals;
    StackValueCollection* _expressions;

  public:

  frame* iframe(void)                { return &_frame; }

  int bci(void) const;

  int raw_bci(void) const            { return _bci; }

  methodOop method(void) const       { return _method; }

  MonitorChunk* monitors(void) const { return _monitors; }

  void free_monitors(JavaThread* jt);

  StackValueCollection* locals(void) const             { return _locals; }

  StackValueCollection* expressions(void) const        { return _expressions; }

  void fill_in(compiledVFrame* vf);

  // Formerly part of deoptimizedVFrame


  // Returns the on stack word size for this frame
  // callee_parameters is the number of callee locals residing inside this frame
  int on_stack_size(int callee_parameters,
                    int callee_locals,
                    bool is_top_frame,
                    int popframe_extra_stack_expression_els) const;

  // Unpacks the element to skeletal interpreter frame
  void unpack_on_stack(int callee_parameters,
                       int callee_locals,
                       frame* caller,
                       bool is_top_frame,
                       int exec_mode);

#ifndef PRODUCT
  void print(outputStream* st);
#endif /* PRODUCT */
};

// this can be a ResourceObj if we don't save the last one...
// but it does make debugging easier even if we can't look
// at the data in each vframeElement

class vframeArray: public CHeapObj {
 private:


  // Here is what a vframeArray looks like in memory

  /*
      fixed part
        description of the original frame
        _frames - number of vframes in this array
        adapter info
        callee register save area
      variable part
        vframeArrayElement   [ 0 ]
        ...
        vframeArrayElement   [_frames - 1]

  */

  JavaThread*                  _owner_thread;
  vframeArray*                 _next;
  frame                        _original;          // the original frame of the deoptee
  frame                        _caller;            // caller of root frame in vframeArray
  frame                        _sender;

  Deoptimization::UnrollBlock* _unroll_block;
  int                          _frame_size;

  int                          _frames; // number of javavframes in the array (does not count any adapter)

  intptr_t                     _callee_registers[RegisterMap::reg_count];
  unsigned char                _valid[RegisterMap::reg_count];

  vframeArrayElement           _elements[1];   // First variable section.

  void fill_in_element(int index, compiledVFrame* vf);

  bool is_location_valid(int i) const        { return _valid[i] != 0; }
  void set_location_valid(int i, bool valid) { _valid[i] = valid; }

 public:


  // Tells whether index is within bounds.
  bool is_within_bounds(int index) const        { return 0 <= index && index < frames(); }

  // Accessores for instance variable
  int frames() const                            { return _frames;   }

  static vframeArray* allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
                               RegisterMap* reg_map, frame sender, frame caller, frame self);


  vframeArrayElement* element(int index)        { assert(is_within_bounds(index), "Bad index"); return &_elements[index]; }

  // Allocates a new vframe in the array and fills the array with vframe information in chunk
  void fill_in(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk, const RegisterMap *reg_map);

  // Returns the owner of this vframeArray
  JavaThread* owner_thread() const           { return _owner_thread; }

  // Accessors for next
  vframeArray* next() const                  { return _next; }
  void set_next(vframeArray* value)          { _next = value; }

  // Accessors for sp
  intptr_t* sp() const                       { return _original.sp(); }

  intptr_t* unextended_sp() const            { return _original.unextended_sp(); }

  address original_pc() const                { return _original.pc(); }

  frame original() const                     { return _original; }

  frame caller() const                       { return _caller; }

  frame sender() const                       { return _sender; }

  // Accessors for unroll block
  Deoptimization::UnrollBlock* unroll_block() const         { return _unroll_block; }
  void set_unroll_block(Deoptimization::UnrollBlock* block) { _unroll_block = block; }

  // Returns the size of the frame that got deoptimized
  int frame_size() const { return _frame_size; }

  // Unpack the array on the stack passed in stack interval
  void unpack_to_stack(frame &unpack_frame, int exec_mode);

  // Deallocates monitor chunks allocated during deoptimization.
  // This should be called when the array is not used anymore.
  void deallocate_monitor_chunks();



  // Accessor for register map
  address register_location(int i) const;

  void print_on_2(outputStream* st) PRODUCT_RETURN;
  void print_value_on(outputStream* st) const PRODUCT_RETURN;

#ifndef PRODUCT
  // Comparing
  bool structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk);
#endif

};