vectornode.cpp 14.8 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
/*
 * Copyright 2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 */

#include "incls/_precompiled.incl"
#include "incls/_vectornode.cpp.incl"

//------------------------------VectorNode--------------------------------------

// Return vector type for an element type and vector length.
const Type* VectorNode::vect_type(BasicType elt_bt, uint len) {
  assert(len <= VectorNode::max_vlen(elt_bt), "len in range");
  switch(elt_bt) {
  case T_BOOLEAN:
  case T_BYTE:
    switch(len) {
    case 2:  return TypeInt::CHAR;
    case 4:  return TypeInt::INT;
    case 8:  return TypeLong::LONG;
    }
    break;
  case T_CHAR:
  case T_SHORT:
    switch(len) {
    case 2:  return TypeInt::INT;
    case 4:  return TypeLong::LONG;
    }
    break;
  case T_INT:
    switch(len) {
    case 2:  return TypeLong::LONG;
    }
    break;
  case T_LONG:
    break;
  case T_FLOAT:
    switch(len) {
    case 2:  return Type::DOUBLE;
    }
    break;
  case T_DOUBLE:
    break;
  }
  ShouldNotReachHere();
  return NULL;
}

// Scalar promotion
VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
  BasicType bt = opd_t->array_element_basic_type();
  assert(vlen <= VectorNode::max_vlen(bt), "vlen in range");
  switch (bt) {
  case T_BOOLEAN:
  case T_BYTE:
    if (vlen == 16) return new (C, 2) Replicate16BNode(s);
    if (vlen ==  8) return new (C, 2) Replicate8BNode(s);
    if (vlen ==  4) return new (C, 2) Replicate4BNode(s);
    break;
  case T_CHAR:
    if (vlen == 8) return new (C, 2) Replicate8CNode(s);
    if (vlen == 4) return new (C, 2) Replicate4CNode(s);
    if (vlen == 2) return new (C, 2) Replicate2CNode(s);
    break;
  case T_SHORT:
    if (vlen == 8) return new (C, 2) Replicate8SNode(s);
    if (vlen == 4) return new (C, 2) Replicate4SNode(s);
    if (vlen == 2) return new (C, 2) Replicate2SNode(s);
    break;
  case T_INT:
    if (vlen == 4) return new (C, 2) Replicate4INode(s);
    if (vlen == 2) return new (C, 2) Replicate2INode(s);
    break;
  case T_LONG:
    if (vlen == 2) return new (C, 2) Replicate2LNode(s);
    break;
  case T_FLOAT:
    if (vlen == 4) return new (C, 2) Replicate4FNode(s);
    if (vlen == 2) return new (C, 2) Replicate2FNode(s);
    break;
  case T_DOUBLE:
    if (vlen == 2) return new (C, 2) Replicate2DNode(s);
    break;
  }
  ShouldNotReachHere();
  return NULL;
}

// Return initial Pack node. Additional operands added with add_opd() calls.
PackNode* PackNode::make(Compile* C, Node* s, const Type* opd_t) {
  BasicType bt = opd_t->array_element_basic_type();
  switch (bt) {
  case T_BOOLEAN:
  case T_BYTE:
    return new (C, 2) PackBNode(s);
  case T_CHAR:
    return new (C, 2) PackCNode(s);
  case T_SHORT:
    return new (C, 2) PackSNode(s);
  case T_INT:
    return new (C, 2) PackINode(s);
  case T_LONG:
    return new (C, 2) PackLNode(s);
  case T_FLOAT:
    return new (C, 2) PackFNode(s);
  case T_DOUBLE:
    return new (C, 2) PackDNode(s);
  }
  ShouldNotReachHere();
  return NULL;
}

// Create a binary tree form for Packs. [lo, hi) (half-open) range
Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) {
  int ct = hi - lo;
  assert(is_power_of_2(ct), "power of 2");
  int mid = lo + ct/2;
  Node* n1 = ct == 2 ? in(lo)   : binaryTreePack(C, lo,  mid);
  Node* n2 = ct == 2 ? in(lo+1) : binaryTreePack(C, mid, hi );
  int rslt_bsize = ct * type2aelembytes[elt_basic_type()];
  if (bottom_type()->is_floatingpoint()) {
    switch (rslt_bsize) {
    case  8: return new (C, 3) PackFNode(n1, n2);
    case 16: return new (C, 3) PackDNode(n1, n2);
    }
  } else {
    assert(bottom_type()->isa_int() || bottom_type()->isa_long(), "int or long");
    switch (rslt_bsize) {
    case  2: return new (C, 3) Pack2x1BNode(n1, n2);
    case  4: return new (C, 3) Pack2x2BNode(n1, n2);
    case  8: return new (C, 3) PackINode(n1, n2);
    case 16: return new (C, 3) PackLNode(n1, n2);
    }
  }
  ShouldNotReachHere();
  return NULL;
}

// Return the vector operator for the specified scalar operation
// and vector length.  One use is to check if the code generator
// supports the vector operation.
int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) {
  BasicType bt = opd_t->array_element_basic_type();
  if (!(is_power_of_2(vlen) && vlen <= max_vlen(bt)))
    return 0; // unimplemented
  switch (sopc) {
  case Op_AddI:
    switch (bt) {
    case T_BOOLEAN:
    case T_BYTE:      return Op_AddVB;
    case T_CHAR:      return Op_AddVC;
    case T_SHORT:     return Op_AddVS;
    case T_INT:       return Op_AddVI;
    }
    ShouldNotReachHere();
  case Op_AddL:
    assert(bt == T_LONG, "must be");
    return Op_AddVL;
  case Op_AddF:
    assert(bt == T_FLOAT, "must be");
    return Op_AddVF;
  case Op_AddD:
    assert(bt == T_DOUBLE, "must be");
    return Op_AddVD;
  case Op_SubI:
    switch (bt) {
    case T_BOOLEAN:
    case T_BYTE:   return Op_SubVB;
    case T_CHAR:   return Op_SubVC;
    case T_SHORT:  return Op_SubVS;
    case T_INT:    return Op_SubVI;
    }
    ShouldNotReachHere();
  case Op_SubL:
    assert(bt == T_LONG, "must be");
    return Op_SubVL;
  case Op_SubF:
    assert(bt == T_FLOAT, "must be");
    return Op_SubVF;
  case Op_SubD:
    assert(bt == T_DOUBLE, "must be");
    return Op_SubVD;
  case Op_MulF:
    assert(bt == T_FLOAT, "must be");
    return Op_MulVF;
  case Op_MulD:
    assert(bt == T_DOUBLE, "must be");
    return Op_MulVD;
  case Op_DivF:
    assert(bt == T_FLOAT, "must be");
    return Op_DivVF;
  case Op_DivD:
    assert(bt == T_DOUBLE, "must be");
    return Op_DivVD;
  case Op_LShiftI:
    switch (bt) {
    case T_BOOLEAN:
    case T_BYTE:   return Op_LShiftVB;
    case T_CHAR:   return Op_LShiftVC;
    case T_SHORT:  return Op_LShiftVS;
    case T_INT:    return Op_LShiftVI;
    }
    ShouldNotReachHere();
  case Op_URShiftI:
    switch (bt) {
    case T_BOOLEAN:
    case T_BYTE:   return Op_URShiftVB;
    case T_CHAR:   return Op_URShiftVC;
    case T_SHORT:  return Op_URShiftVS;
    case T_INT:    return Op_URShiftVI;
    }
    ShouldNotReachHere();
  case Op_AndI:
  case Op_AndL:
    return Op_AndV;
  case Op_OrI:
  case Op_OrL:
    return Op_OrV;
  case Op_XorI:
  case Op_XorL:
    return Op_XorV;

  case Op_LoadB:
  case Op_LoadC:
  case Op_LoadS:
  case Op_LoadI:
  case Op_LoadL:
  case Op_LoadF:
  case Op_LoadD:
    return VectorLoadNode::opcode(sopc, vlen);

  case Op_StoreB:
  case Op_StoreC:
  case Op_StoreI:
  case Op_StoreL:
  case Op_StoreF:
  case Op_StoreD:
    return VectorStoreNode::opcode(sopc, vlen);
  }
  return 0; // Unimplemented
}

// Helper for above.
int VectorLoadNode::opcode(int sopc, uint vlen) {
  switch (sopc) {
  case Op_LoadB:
    switch (vlen) {
    case  2:       return 0; // Unimplemented
    case  4:       return Op_Load4B;
    case  8:       return Op_Load8B;
    case 16:       return Op_Load16B;
    }
    break;
  case Op_LoadC:
    switch (vlen) {
    case  2:       return Op_Load2C;
    case  4:       return Op_Load4C;
    case  8:       return Op_Load8C;
    }
    break;
  case Op_LoadS:
    switch (vlen) {
    case  2:       return Op_Load2S;
    case  4:       return Op_Load4S;
    case  8:       return Op_Load8S;
    }
    break;
  case Op_LoadI:
    switch (vlen) {
    case  2:       return Op_Load2I;
    case  4:       return Op_Load4I;
    }
    break;
  case Op_LoadL:
    if (vlen == 2) return Op_Load2L;
    break;
  case Op_LoadF:
    switch (vlen) {
    case  2:       return Op_Load2F;
    case  4:       return Op_Load4F;
    }
    break;
  case Op_LoadD:
    if (vlen == 2) return Op_Load2D;
    break;
  }
  return 0; // Unimplemented
}

// Helper for above
int VectorStoreNode::opcode(int sopc, uint vlen) {
  switch (sopc) {
  case Op_StoreB:
    switch (vlen) {
    case  2:       return 0; // Unimplemented
    case  4:       return Op_Store4B;
    case  8:       return Op_Store8B;
    case 16:       return Op_Store16B;
    }
    break;
  case Op_StoreC:
    switch (vlen) {
    case  2:       return Op_Store2C;
    case  4:       return Op_Store4C;
    case  8:       return Op_Store8C;
    }
    break;
  case Op_StoreI:
    switch (vlen) {
    case  2:       return Op_Store2I;
    case  4:       return Op_Store4I;
    }
    break;
  case Op_StoreL:
    if (vlen == 2) return Op_Store2L;
    break;
  case Op_StoreF:
    switch (vlen) {
    case  2:       return Op_Store2F;
    case  4:       return Op_Store4F;
    }
    break;
  case Op_StoreD:
    if (vlen == 2) return Op_Store2D;
    break;
  }
  return 0; // Unimplemented
}

// Return the vector version of a scalar operation node.
VectorNode* VectorNode::make(Compile* C, int sopc, Node* n1, Node* n2, uint vlen, const Type* opd_t) {
  int vopc = opcode(sopc, vlen, opd_t);

  switch (vopc) {
  case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vlen);
  case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vlen);
  case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vlen);
  case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vlen);
  case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vlen);
  case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vlen);
  case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vlen);

  case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vlen);
  case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vlen);
  case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vlen);
  case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vlen);
  case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vlen);
  case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vlen);
  case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vlen);

  case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vlen);
  case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vlen);

  case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vlen);
  case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vlen);

  case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vlen);
  case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vlen);
  case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vlen);
  case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vlen);

  case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vlen);
  case Op_URShiftVC: return new (C, 3) URShiftVCNode(n1, n2, vlen);
  case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vlen);
  case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vlen);

  case Op_AndV: return new (C, 3) AndVNode(n1, n2, vlen, opd_t->array_element_basic_type());
  case Op_OrV:  return new (C, 3) OrVNode (n1, n2, vlen, opd_t->array_element_basic_type());
  case Op_XorV: return new (C, 3) XorVNode(n1, n2, vlen, opd_t->array_element_basic_type());
  }
  ShouldNotReachHere();
  return NULL;
}

// Return the vector version of a scalar load node.
VectorLoadNode* VectorLoadNode::make(Compile* C, int opc, Node* ctl, Node* mem,
                                     Node* adr, const TypePtr* atyp, uint vlen) {
  int vopc = opcode(opc, vlen);

  switch(vopc) {
  case Op_Load16B: return new (C, 3) Load16BNode(ctl, mem, adr, atyp);
  case Op_Load8B:  return new (C, 3) Load8BNode(ctl, mem, adr, atyp);
  case Op_Load4B:  return new (C, 3) Load4BNode(ctl, mem, adr, atyp);

  case Op_Load8C:  return new (C, 3) Load8CNode(ctl, mem, adr, atyp);
  case Op_Load4C:  return new (C, 3) Load4CNode(ctl, mem, adr, atyp);
  case Op_Load2C:  return new (C, 3) Load2CNode(ctl, mem, adr, atyp);

  case Op_Load8S:  return new (C, 3) Load8SNode(ctl, mem, adr, atyp);
  case Op_Load4S:  return new (C, 3) Load4SNode(ctl, mem, adr, atyp);
  case Op_Load2S:  return new (C, 3) Load2SNode(ctl, mem, adr, atyp);

  case Op_Load4I:  return new (C, 3) Load4INode(ctl, mem, adr, atyp);
  case Op_Load2I:  return new (C, 3) Load2INode(ctl, mem, adr, atyp);

  case Op_Load2L:  return new (C, 3) Load2LNode(ctl, mem, adr, atyp);

  case Op_Load4F:  return new (C, 3) Load4FNode(ctl, mem, adr, atyp);
  case Op_Load2F:  return new (C, 3) Load2FNode(ctl, mem, adr, atyp);

  case Op_Load2D:  return new (C, 3) Load2DNode(ctl, mem, adr, atyp);
  }
  ShouldNotReachHere();
  return NULL;
}

// Return the vector version of a scalar store node.
VectorStoreNode* VectorStoreNode::make(Compile* C, int opc, Node* ctl, Node* mem,
                                       Node* adr, const TypePtr* atyp, VectorNode* val,
                                       uint vlen) {
  int vopc = opcode(opc, vlen);

  switch(vopc) {
  case Op_Store16B: return new (C, 4) Store16BNode(ctl, mem, adr, atyp, val);
  case Op_Store8B: return new (C, 4) Store8BNode(ctl, mem, adr, atyp, val);
  case Op_Store4B: return new (C, 4) Store4BNode(ctl, mem, adr, atyp, val);

  case Op_Store8C: return new (C, 4) Store8CNode(ctl, mem, adr, atyp, val);
  case Op_Store4C: return new (C, 4) Store4CNode(ctl, mem, adr, atyp, val);
  case Op_Store2C: return new (C, 4) Store2CNode(ctl, mem, adr, atyp, val);

  case Op_Store4I: return new (C, 4) Store4INode(ctl, mem, adr, atyp, val);
  case Op_Store2I: return new (C, 4) Store2INode(ctl, mem, adr, atyp, val);

  case Op_Store2L: return new (C, 4) Store2LNode(ctl, mem, adr, atyp, val);

  case Op_Store4F: return new (C, 4) Store4FNode(ctl, mem, adr, atyp, val);
  case Op_Store2F: return new (C, 4) Store2FNode(ctl, mem, adr, atyp, val);

  case Op_Store2D: return new (C, 4) Store2DNode(ctl, mem, adr, atyp, val);
  }
  ShouldNotReachHere();
  return NULL;
}

// Extract a scalar element of vector.
Node* ExtractNode::make(Compile* C, Node* v, uint position, const Type* opd_t) {
  BasicType bt = opd_t->array_element_basic_type();
  assert(position < VectorNode::max_vlen(bt), "pos in range");
  ConINode* pos = ConINode::make(C, (int)position);
  switch (bt) {
  case T_BOOLEAN:
  case T_BYTE:
    return new (C, 3) ExtractBNode(v, pos);
  case T_CHAR:
    return new (C, 3) ExtractCNode(v, pos);
  case T_SHORT:
    return new (C, 3) ExtractSNode(v, pos);
  case T_INT:
    return new (C, 3) ExtractINode(v, pos);
  case T_LONG:
    return new (C, 3) ExtractLNode(v, pos);
  case T_FLOAT:
    return new (C, 3) ExtractFNode(v, pos);
  case T_DOUBLE:
    return new (C, 3) ExtractDNode(v, pos);
  }
  ShouldNotReachHere();
  return NULL;
}