output.cpp 95.8 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
/*
 * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_output.cpp.incl"

extern uint size_java_to_interp();
extern uint reloc_java_to_interp();
extern uint size_exception_handler();
extern uint size_deopt_handler();

#ifndef PRODUCT
#define DEBUG_ARG(x) , x
#else
#define DEBUG_ARG(x)
#endif

extern int emit_exception_handler(CodeBuffer &cbuf);
extern int emit_deopt_handler(CodeBuffer &cbuf);

//------------------------------Output-----------------------------------------
// Convert Nodes to instruction bits and pass off to the VM
void Compile::Output() {
  // RootNode goes
  assert( _cfg->_broot->_nodes.size() == 0, "" );

  // Initialize the space for the BufferBlob used to find and verify
  // instruction size in MachNode::emit_size()
  init_scratch_buffer_blob();

  // Make sure I can find the Start Node
  Block_Array& bbs = _cfg->_bbs;
  Block *entry = _cfg->_blocks[1];
  Block *broot = _cfg->_broot;

  const StartNode *start = entry->_nodes[0]->as_Start();

  // Replace StartNode with prolog
  MachPrologNode *prolog = new (this) MachPrologNode();
  entry->_nodes.map( 0, prolog );
  bbs.map( prolog->_idx, entry );
  bbs.map( start->_idx, NULL ); // start is no longer in any block

  // Virtual methods need an unverified entry point

  if( is_osr_compilation() ) {
    if( PoisonOSREntry ) {
      // TODO: Should use a ShouldNotReachHereNode...
      _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
    }
  } else {
    if( _method && !_method->flags().is_static() ) {
      // Insert unvalidated entry point
      _cfg->insert( broot, 0, new (this) MachUEPNode() );
    }

  }


  // Break before main entry point
  if( (_method && _method->break_at_execute())
#ifndef PRODUCT
    ||(OptoBreakpoint && is_method_compilation())
    ||(OptoBreakpointOSR && is_osr_compilation())
    ||(OptoBreakpointC2R && !_method)
#endif
    ) {
    // checking for _method means that OptoBreakpoint does not apply to
    // runtime stubs or frame converters
    _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
  }

  // Insert epilogs before every return
  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
    Block *b = _cfg->_blocks[i];
    if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
      Node *m = b->end();
      if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
        MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
        b->add_inst( epilog );
        bbs.map(epilog->_idx, b);
        //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
      }
    }
  }

# ifdef ENABLE_ZAP_DEAD_LOCALS
  if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
# endif

  ScheduleAndBundle();

#ifndef PRODUCT
  if (trace_opto_output()) {
    tty->print("\n---- After ScheduleAndBundle ----\n");
    for (uint i = 0; i < _cfg->_num_blocks; i++) {
      tty->print("\nBB#%03d:\n", i);
      Block *bb = _cfg->_blocks[i];
      for (uint j = 0; j < bb->_nodes.size(); j++) {
        Node *n = bb->_nodes[j];
        OptoReg::Name reg = _regalloc->get_reg_first(n);
        tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
        n->dump();
      }
    }
  }
#endif

  if (failing())  return;

  BuildOopMaps();

  if (failing())  return;

  Fill_buffer();
}

bool Compile::need_stack_bang(int frame_size_in_bytes) const {
  // Determine if we need to generate a stack overflow check.
  // Do it if the method is not a stub function and
  // has java calls or has frame size > vm_page_size/8.
  return (stub_function() == NULL &&
          (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
}

bool Compile::need_register_stack_bang() const {
  // Determine if we need to generate a register stack overflow check.
  // This is only used on architectures which have split register
  // and memory stacks (ie. IA64).
  // Bang if the method is not a stub function and has java calls
  return (stub_function() == NULL && has_java_calls());
}

# ifdef ENABLE_ZAP_DEAD_LOCALS


// In order to catch compiler oop-map bugs, we have implemented
// a debugging mode called ZapDeadCompilerLocals.
// This mode causes the compiler to insert a call to a runtime routine,
// "zap_dead_locals", right before each place in compiled code
// that could potentially be a gc-point (i.e., a safepoint or oop map point).
// The runtime routine checks that locations mapped as oops are really
// oops, that locations mapped as values do not look like oops,
// and that locations mapped as dead are not used later
// (by zapping them to an invalid address).

int Compile::_CompiledZap_count = 0;

void Compile::Insert_zap_nodes() {
  bool skip = false;


  // Dink with static counts because code code without the extra
  // runtime calls is MUCH faster for debugging purposes

       if ( CompileZapFirst  ==  0  ) ; // nothing special
  else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
  else if ( CompileZapFirst  == CompiledZap_count() )
    warning("starting zap compilation after skipping");

       if ( CompileZapLast  ==  -1  ) ; // nothing special
  else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
  else if ( CompileZapLast  ==  CompiledZap_count() )
    warning("about to compile last zap");

  ++_CompiledZap_count; // counts skipped zaps, too

  if ( skip )  return;


  if ( _method == NULL )
    return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care

  // Insert call to zap runtime stub before every node with an oop map
  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
    Block *b = _cfg->_blocks[i];
    for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
      Node *n = b->_nodes[j];

      // Determining if we should insert a zap-a-lot node in output.
      // We do that for all nodes that has oopmap info, except for calls
      // to allocation.  Calls to allocation passes in the old top-of-eden pointer
      // and expect the C code to reset it.  Hence, there can be no safepoints between
      // the inlined-allocation and the call to new_Java, etc.
      // We also cannot zap monitor calls, as they must hold the microlock
      // during the call to Zap, which also wants to grab the microlock.
      bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
      if ( insert ) { // it is MachSafePoint
        if ( !n->is_MachCall() ) {
          insert = false;
        } else if ( n->is_MachCall() ) {
          MachCallNode* call = n->as_MachCall();
          if (call->entry_point() == OptoRuntime::new_instance_Java() ||
              call->entry_point() == OptoRuntime::new_array_Java() ||
              call->entry_point() == OptoRuntime::multianewarray2_Java() ||
              call->entry_point() == OptoRuntime::multianewarray3_Java() ||
              call->entry_point() == OptoRuntime::multianewarray4_Java() ||
              call->entry_point() == OptoRuntime::multianewarray5_Java() ||
              call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
              call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
              ) {
            insert = false;
          }
        }
        if (insert) {
          Node *zap = call_zap_node(n->as_MachSafePoint(), i);
          b->_nodes.insert( j, zap );
          _cfg->_bbs.map( zap->_idx, b );
          ++j;
        }
      }
    }
  }
}


Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
  const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
  CallStaticJavaNode* ideal_node =
    new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
         OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
                            "call zap dead locals stub", 0, TypePtr::BOTTOM);
  // We need to copy the OopMap from the site we're zapping at.
  // We have to make a copy, because the zap site might not be
  // a call site, and zap_dead is a call site.
  OopMap* clone = node_to_check->oop_map()->deep_copy();

  // Add the cloned OopMap to the zap node
  ideal_node->set_oop_map(clone);
  return _matcher->match_sfpt(ideal_node);
}

//------------------------------is_node_getting_a_safepoint--------------------
bool Compile::is_node_getting_a_safepoint( Node* n) {
  // This code duplicates the logic prior to the call of add_safepoint
  // below in this file.
  if( n->is_MachSafePoint() ) return true;
  return false;
}

# endif // ENABLE_ZAP_DEAD_LOCALS

//------------------------------compute_loop_first_inst_sizes------------------
// Compute the size of first NumberOfLoopInstrToAlign instructions at head
// of a loop. When aligning a loop we need to provide enough instructions
// in cpu's fetch buffer to feed decoders. The loop alignment could be
// avoided if we have enough instructions in fetch buffer at the head of a loop.
// By default, the size is set to 999999 by Block's constructor so that
// a loop will be aligned if the size is not reset here.
//
// Note: Mach instructions could contain several HW instructions
// so the size is estimated only.
//
void Compile::compute_loop_first_inst_sizes() {
  // The next condition is used to gate the loop alignment optimization.
  // Don't aligned a loop if there are enough instructions at the head of a loop
  // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
  // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
  // equal to 11 bytes which is the largest address NOP instruction.
  if( MaxLoopPad < OptoLoopAlignment-1 ) {
    uint last_block = _cfg->_num_blocks-1;
    for( uint i=1; i <= last_block; i++ ) {
      Block *b = _cfg->_blocks[i];
      // Check the first loop's block which requires an alignment.
      if( b->head()->is_Loop() &&
          b->code_alignment() > (uint)relocInfo::addr_unit() ) {
        uint sum_size = 0;
        uint inst_cnt = NumberOfLoopInstrToAlign;
        inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt,
                                              _regalloc);
        // Check the next fallthrough block if first loop's block does not have
        // enough instructions.
        if( inst_cnt > 0 && i < last_block ) {
          // First, check if the first loop's block contains whole loop.
          // LoopNode::LoopBackControl == 2.
          Block *bx = _cfg->_bbs[b->pred(2)->_idx];
          // Skip connector blocks (with limit in case of irreducible loops).
          int search_limit = 16;
          while( bx->is_connector() && search_limit-- > 0) {
            bx = _cfg->_bbs[bx->pred(1)->_idx];
          }
          if( bx != b ) { // loop body is in several blocks.
            Block *nb = NULL;
            while( inst_cnt > 0 && i < last_block && nb != bx &&
                  !_cfg->_blocks[i+1]->head()->is_Loop() ) {
              i++;
              nb = _cfg->_blocks[i];
              inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt,
                                                      _regalloc);
            } // while( inst_cnt > 0 && i < last_block  )
          } // if( bx != b )
        } // if( inst_cnt > 0 && i < last_block )
        b->set_first_inst_size(sum_size);
      } // f( b->head()->is_Loop() )
    } // for( i <= last_block )
  } // if( MaxLoopPad < OptoLoopAlignment-1 )
}

//----------------------Shorten_branches---------------------------------------
// The architecture description provides short branch variants for some long
// branch instructions. Replace eligible long branches with short branches.
void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {

  // fill in the nop array for bundling computations
  MachNode *_nop_list[Bundle::_nop_count];
  Bundle::initialize_nops(_nop_list, this);

  // ------------------
  // Compute size of each block, method size, and relocation information size
  uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
  uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
  DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
  blk_starts[0]    = 0;

  // Initialize the sizes to 0
  code_size  = 0;          // Size in bytes of generated code
  stub_size  = 0;          // Size in bytes of all stub entries
  // Size in bytes of all relocation entries, including those in local stubs.
  // Start with 2-bytes of reloc info for the unvalidated entry point
  reloc_size = 1;          // Number of relocation entries
  const_size = 0;          // size of fp constants in words

  // Make three passes.  The first computes pessimistic blk_starts,
  // relative jmp_end, reloc_size and const_size information.
  // The second performs short branch substitution using the pessimistic
  // sizing. The third inserts nops where needed.

  Node *nj; // tmp

  // Step one, perform a pessimistic sizing pass.
  uint i;
  uint min_offset_from_last_call = 1;  // init to a positive value
  uint nop_size = (new (this) MachNopNode())->size(_regalloc);
  for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
    Block *b = _cfg->_blocks[i];

    // Sum all instruction sizes to compute block size
    uint last_inst = b->_nodes.size();
    uint blk_size = 0;
    for( uint j = 0; j<last_inst; j++ ) {
      nj = b->_nodes[j];
      uint inst_size = nj->size(_regalloc);
      blk_size += inst_size;
      // Handle machine instruction nodes
      if( nj->is_Mach() ) {
        MachNode *mach = nj->as_Mach();
        blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
        reloc_size += mach->reloc();
        const_size += mach->const_size();
        if( mach->is_MachCall() ) {
          MachCallNode *mcall = mach->as_MachCall();
          // This destination address is NOT PC-relative

          mcall->method_set((intptr_t)mcall->entry_point());

          if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
            stub_size  += size_java_to_interp();
            reloc_size += reloc_java_to_interp();
          }
        } else if (mach->is_MachSafePoint()) {
          // If call/safepoint are adjacent, account for possible
          // nop to disambiguate the two safepoints.
          if (min_offset_from_last_call == 0) {
            blk_size += nop_size;
          }
        }
      }
      min_offset_from_last_call += inst_size;
      // Remember end of call offset
      if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
        min_offset_from_last_call = 0;
      }
    }

    // During short branch replacement, we store the relative (to blk_starts)
    // end of jump in jmp_end, rather than the absolute end of jump.  This
    // is so that we do not need to recompute sizes of all nodes when we compute
    // correct blk_starts in our next sizing pass.
    jmp_end[i] = blk_size;
    DEBUG_ONLY( jmp_target[i] = 0; )

    // When the next block starts a loop, we may insert pad NOP
    // instructions.  Since we cannot know our future alignment,
    // assume the worst.
    if( i<_cfg->_num_blocks-1 ) {
      Block *nb = _cfg->_blocks[i+1];
      int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
      if( max_loop_pad > 0 ) {
        assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
        blk_size += max_loop_pad;
      }
    }

    // Save block size; update total method size
    blk_starts[i+1] = blk_starts[i]+blk_size;
  }

  // Step two, replace eligible long jumps.

  // Note: this will only get the long branches within short branch
  //   range. Another pass might detect more branches that became
  //   candidates because the shortening in the first pass exposed
  //   more opportunities. Unfortunately, this would require
  //   recomputing the starting and ending positions for the blocks
  for( i=0; i<_cfg->_num_blocks; i++ ) {
    Block *b = _cfg->_blocks[i];

    int j;
    // Find the branch; ignore trailing NOPs.
    for( j = b->_nodes.size()-1; j>=0; j-- ) {
      nj = b->_nodes[j];
      if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
        break;
    }

    if (j >= 0) {
      if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
        MachNode *mach = nj->as_Mach();
        // This requires the TRUE branch target be in succs[0]
        uint bnum = b->non_connector_successor(0)->_pre_order;
        uintptr_t target = blk_starts[bnum];
        if( mach->is_pc_relative() ) {
          int offset = target-(blk_starts[i] + jmp_end[i]);
          if (_matcher->is_short_branch_offset(offset)) {
            // We've got a winner.  Replace this branch.
            MachNode *replacement = mach->short_branch_version(this);
            b->_nodes.map(j, replacement);

            // Update the jmp_end size to save time in our
            // next pass.
            jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
            DEBUG_ONLY( jmp_target[i] = bnum; );
          }
        } else {
#ifndef PRODUCT
          mach->dump(3);
#endif
          Unimplemented();
        }
      }
    }
  }

  // Compute the size of first NumberOfLoopInstrToAlign instructions at head
  // of a loop. It is used to determine the padding for loop alignment.
  compute_loop_first_inst_sizes();

  // Step 3, compute the offsets of all the labels
  uint last_call_adr = max_uint;
  for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
    // copy the offset of the beginning to the corresponding label
    assert(labels[i].is_unused(), "cannot patch at this point");
    labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);

    // insert padding for any instructions that need it
    Block *b = _cfg->_blocks[i];
    uint last_inst = b->_nodes.size();
    uint adr = blk_starts[i];
    for( uint j = 0; j<last_inst; j++ ) {
      nj = b->_nodes[j];
      if( nj->is_Mach() ) {
        int padding = nj->as_Mach()->compute_padding(adr);
        // If call/safepoint are adjacent insert a nop (5010568)
        if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
            adr == last_call_adr ) {
          padding = nop_size;
        }
        if(padding > 0) {
          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
          int nops_cnt = padding / nop_size;
          MachNode *nop = new (this) MachNopNode(nops_cnt);
          b->_nodes.insert(j++, nop);
          _cfg->_bbs.map( nop->_idx, b );
          adr += padding;
          last_inst++;
        }
      }
      adr += nj->size(_regalloc);

      // Remember end of call offset
      if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
        last_call_adr = adr;
      }
    }

    if ( i != _cfg->_num_blocks-1) {
      // Get the size of the block
      uint blk_size = adr - blk_starts[i];

      // When the next block starts a loop, we may insert pad NOP
      // instructions.
      Block *nb = _cfg->_blocks[i+1];
      int current_offset = blk_starts[i] + blk_size;
      current_offset += nb->alignment_padding(current_offset);
      // Save block size; update total method size
      blk_starts[i+1] = current_offset;
    }
  }

#ifdef ASSERT
  for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
    if( jmp_target[i] != 0 ) {
      int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
      if (!_matcher->is_short_branch_offset(offset)) {
        tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
      }
      assert(_matcher->is_short_branch_offset(offset), "Displacement too large for short jmp");
    }
  }
#endif

  // ------------------
  // Compute size for code buffer
  code_size   = blk_starts[i-1] + jmp_end[i-1];

  // Relocation records
  reloc_size += 1;              // Relo entry for exception handler

  // Adjust reloc_size to number of record of relocation info
  // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
  // a relocation index.
  // The CodeBuffer will expand the locs array if this estimate is too low.
  reloc_size   *= 10 / sizeof(relocInfo);

  // Adjust const_size to number of bytes
  const_size   *= 2*jintSize; // both float and double take two words per entry

}

//------------------------------FillLocArray-----------------------------------
// Create a bit of debug info and append it to the array.  The mapping is from
// Java local or expression stack to constant, register or stack-slot.  For
// doubles, insert 2 mappings and return 1 (to tell the caller that the next
// entry has been taken care of and caller should skip it).
static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
  // This should never have accepted Bad before
  assert(OptoReg::is_valid(regnum), "location must be valid");
  return (OptoReg::is_reg(regnum))
    ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
    : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
}

void Compile::FillLocArray( int idx, Node *local, GrowableArray<ScopeValue*> *array ) {
  assert( local, "use _top instead of null" );
  if (array->length() != idx) {
    assert(array->length() == idx + 1, "Unexpected array count");
    // Old functionality:
    //   return
    // New functionality:
    //   Assert if the local is not top. In product mode let the new node
    //   override the old entry.
    assert(local == top(), "LocArray collision");
    if (local == top()) {
      return;
    }
    array->pop();
  }
  const Type *t = local->bottom_type();

  // Grab the register number for the local
  OptoReg::Name regnum = _regalloc->get_reg_first(local);
  if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
    // Record the double as two float registers.
    // The register mask for such a value always specifies two adjacent
    // float registers, with the lower register number even.
    // Normally, the allocation of high and low words to these registers
    // is irrelevant, because nearly all operations on register pairs
    // (e.g., StoreD) treat them as a single unit.
    // Here, we assume in addition that the words in these two registers
    // stored "naturally" (by operations like StoreD and double stores
    // within the interpreter) such that the lower-numbered register
    // is written to the lower memory address.  This may seem like
    // a machine dependency, but it is not--it is a requirement on
    // the author of the <arch>.ad file to ensure that, for every
    // even/odd double-register pair to which a double may be allocated,
    // the word in the even single-register is stored to the first
    // memory word.  (Note that register numbers are completely
    // arbitrary, and are not tied to any machine-level encodings.)
#ifdef _LP64
    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
      array->append(new ConstantIntValue(0));
      array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
    } else if ( t->base() == Type::Long ) {
      array->append(new ConstantIntValue(0));
      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
    } else if ( t->base() == Type::RawPtr ) {
      // jsr/ret return address which must be restored into a the full
      // width 64-bit stack slot.
      array->append(new_loc_value( _regalloc, regnum, Location::lng ));
    }
#else //_LP64
#ifdef SPARC
    if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
      // For SPARC we have to swap high and low words for
      // long values stored in a single-register (g0-g7).
      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
    } else
#endif //SPARC
    if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
      // Repack the double/long as two jints.
      // The convention the interpreter uses is that the second local
      // holds the first raw word of the native double representation.
      // This is actually reasonable, since locals and stack arrays
      // grow downwards in all implementations.
      // (If, on some machine, the interpreter's Java locals or stack
      // were to grow upwards, the embedded doubles would be word-swapped.)
      array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
      array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
    }
#endif //_LP64
    else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
               OptoReg::is_reg(regnum) ) {
      array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double
                                   ? Location::float_in_dbl : Location::normal ));
    } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
      array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
                                   ? Location::int_in_long : Location::normal ));
    } else {
      array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
    }
    return;
  }

  // No register.  It must be constant data.
  switch (t->base()) {
  case Type::Half:              // Second half of a double
    ShouldNotReachHere();       // Caller should skip 2nd halves
    break;
  case Type::AnyPtr:
    array->append(new ConstantOopWriteValue(NULL));
    break;
  case Type::AryPtr:
  case Type::InstPtr:
  case Type::KlassPtr:          // fall through
    array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->encoding()));
    break;
  case Type::Int:
    array->append(new ConstantIntValue(t->is_int()->get_con()));
    break;
  case Type::RawPtr:
    // A return address (T_ADDRESS).
    assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
#ifdef _LP64
    // Must be restored to the full-width 64-bit stack slot.
    array->append(new ConstantLongValue(t->is_ptr()->get_con()));
#else
    array->append(new ConstantIntValue(t->is_ptr()->get_con()));
#endif
    break;
  case Type::FloatCon: {
    float f = t->is_float_constant()->getf();
    array->append(new ConstantIntValue(jint_cast(f)));
    break;
  }
  case Type::DoubleCon: {
    jdouble d = t->is_double_constant()->getd();
#ifdef _LP64
    array->append(new ConstantIntValue(0));
    array->append(new ConstantDoubleValue(d));
#else
    // Repack the double as two jints.
    // The convention the interpreter uses is that the second local
    // holds the first raw word of the native double representation.
    // This is actually reasonable, since locals and stack arrays
    // grow downwards in all implementations.
    // (If, on some machine, the interpreter's Java locals or stack
    // were to grow upwards, the embedded doubles would be word-swapped.)
    jint   *dp = (jint*)&d;
    array->append(new ConstantIntValue(dp[1]));
    array->append(new ConstantIntValue(dp[0]));
#endif
    break;
  }
  case Type::Long: {
    jlong d = t->is_long()->get_con();
#ifdef _LP64
    array->append(new ConstantIntValue(0));
    array->append(new ConstantLongValue(d));
#else
    // Repack the long as two jints.
    // The convention the interpreter uses is that the second local
    // holds the first raw word of the native double representation.
    // This is actually reasonable, since locals and stack arrays
    // grow downwards in all implementations.
    // (If, on some machine, the interpreter's Java locals or stack
    // were to grow upwards, the embedded doubles would be word-swapped.)
    jint *dp = (jint*)&d;
    array->append(new ConstantIntValue(dp[1]));
    array->append(new ConstantIntValue(dp[0]));
#endif
    break;
  }
  case Type::Top:               // Add an illegal value here
    array->append(new LocationValue(Location()));
    break;
  default:
    ShouldNotReachHere();
    break;
  }
}

// Determine if this node starts a bundle
bool Compile::starts_bundle(const Node *n) const {
  return (_node_bundling_limit > n->_idx &&
          _node_bundling_base[n->_idx].starts_bundle());
}

//--------------------------Process_OopMap_Node--------------------------------
void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {

  // Handle special safepoint nodes for synchronization
  MachSafePointNode *sfn   = mach->as_MachSafePoint();
  MachCallNode      *mcall;

#ifdef ENABLE_ZAP_DEAD_LOCALS
  assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
#endif

  int safepoint_pc_offset = current_offset;

  // Add the safepoint in the DebugInfoRecorder
  if( !mach->is_MachCall() ) {
    mcall = NULL;
    debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
  } else {
    mcall = mach->as_MachCall();
    safepoint_pc_offset += mcall->ret_addr_offset();
    debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
  }

  // Loop over the JVMState list to add scope information
  // Do not skip safepoints with a NULL method, they need monitor info
  JVMState* youngest_jvms = sfn->jvms();
  int max_depth = youngest_jvms->depth();

  // Visit scopes from oldest to youngest.
  for (int depth = 1; depth <= max_depth; depth++) {
    JVMState* jvms = youngest_jvms->of_depth(depth);
    int idx;
    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
    // Safepoints that do not have method() set only provide oop-map and monitor info
    // to support GC; these do not support deoptimization.
    int num_locs = (method == NULL) ? 0 : jvms->loc_size();
    int num_exps = (method == NULL) ? 0 : jvms->stk_size();
    int num_mon  = jvms->nof_monitors();
    assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
           "JVMS local count must match that of the method");

    // Add Local and Expression Stack Information

    // Insert locals into the locarray
    GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
    for( idx = 0; idx < num_locs; idx++ ) {
      FillLocArray( idx, sfn->local(jvms, idx), locarray );
    }

    // Insert expression stack entries into the exparray
    GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
    for( idx = 0; idx < num_exps; idx++ ) {
      FillLocArray( idx,  sfn->stack(jvms, idx), exparray );
    }

    // Add in mappings of the monitors
    assert( !method ||
            !method->is_synchronized() ||
            method->is_native() ||
            num_mon > 0 ||
            !GenerateSynchronizationCode,
            "monitors must always exist for synchronized methods");

    // Build the growable array of ScopeValues for exp stack
    GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);

    // Loop over monitors and insert into array
    for(idx = 0; idx < num_mon; idx++) {
      // Grab the node that defines this monitor
      Node* box_node;
      Node* obj_node;
      box_node = sfn->monitor_box(jvms, idx);
      obj_node = sfn->monitor_obj(jvms, idx);

      // Create ScopeValue for object
      ScopeValue *scval = NULL;
      if( !obj_node->is_Con() ) {
        OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
        scval = new_loc_value( _regalloc, obj_reg, Location::oop );
      } else {
        scval = new ConstantOopWriteValue(obj_node->bottom_type()->is_instptr()->const_oop()->encoding());
      }

      OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
      monarray->append(new MonitorValue(scval, Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg))));
    }

    // Build first class objects to pass to scope
    DebugToken *locvals = debug_info()->create_scope_values(locarray);
    DebugToken *expvals = debug_info()->create_scope_values(exparray);
    DebugToken *monvals = debug_info()->create_monitor_values(monarray);

    // Make method available for all Safepoints
    ciMethod* scope_method = method ? method : _method;
    // Describe the scope here
    assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
    debug_info()->describe_scope(safepoint_pc_offset,scope_method,jvms->bci(),locvals,expvals,monvals);
  } // End jvms loop

  // Mark the end of the scope set.
  debug_info()->end_safepoint(safepoint_pc_offset);
}



// A simplified version of Process_OopMap_Node, to handle non-safepoints.
class NonSafepointEmitter {
  Compile*  C;
  JVMState* _pending_jvms;
  int       _pending_offset;

  void emit_non_safepoint();

 public:
  NonSafepointEmitter(Compile* compile) {
    this->C = compile;
    _pending_jvms = NULL;
    _pending_offset = 0;
  }

  void observe_instruction(Node* n, int pc_offset) {
    if (!C->debug_info()->recording_non_safepoints())  return;

    Node_Notes* nn = C->node_notes_at(n->_idx);
    if (nn == NULL || nn->jvms() == NULL)  return;
    if (_pending_jvms != NULL &&
        _pending_jvms->same_calls_as(nn->jvms())) {
      // Repeated JVMS?  Stretch it up here.
      _pending_offset = pc_offset;
    } else {
      if (_pending_jvms != NULL &&
          _pending_offset < pc_offset) {
        emit_non_safepoint();
      }
      _pending_jvms = NULL;
      if (pc_offset > C->debug_info()->last_pc_offset()) {
        // This is the only way _pending_jvms can become non-NULL:
        _pending_jvms = nn->jvms();
        _pending_offset = pc_offset;
      }
    }
  }

  // Stay out of the way of real safepoints:
  void observe_safepoint(JVMState* jvms, int pc_offset) {
    if (_pending_jvms != NULL &&
        !_pending_jvms->same_calls_as(jvms) &&
        _pending_offset < pc_offset) {
      emit_non_safepoint();
    }
    _pending_jvms = NULL;
  }

  void flush_at_end() {
    if (_pending_jvms != NULL) {
      emit_non_safepoint();
    }
    _pending_jvms = NULL;
  }
};

void NonSafepointEmitter::emit_non_safepoint() {
  JVMState* youngest_jvms = _pending_jvms;
  int       pc_offset     = _pending_offset;

  // Clear it now:
  _pending_jvms = NULL;

  DebugInformationRecorder* debug_info = C->debug_info();
  assert(debug_info->recording_non_safepoints(), "sanity");

  debug_info->add_non_safepoint(pc_offset);
  int max_depth = youngest_jvms->depth();

  // Visit scopes from oldest to youngest.
  for (int depth = 1; depth <= max_depth; depth++) {
    JVMState* jvms = youngest_jvms->of_depth(depth);
    ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
    debug_info->describe_scope(pc_offset, method, jvms->bci());
  }

  // Mark the end of the scope set.
  debug_info->end_non_safepoint(pc_offset);
}



// helper for Fill_buffer bailout logic
static void turn_off_compiler(Compile* C) {
  if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
    // Do not turn off compilation if a single giant method has
    // blown the code cache size.
    C->record_failure("excessive request to CodeCache");
  } else {
    UseInterpreter            = true;
    UseCompiler               = false;
    AlwaysCompileLoopMethods  = false;
    C->record_failure("CodeCache is full");
    warning("CodeCache is full. Compiling has been disabled");
  }
}


//------------------------------Fill_buffer------------------------------------
void Compile::Fill_buffer() {

  // Set the initially allocated size
  int  code_req   = initial_code_capacity;
  int  locs_req   = initial_locs_capacity;
  int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
  int  const_req  = initial_const_capacity;
  bool labels_not_set = true;

  int  pad_req    = NativeCall::instruction_size;
  // The extra spacing after the code is necessary on some platforms.
  // Sometimes we need to patch in a jump after the last instruction,
  // if the nmethod has been deoptimized.  (See 4932387, 4894843.)

  uint i;
  // Compute the byte offset where we can store the deopt pc.
  if (fixed_slots() != 0) {
    _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
  }

  // Compute prolog code size
  _method_size = 0;
  _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
#ifdef IA64
  if (save_argument_registers()) {
    // 4815101: this is a stub with implicit and unknown precision fp args.
    // The usual spill mechanism can only generate stfd's in this case, which
    // doesn't work if the fp reg to spill contains a single-precision denorm.
    // Instead, we hack around the normal spill mechanism using stfspill's and
    // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
    // space here for the fp arg regs (f8-f15) we're going to thusly spill.
    //
    // If we ever implement 16-byte 'registers' == stack slots, we can
    // get rid of this hack and have SpillCopy generate stfspill/ldffill
    // instead of stfd/stfs/ldfd/ldfs.
    _frame_slots += 8*(16/BytesPerInt);
  }
#endif
  assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );

  // Create an array of unused labels, one for each basic block
  Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);

  for( i=0; i <= _cfg->_num_blocks; i++ ) {
    blk_labels[i].init();
  }

  // If this machine supports different size branch offsets, then pre-compute
  // the length of the blocks
  if( _matcher->is_short_branch_offset(0) ) {
    Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
    labels_not_set = false;
  }

  // nmethod and CodeBuffer count stubs & constants as part of method's code.
  int exception_handler_req = size_exception_handler();
  int deopt_handler_req = size_deopt_handler();
  exception_handler_req += MAX_stubs_size; // add marginal slop for handler
  deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
  stub_req += MAX_stubs_size;   // ensure per-stub margin
  code_req += MAX_inst_size;    // ensure per-instruction margin
  if (StressCodeBuffers)
    code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
  int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req;
  CodeBuffer* cb = code_buffer();
  cb->initialize(total_req, locs_req);

  // Have we run out of code space?
  if (cb->blob() == NULL) {
    turn_off_compiler(this);
    return;
  }
  // Configure the code buffer.
  cb->initialize_consts_size(const_req);
  cb->initialize_stubs_size(stub_req);
  cb->initialize_oop_recorder(env()->oop_recorder());

  // fill in the nop array for bundling computations
  MachNode *_nop_list[Bundle::_nop_count];
  Bundle::initialize_nops(_nop_list, this);

  // Create oopmap set.
  _oop_map_set = new OopMapSet();

  // !!!!! This preserves old handling of oopmaps for now
  debug_info()->set_oopmaps(_oop_map_set);

  // Count and start of implicit null check instructions
  uint inct_cnt = 0;
  uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);

  // Count and start of calls
  uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);

  uint  return_offset = 0;
  MachNode *nop = new (this) MachNopNode();

  int previous_offset = 0;
  int current_offset  = 0;
  int last_call_offset = -1;

  // Create an array of unused labels, one for each basic block, if printing is enabled
#ifndef PRODUCT
  int *node_offsets      = NULL;
  uint  node_offset_limit = unique();


  if ( print_assembly() )
    node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
#endif

  NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily

  // ------------------
  // Now fill in the code buffer
  Node *delay_slot = NULL;

  for( i=0; i < _cfg->_num_blocks; i++ ) {
    Block *b = _cfg->_blocks[i];

    Node *head = b->head();

    // If this block needs to start aligned (i.e, can be reached other
    // than by falling-thru from the previous block), then force the
    // start of a new bundle.
    if( Pipeline::requires_bundling() && starts_bundle(head) )
      cb->flush_bundle(true);

    // Define the label at the beginning of the basic block
    if( labels_not_set )
      MacroAssembler(cb).bind( blk_labels[b->_pre_order] );

    else
      assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
              "label position does not match code offset" );

    uint last_inst = b->_nodes.size();

    // Emit block normally, except for last instruction.
    // Emit means "dump code bits into code buffer".
    for( uint j = 0; j<last_inst; j++ ) {

      // Get the node
      Node* n = b->_nodes[j];

      // See if delay slots are supported
      if (valid_bundle_info(n) &&
          node_bundling(n)->used_in_unconditional_delay()) {
        assert(delay_slot == NULL, "no use of delay slot node");
        assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");

        delay_slot = n;
        continue;
      }

      // If this starts a new instruction group, then flush the current one
      // (but allow split bundles)
      if( Pipeline::requires_bundling() && starts_bundle(n) )
        cb->flush_bundle(false);

      // The following logic is duplicated in the code ifdeffed for
      // ENABLE_ZAP_DEAD_LOCALS which apppears above in this file.  It
      // should be factored out.  Or maybe dispersed to the nodes?

      // Special handling for SafePoint/Call Nodes
      bool is_mcall = false;
      if( n->is_Mach() ) {
        MachNode *mach = n->as_Mach();
        is_mcall = n->is_MachCall();
        bool is_sfn = n->is_MachSafePoint();

        // If this requires all previous instructions be flushed, then do so
        if( is_sfn || is_mcall || mach->alignment_required() != 1) {
          cb->flush_bundle(true);
          current_offset = cb->code_size();
        }

        // align the instruction if necessary
        int nop_size = nop->size(_regalloc);
        int padding = mach->compute_padding(current_offset);
        // Make sure safepoint node for polling is distinct from a call's
        // return by adding a nop if needed.
        if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
          padding = nop_size;
        }
        assert( labels_not_set || padding == 0, "instruction should already be aligned")

        if(padding > 0) {
          assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
          int nops_cnt = padding / nop_size;
          MachNode *nop = new (this) MachNopNode(nops_cnt);
          b->_nodes.insert(j++, nop);
          last_inst++;
          _cfg->_bbs.map( nop->_idx, b );
          nop->emit(*cb, _regalloc);
          cb->flush_bundle(true);
          current_offset = cb->code_size();
        }

        // Remember the start of the last call in a basic block
        if (is_mcall) {
          MachCallNode *mcall = mach->as_MachCall();

          // This destination address is NOT PC-relative
          mcall->method_set((intptr_t)mcall->entry_point());

          // Save the return address
          call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();

          if (!mcall->is_safepoint_node()) {
            is_mcall = false;
            is_sfn = false;
          }
        }

        // sfn will be valid whenever mcall is valid now because of inheritance
        if( is_sfn || is_mcall ) {

          // Handle special safepoint nodes for synchronization
          if( !is_mcall ) {
            MachSafePointNode *sfn = mach->as_MachSafePoint();
            // !!!!! Stubs only need an oopmap right now, so bail out
            if( sfn->jvms()->method() == NULL) {
              // Write the oopmap directly to the code blob??!!
#             ifdef ENABLE_ZAP_DEAD_LOCALS
              assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
#             endif
              continue;
            }
          } // End synchronization

          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
                                           current_offset);
          Process_OopMap_Node(mach, current_offset);
        } // End if safepoint

        // If this is a null check, then add the start of the previous instruction to the list
        else if( mach->is_MachNullCheck() ) {
          inct_starts[inct_cnt++] = previous_offset;
        }

        // If this is a branch, then fill in the label with the target BB's label
        else if ( mach->is_Branch() ) {

          if ( mach->ideal_Opcode() == Op_Jump ) {
            for (uint h = 0; h < b->_num_succs; h++ ) {
              Block* succs_block = b->_succs[h];
              for (uint j = 1; j < succs_block->num_preds(); j++) {
                Node* jpn = succs_block->pred(j);
                if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
                  uint block_num = succs_block->non_connector()->_pre_order;
                  Label *blkLabel = &blk_labels[block_num];
                  mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
                }
              }
            }
          } else {
            // For Branchs
            // This requires the TRUE branch target be in succs[0]
            uint block_num = b->non_connector_successor(0)->_pre_order;
            mach->label_set( blk_labels[block_num], block_num );
          }
        }

#ifdef ASSERT
        // Check that oop-store preceeds the card-mark
        else if( mach->ideal_Opcode() == Op_StoreCM ) {
          uint storeCM_idx = j;
          Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
          assert( oop_store != NULL, "storeCM expects a precedence edge");
          uint i4;
          for( i4 = 0; i4 < last_inst; ++i4 ) {
            if( b->_nodes[i4] == oop_store ) break;
          }
          // Note: This test can provide a false failure if other precedence
          // edges have been added to the storeCMNode.
          assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
        }
#endif

        else if( !n->is_Proj() ) {
          // Remember the begining of the previous instruction, in case
          // it's followed by a flag-kill and a null-check.  Happens on
          // Intel all the time, with add-to-memory kind of opcodes.
          previous_offset = current_offset;
        }
      }

      // Verify that there is sufficient space remaining
      cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
      if (cb->blob() == NULL) {
        turn_off_compiler(this);
        return;
      }

      // Save the offset for the listing
#ifndef PRODUCT
      if( node_offsets && n->_idx < node_offset_limit )
        node_offsets[n->_idx] = cb->code_size();
#endif

      // "Normal" instruction case
      n->emit(*cb, _regalloc);
      current_offset  = cb->code_size();
      non_safepoints.observe_instruction(n, current_offset);

      // mcall is last "call" that can be a safepoint
      // record it so we can see if a poll will directly follow it
      // in which case we'll need a pad to make the PcDesc sites unique
      // see  5010568. This can be slightly inaccurate but conservative
      // in the case that return address is not actually at current_offset.
      // This is a small price to pay.

      if (is_mcall) {
        last_call_offset = current_offset;
      }

      // See if this instruction has a delay slot
      if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
        assert(delay_slot != NULL, "expecting delay slot node");

        // Back up 1 instruction
        cb->set_code_end(
          cb->code_end()-Pipeline::instr_unit_size());

        // Save the offset for the listing
#ifndef PRODUCT
        if( node_offsets && delay_slot->_idx < node_offset_limit )
          node_offsets[delay_slot->_idx] = cb->code_size();
#endif

        // Support a SafePoint in the delay slot
        if( delay_slot->is_MachSafePoint() ) {
          MachNode *mach = delay_slot->as_Mach();
          // !!!!! Stubs only need an oopmap right now, so bail out
          if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
            // Write the oopmap directly to the code blob??!!
#           ifdef ENABLE_ZAP_DEAD_LOCALS
            assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
#           endif
            delay_slot = NULL;
            continue;
          }

          int adjusted_offset = current_offset - Pipeline::instr_unit_size();
          non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
                                           adjusted_offset);
          // Generate an OopMap entry
          Process_OopMap_Node(mach, adjusted_offset);
        }

        // Insert the delay slot instruction
        delay_slot->emit(*cb, _regalloc);

        // Don't reuse it
        delay_slot = NULL;
      }

    } // End for all instructions in block

    // If the next block _starts_ a loop, pad this block out to align
    // the loop start a little. Helps prevent pipe stalls at loop starts
    int nop_size = (new (this) MachNopNode())->size(_regalloc);
    if( i<_cfg->_num_blocks-1 ) {
      Block *nb = _cfg->_blocks[i+1];
      uint padding = nb->alignment_padding(current_offset);
      if( padding > 0 ) {
        MachNode *nop = new (this) MachNopNode(padding / nop_size);
        b->_nodes.insert( b->_nodes.size(), nop );
        _cfg->_bbs.map( nop->_idx, b );
        nop->emit(*cb, _regalloc);
        current_offset = cb->code_size();
      }
    }

  } // End of for all blocks

  non_safepoints.flush_at_end();

  // Offset too large?
  if (failing())  return;

  // Define a pseudo-label at the end of the code
  MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );

  // Compute the size of the first block
  _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();

  assert(cb->code_size() < 500000, "method is unreasonably large");

  // ------------------

#ifndef PRODUCT
  // Information on the size of the method, without the extraneous code
  Scheduling::increment_method_size(cb->code_size());
#endif

  // ------------------
  // Fill in exception table entries.
  FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);

  // Only java methods have exception handlers and deopt handlers
  if (_method) {
    // Emit the exception handler code.
    _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
    // Emit the deopt handler code.
    _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
  }

  // One last check for failed CodeBuffer::expand:
  if (cb->blob() == NULL) {
    turn_off_compiler(this);
    return;
  }

#ifndef PRODUCT
  // Dump the assembly code, including basic-block numbers
  if (print_assembly()) {
    ttyLocker ttyl;  // keep the following output all in one block
    if (!VMThread::should_terminate()) {  // test this under the tty lock
      // This output goes directly to the tty, not the compiler log.
      // To enable tools to match it up with the compilation activity,
      // be sure to tag this tty output with the compile ID.
      if (xtty != NULL) {
        xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
                   is_osr_compilation()    ? " compile_kind='osr'" :
                   "");
      }
      if (method() != NULL) {
        method()->print_oop();
        print_codes();
      }
      dump_asm(node_offsets, node_offset_limit);
      if (xtty != NULL) {
        xtty->tail("opto_assembly");
      }
    }
  }
#endif

}

void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
  _inc_table.set_size(cnt);

  uint inct_cnt = 0;
  for( uint i=0; i<_cfg->_num_blocks; i++ ) {
    Block *b = _cfg->_blocks[i];
    Node *n = NULL;
    int j;

    // Find the branch; ignore trailing NOPs.
    for( j = b->_nodes.size()-1; j>=0; j-- ) {
      n = b->_nodes[j];
      if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
        break;
    }

    // If we didn't find anything, continue
    if( j < 0 ) continue;

    // Compute ExceptionHandlerTable subtable entry and add it
    // (skip empty blocks)
    if( n->is_Catch() ) {

      // Get the offset of the return from the call
      uint call_return = call_returns[b->_pre_order];
#ifdef ASSERT
      assert( call_return > 0, "no call seen for this basic block" );
      while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
      assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
#endif
      // last instruction is a CatchNode, find it's CatchProjNodes
      int nof_succs = b->_num_succs;
      // allocate space
      GrowableArray<intptr_t> handler_bcis(nof_succs);
      GrowableArray<intptr_t> handler_pcos(nof_succs);
      // iterate through all successors
      for (int j = 0; j < nof_succs; j++) {
        Block* s = b->_succs[j];
        bool found_p = false;
        for( uint k = 1; k < s->num_preds(); k++ ) {
          Node *pk = s->pred(k);
          if( pk->is_CatchProj() && pk->in(0) == n ) {
            const CatchProjNode* p = pk->as_CatchProj();
            found_p = true;
            // add the corresponding handler bci & pco information
            if( p->_con != CatchProjNode::fall_through_index ) {
              // p leads to an exception handler (and is not fall through)
              assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
              // no duplicates, please
              if( !handler_bcis.contains(p->handler_bci()) ) {
                uint block_num = s->non_connector()->_pre_order;
                handler_bcis.append(p->handler_bci());
                handler_pcos.append(blk_labels[block_num].loc_pos());
              }
            }
          }
        }
        assert(found_p, "no matching predecessor found");
        // Note:  Due to empty block removal, one block may have
        // several CatchProj inputs, from the same Catch.
      }

      // Set the offset of the return from the call
      _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
      continue;
    }

    // Handle implicit null exception table updates
    if( n->is_MachNullCheck() ) {
      uint block_num = b->non_connector_successor(0)->_pre_order;
      _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
      continue;
    }
  } // End of for all blocks fill in exception table entries
}

// Static Variables
#ifndef PRODUCT
uint Scheduling::_total_nop_size = 0;
uint Scheduling::_total_method_size = 0;
uint Scheduling::_total_branches = 0;
uint Scheduling::_total_unconditional_delays = 0;
uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
#endif

// Initializer for class Scheduling

Scheduling::Scheduling(Arena *arena, Compile &compile)
  : _arena(arena),
    _cfg(compile.cfg()),
    _bbs(compile.cfg()->_bbs),
    _regalloc(compile.regalloc()),
    _reg_node(arena),
    _bundle_instr_count(0),
    _bundle_cycle_number(0),
    _scheduled(arena),
    _available(arena),
    _next_node(NULL),
    _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
    _pinch_free_list(arena)
#ifndef PRODUCT
  , _branches(0)
  , _unconditional_delays(0)
#endif
{
  // Create a MachNopNode
  _nop = new (&compile) MachNopNode();

  // Now that the nops are in the array, save the count
  // (but allow entries for the nops)
  _node_bundling_limit = compile.unique();
  uint node_max = _regalloc->node_regs_max_index();

  compile.set_node_bundling_limit(_node_bundling_limit);

  // This one is persistant within the Compile class
  _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);

  // Allocate space for fixed-size arrays
  _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
  _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);

  // Clear the arrays
  memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
  memset(_node_latency,       0, node_max * sizeof(unsigned short));
  memset(_uses,               0, node_max * sizeof(short));
  memset(_current_latency,    0, node_max * sizeof(unsigned short));

  // Clear the bundling information
  memcpy(_bundle_use_elements,
    Pipeline_Use::elaborated_elements,
    sizeof(Pipeline_Use::elaborated_elements));

  // Get the last node
  Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];

  _next_node = bb->_nodes[bb->_nodes.size()-1];
}

#ifndef PRODUCT
// Scheduling destructor
Scheduling::~Scheduling() {
  _total_branches             += _branches;
  _total_unconditional_delays += _unconditional_delays;
}
#endif

// Step ahead "i" cycles
void Scheduling::step(uint i) {

  Bundle *bundle = node_bundling(_next_node);
  bundle->set_starts_bundle();

  // Update the bundle record, but leave the flags information alone
  if (_bundle_instr_count > 0) {
    bundle->set_instr_count(_bundle_instr_count);
    bundle->set_resources_used(_bundle_use.resourcesUsed());
  }

  // Update the state information
  _bundle_instr_count = 0;
  _bundle_cycle_number += i;
  _bundle_use.step(i);
}

void Scheduling::step_and_clear() {
  Bundle *bundle = node_bundling(_next_node);
  bundle->set_starts_bundle();

  // Update the bundle record
  if (_bundle_instr_count > 0) {
    bundle->set_instr_count(_bundle_instr_count);
    bundle->set_resources_used(_bundle_use.resourcesUsed());

    _bundle_cycle_number += 1;
  }

  // Clear the bundling information
  _bundle_instr_count = 0;
  _bundle_use.reset();

  memcpy(_bundle_use_elements,
    Pipeline_Use::elaborated_elements,
    sizeof(Pipeline_Use::elaborated_elements));
}

//------------------------------ScheduleAndBundle------------------------------
// Perform instruction scheduling and bundling over the sequence of
// instructions in backwards order.
void Compile::ScheduleAndBundle() {

  // Don't optimize this if it isn't a method
  if (!_method)
    return;

  // Don't optimize this if scheduling is disabled
  if (!do_scheduling())
    return;

  NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )

  // Create a data structure for all the scheduling information
  Scheduling scheduling(Thread::current()->resource_area(), *this);

  // Walk backwards over each basic block, computing the needed alignment
  // Walk over all the basic blocks
  scheduling.DoScheduling();
}

//------------------------------ComputeLocalLatenciesForward-------------------
// Compute the latency of all the instructions.  This is fairly simple,
// because we already have a legal ordering.  Walk over the instructions
// from first to last, and compute the latency of the instruction based
// on the latency of the preceeding instruction(s).
void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("# -> ComputeLocalLatenciesForward\n");
#endif

  // Walk over all the schedulable instructions
  for( uint j=_bb_start; j < _bb_end; j++ ) {

    // This is a kludge, forcing all latency calculations to start at 1.
    // Used to allow latency 0 to force an instruction to the beginning
    // of the bb
    uint latency = 1;
    Node *use = bb->_nodes[j];
    uint nlen = use->len();

    // Walk over all the inputs
    for ( uint k=0; k < nlen; k++ ) {
      Node *def = use->in(k);
      if (!def)
        continue;

      uint l = _node_latency[def->_idx] + use->latency(k);
      if (latency < l)
        latency = l;
    }

    _node_latency[use->_idx] = latency;

#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) {
      tty->print("# latency %4d: ", latency);
      use->dump();
    }
#endif
  }

#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("# <- ComputeLocalLatenciesForward\n");
#endif

} // end ComputeLocalLatenciesForward

// See if this node fits into the present instruction bundle
bool Scheduling::NodeFitsInBundle(Node *n) {
  uint n_idx = n->_idx;

  // If this is the unconditional delay instruction, then it fits
  if (n == _unconditional_delay_slot) {
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output())
      tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
#endif
    return (true);
  }

  // If the node cannot be scheduled this cycle, skip it
  if (_current_latency[n_idx] > _bundle_cycle_number) {
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output())
      tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
        n->_idx, _current_latency[n_idx], _bundle_cycle_number);
#endif
    return (false);
  }

  const Pipeline *node_pipeline = n->pipeline();

  uint instruction_count = node_pipeline->instructionCount();
  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
    instruction_count = 0;
  else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
    instruction_count++;

  if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output())
      tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
        n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
#endif
    return (false);
  }

  // Don't allow non-machine nodes to be handled this way
  if (!n->is_Mach() && instruction_count == 0)
    return (false);

  // See if there is any overlap
  uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());

  if (delay > 0) {
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output())
      tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
#endif
    return false;
  }

#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
#endif

  return true;
}

Node * Scheduling::ChooseNodeToBundle() {
  uint siz = _available.size();

  if (siz == 0) {

#ifndef PRODUCT
    if (_cfg->C->trace_opto_output())
      tty->print("#   ChooseNodeToBundle: NULL\n");
#endif
    return (NULL);
  }

  // Fast path, if only 1 instruction in the bundle
  if (siz == 1) {
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) {
      tty->print("#   ChooseNodeToBundle (only 1): ");
      _available[0]->dump();
    }
#endif
    return (_available[0]);
  }

  // Don't bother, if the bundle is already full
  if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
    for ( uint i = 0; i < siz; i++ ) {
      Node *n = _available[i];

      // Skip projections, we'll handle them another way
      if (n->is_Proj())
        continue;

      // This presupposed that instructions are inserted into the
      // available list in a legality order; i.e. instructions that
      // must be inserted first are at the head of the list
      if (NodeFitsInBundle(n)) {
#ifndef PRODUCT
        if (_cfg->C->trace_opto_output()) {
          tty->print("#   ChooseNodeToBundle: ");
          n->dump();
        }
#endif
        return (n);
      }
    }
  }

  // Nothing fits in this bundle, choose the highest priority
#ifndef PRODUCT
  if (_cfg->C->trace_opto_output()) {
    tty->print("#   ChooseNodeToBundle: ");
    _available[0]->dump();
  }
#endif

  return _available[0];
}

//------------------------------AddNodeToAvailableList-------------------------
void Scheduling::AddNodeToAvailableList(Node *n) {
  assert( !n->is_Proj(), "projections never directly made available" );
#ifndef PRODUCT
  if (_cfg->C->trace_opto_output()) {
    tty->print("#   AddNodeToAvailableList: ");
    n->dump();
  }
#endif

  int latency = _current_latency[n->_idx];

  // Insert in latency order (insertion sort)
  uint i;
  for ( i=0; i < _available.size(); i++ )
    if (_current_latency[_available[i]->_idx] > latency)
      break;

  // Special Check for compares following branches
  if( n->is_Mach() && _scheduled.size() > 0 ) {
    int op = n->as_Mach()->ideal_Opcode();
    Node *last = _scheduled[0];
    if( last->is_MachIf() && last->in(1) == n &&
        ( op == Op_CmpI ||
          op == Op_CmpU ||
          op == Op_CmpP ||
          op == Op_CmpF ||
          op == Op_CmpD ||
          op == Op_CmpL ) ) {

      // Recalculate position, moving to front of same latency
      for ( i=0 ; i < _available.size(); i++ )
        if (_current_latency[_available[i]->_idx] >= latency)
          break;
    }
  }

  // Insert the node in the available list
  _available.insert(i, n);

#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    dump_available();
#endif
}

//------------------------------DecrementUseCounts-----------------------------
void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
  for ( uint i=0; i < n->len(); i++ ) {
    Node *def = n->in(i);
    if (!def) continue;
    if( def->is_Proj() )        // If this is a machine projection, then
      def = def->in(0);         // propagate usage thru to the base instruction

    if( _bbs[def->_idx] != bb ) // Ignore if not block-local
      continue;

    // Compute the latency
    uint l = _bundle_cycle_number + n->latency(i);
    if (_current_latency[def->_idx] < l)
      _current_latency[def->_idx] = l;

    // If this does not have uses then schedule it
    if ((--_uses[def->_idx]) == 0)
      AddNodeToAvailableList(def);
  }
}

//------------------------------AddNodeToBundle--------------------------------
void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
#ifndef PRODUCT
  if (_cfg->C->trace_opto_output()) {
    tty->print("#   AddNodeToBundle: ");
    n->dump();
  }
#endif

  // Remove this from the available list
  uint i;
  for (i = 0; i < _available.size(); i++)
    if (_available[i] == n)
      break;
  assert(i < _available.size(), "entry in _available list not found");
  _available.remove(i);

  // See if this fits in the current bundle
  const Pipeline *node_pipeline = n->pipeline();
  const Pipeline_Use& node_usage = node_pipeline->resourceUse();

  // Check for instructions to be placed in the delay slot. We
  // do this before we actually schedule the current instruction,
  // because the delay slot follows the current instruction.
  if (Pipeline::_branch_has_delay_slot &&
      node_pipeline->hasBranchDelay() &&
      !_unconditional_delay_slot) {

    uint siz = _available.size();

    // Conditional branches can support an instruction that
    // is unconditionally executed and not dependant by the
    // branch, OR a conditionally executed instruction if
    // the branch is taken.  In practice, this means that
    // the first instruction at the branch target is
    // copied to the delay slot, and the branch goes to
    // the instruction after that at the branch target
    if ( n->is_Mach() && n->is_Branch() ) {

      assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
      assert( !n->is_Catch(),         "should not look for delay slot for Catch" );

#ifndef PRODUCT
      _branches++;
#endif

      // At least 1 instruction is on the available list
      // that is not dependant on the branch
      for (uint i = 0; i < siz; i++) {
        Node *d = _available[i];
        const Pipeline *avail_pipeline = d->pipeline();

        // Don't allow safepoints in the branch shadow, that will
        // cause a number of difficulties
        if ( avail_pipeline->instructionCount() == 1 &&
            !avail_pipeline->hasMultipleBundles() &&
            !avail_pipeline->hasBranchDelay() &&
            Pipeline::instr_has_unit_size() &&
            d->size(_regalloc) == Pipeline::instr_unit_size() &&
            NodeFitsInBundle(d) &&
            !node_bundling(d)->used_in_delay()) {

          if (d->is_Mach() && !d->is_MachSafePoint()) {
            // A node that fits in the delay slot was found, so we need to
            // set the appropriate bits in the bundle pipeline information so
            // that it correctly indicates resource usage.  Later, when we
            // attempt to add this instruction to the bundle, we will skip
            // setting the resource usage.
            _unconditional_delay_slot = d;
            node_bundling(n)->set_use_unconditional_delay();
            node_bundling(d)->set_used_in_unconditional_delay();
            _bundle_use.add_usage(avail_pipeline->resourceUse());
            _current_latency[d->_idx] = _bundle_cycle_number;
            _next_node = d;
            ++_bundle_instr_count;
#ifndef PRODUCT
            _unconditional_delays++;
#endif
            break;
          }
        }
      }
    }

    // No delay slot, add a nop to the usage
    if (!_unconditional_delay_slot) {
      // See if adding an instruction in the delay slot will overflow
      // the bundle.
      if (!NodeFitsInBundle(_nop)) {
#ifndef PRODUCT
        if (_cfg->C->trace_opto_output())
          tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
#endif
        step(1);
      }

      _bundle_use.add_usage(_nop->pipeline()->resourceUse());
      _next_node = _nop;
      ++_bundle_instr_count;
    }

    // See if the instruction in the delay slot requires a
    // step of the bundles
    if (!NodeFitsInBundle(n)) {
#ifndef PRODUCT
        if (_cfg->C->trace_opto_output())
          tty->print("#  *** STEP(branch won't fit) ***\n");
#endif
        // Update the state information
        _bundle_instr_count = 0;
        _bundle_cycle_number += 1;
        _bundle_use.step(1);
    }
  }

  // Get the number of instructions
  uint instruction_count = node_pipeline->instructionCount();
  if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
    instruction_count = 0;

  // Compute the latency information
  uint delay = 0;

  if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
    int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
    if (relative_latency < 0)
      relative_latency = 0;

    delay = _bundle_use.full_latency(relative_latency, node_usage);

    // Does not fit in this bundle, start a new one
    if (delay > 0) {
      step(delay);

#ifndef PRODUCT
      if (_cfg->C->trace_opto_output())
        tty->print("#  *** STEP(%d) ***\n", delay);
#endif
    }
  }

  // If this was placed in the delay slot, ignore it
  if (n != _unconditional_delay_slot) {

    if (delay == 0) {
      if (node_pipeline->hasMultipleBundles()) {
#ifndef PRODUCT
        if (_cfg->C->trace_opto_output())
          tty->print("#  *** STEP(multiple instructions) ***\n");
#endif
        step(1);
      }

      else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
#ifndef PRODUCT
        if (_cfg->C->trace_opto_output())
          tty->print("#  *** STEP(%d >= %d instructions) ***\n",
            instruction_count + _bundle_instr_count,
            Pipeline::_max_instrs_per_cycle);
#endif
        step(1);
      }
    }

    if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
      _bundle_instr_count++;

    // Set the node's latency
    _current_latency[n->_idx] = _bundle_cycle_number;

    // Now merge the functional unit information
    if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
      _bundle_use.add_usage(node_usage);

    // Increment the number of instructions in this bundle
    _bundle_instr_count += instruction_count;

    // Remember this node for later
    if (n->is_Mach())
      _next_node = n;
  }

  // It's possible to have a BoxLock in the graph and in the _bbs mapping but
  // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
  // 'Schedule' them (basically ignore in the schedule) but do not insert them
  // into the block.  All other scheduled nodes get put in the schedule here.
  int op = n->Opcode();
  if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
      (op != Op_Node &&         // Not an unused antidepedence node and
       // not an unallocated boxlock
       (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {

    // Push any trailing projections
    if( bb->_nodes[bb->_nodes.size()-1] != n ) {
      for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
        Node *foi = n->fast_out(i);
        if( foi->is_Proj() )
          _scheduled.push(foi);
      }
    }

    // Put the instruction in the schedule list
    _scheduled.push(n);
  }

#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    dump_available();
#endif

  // Walk all the definitions, decrementing use counts, and
  // if a definition has a 0 use count, place it in the available list.
  DecrementUseCounts(n,bb);
}

//------------------------------ComputeUseCount--------------------------------
// This method sets the use count within a basic block.  We will ignore all
// uses outside the current basic block.  As we are doing a backwards walk,
// any node we reach that has a use count of 0 may be scheduled.  This also
// avoids the problem of cyclic references from phi nodes, as long as phi
// nodes are at the front of the basic block.  This method also initializes
// the available list to the set of instructions that have no uses within this
// basic block.
void Scheduling::ComputeUseCount(const Block *bb) {
#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("# -> ComputeUseCount\n");
#endif

  // Clear the list of available and scheduled instructions, just in case
  _available.clear();
  _scheduled.clear();

  // No delay slot specified
  _unconditional_delay_slot = NULL;

#ifdef ASSERT
  for( uint i=0; i < bb->_nodes.size(); i++ )
    assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
#endif

  // Force the _uses count to never go to zero for unscheduable pieces
  // of the block
  for( uint k = 0; k < _bb_start; k++ )
    _uses[bb->_nodes[k]->_idx] = 1;
  for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
    _uses[bb->_nodes[l]->_idx] = 1;

  // Iterate backwards over the instructions in the block.  Don't count the
  // branch projections at end or the block header instructions.
  for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
    Node *n = bb->_nodes[j];
    if( n->is_Proj() ) continue; // Projections handled another way

    // Account for all uses
    for ( uint k = 0; k < n->len(); k++ ) {
      Node *inp = n->in(k);
      if (!inp) continue;
      assert(inp != n, "no cycles allowed" );
      if( _bbs[inp->_idx] == bb ) { // Block-local use?
        if( inp->is_Proj() )    // Skip through Proj's
          inp = inp->in(0);
        ++_uses[inp->_idx];     // Count 1 block-local use
      }
    }

    // If this instruction has a 0 use count, then it is available
    if (!_uses[n->_idx]) {
      _current_latency[n->_idx] = _bundle_cycle_number;
      AddNodeToAvailableList(n);
    }

#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) {
      tty->print("#   uses: %3d: ", _uses[n->_idx]);
      n->dump();
    }
#endif
  }

#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("# <- ComputeUseCount\n");
#endif
}

// This routine performs scheduling on each basic block in reverse order,
// using instruction latencies and taking into account function unit
// availability.
void Scheduling::DoScheduling() {
#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("# -> DoScheduling\n");
#endif

  Block *succ_bb = NULL;
  Block *bb;

  // Walk over all the basic blocks in reverse order
  for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
    bb = _cfg->_blocks[i];

#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) {
      tty->print("#  Schedule BB#%03d (initial)\n", i);
      for (uint j = 0; j < bb->_nodes.size(); j++)
        bb->_nodes[j]->dump();
    }
#endif

    // On the head node, skip processing
    if( bb == _cfg->_broot )
      continue;

    // Skip empty, connector blocks
    if (bb->is_connector())
      continue;

    // If the following block is not the sole successor of
    // this one, then reset the pipeline information
    if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
#ifndef PRODUCT
      if (_cfg->C->trace_opto_output()) {
        tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
                   _next_node->_idx, _bundle_instr_count);
      }
#endif
      step_and_clear();
    }

    // Leave untouched the starting instruction, any Phis, a CreateEx node
    // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
    _bb_end = bb->_nodes.size()-1;
    for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
      Node *n = bb->_nodes[_bb_start];
      // Things not matched, like Phinodes and ProjNodes don't get scheduled.
      // Also, MachIdealNodes do not get scheduled
      if( !n->is_Mach() ) continue;     // Skip non-machine nodes
      MachNode *mach = n->as_Mach();
      int iop = mach->ideal_Opcode();
      if( iop == Op_CreateEx ) continue; // CreateEx is pinned
      if( iop == Op_Con ) continue;      // Do not schedule Top
      if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
          mach->pipeline() == MachNode::pipeline_class() &&
          !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
        continue;
      break;                    // Funny loop structure to be sure...
    }
    // Compute last "interesting" instruction in block - last instruction we
    // might schedule.  _bb_end points just after last schedulable inst.  We
    // normally schedule conditional branches (despite them being forced last
    // in the block), because they have delay slots we can fill.  Calls all
    // have their delay slots filled in the template expansions, so we don't
    // bother scheduling them.
    Node *last = bb->_nodes[_bb_end];
    if( last->is_Catch() ||
       (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
      // There must be a prior call.  Skip it.
      while( !bb->_nodes[--_bb_end]->is_Call() ) {
        assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
      }
    } else if( last->is_MachNullCheck() ) {
      // Backup so the last null-checked memory instruction is
      // outside the schedulable range. Skip over the nullcheck,
      // projection, and the memory nodes.
      Node *mem = last->in(1);
      do {
        _bb_end--;
      } while (mem != bb->_nodes[_bb_end]);
    } else {
      // Set _bb_end to point after last schedulable inst.
      _bb_end++;
    }

    assert( _bb_start <= _bb_end, "inverted block ends" );

    // Compute the register antidependencies for the basic block
    ComputeRegisterAntidependencies(bb);
    if (_cfg->C->failing())  return;  // too many D-U pinch points

    // Compute intra-bb latencies for the nodes
    ComputeLocalLatenciesForward(bb);

    // Compute the usage within the block, and set the list of all nodes
    // in the block that have no uses within the block.
    ComputeUseCount(bb);

    // Schedule the remaining instructions in the block
    while ( _available.size() > 0 ) {
      Node *n = ChooseNodeToBundle();
      AddNodeToBundle(n,bb);
    }

    assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
#ifdef ASSERT
    for( uint l = _bb_start; l < _bb_end; l++ ) {
      Node *n = bb->_nodes[l];
      uint m;
      for( m = 0; m < _bb_end-_bb_start; m++ )
        if( _scheduled[m] == n )
          break;
      assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
    }
#endif

    // Now copy the instructions (in reverse order) back to the block
    for ( uint k = _bb_start; k < _bb_end; k++ )
      bb->_nodes.map(k, _scheduled[_bb_end-k-1]);

#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) {
      tty->print("#  Schedule BB#%03d (final)\n", i);
      uint current = 0;
      for (uint j = 0; j < bb->_nodes.size(); j++) {
        Node *n = bb->_nodes[j];
        if( valid_bundle_info(n) ) {
          Bundle *bundle = node_bundling(n);
          if (bundle->instr_count() > 0 || bundle->flags() > 0) {
            tty->print("*** Bundle: ");
            bundle->dump();
          }
          n->dump();
        }
      }
    }
#endif
#ifdef ASSERT
  verify_good_schedule(bb,"after block local scheduling");
#endif
  }

#ifndef PRODUCT
  if (_cfg->C->trace_opto_output())
    tty->print("# <- DoScheduling\n");
#endif

  // Record final node-bundling array location
  _regalloc->C->set_node_bundling_base(_node_bundling_base);

} // end DoScheduling

//------------------------------verify_good_schedule---------------------------
// Verify that no live-range used in the block is killed in the block by a
// wrong DEF.  This doesn't verify live-ranges that span blocks.

// Check for edge existence.  Used to avoid adding redundant precedence edges.
static bool edge_from_to( Node *from, Node *to ) {
  for( uint i=0; i<from->len(); i++ )
    if( from->in(i) == to )
      return true;
  return false;
}

#ifdef ASSERT
//------------------------------verify_do_def----------------------------------
void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
  // Check for bad kills
  if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
    Node *prior_use = _reg_node[def];
    if( prior_use && !edge_from_to(prior_use,n) ) {
      tty->print("%s = ",OptoReg::as_VMReg(def)->name());
      n->dump();
      tty->print_cr("...");
      prior_use->dump();
      assert_msg(edge_from_to(prior_use,n),msg);
    }
    _reg_node.map(def,NULL); // Kill live USEs
  }
}

//------------------------------verify_good_schedule---------------------------
void Scheduling::verify_good_schedule( Block *b, const char *msg ) {

  // Zap to something reasonable for the verify code
  _reg_node.clear();

  // Walk over the block backwards.  Check to make sure each DEF doesn't
  // kill a live value (other than the one it's supposed to).  Add each
  // USE to the live set.
  for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
    Node *n = b->_nodes[i];
    int n_op = n->Opcode();
    if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
      // Fat-proj kills a slew of registers
      RegMask rm = n->out_RegMask();// Make local copy
      while( rm.is_NotEmpty() ) {
        OptoReg::Name kill = rm.find_first_elem();
        rm.Remove(kill);
        verify_do_def( n, kill, msg );
      }
    } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
      // Get DEF'd registers the normal way
      verify_do_def( n, _regalloc->get_reg_first(n), msg );
      verify_do_def( n, _regalloc->get_reg_second(n), msg );
    }

    // Now make all USEs live
    for( uint i=1; i<n->req(); i++ ) {
      Node *def = n->in(i);
      assert(def != 0, "input edge required");
      OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
      OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
      if( OptoReg::is_valid(reg_lo) ) {
        assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg );
        _reg_node.map(reg_lo,n);
      }
      if( OptoReg::is_valid(reg_hi) ) {
        assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg );
        _reg_node.map(reg_hi,n);
      }
    }

  }

  // Zap to something reasonable for the Antidependence code
  _reg_node.clear();
}
#endif

// Conditionally add precedence edges.  Avoid putting edges on Projs.
static void add_prec_edge_from_to( Node *from, Node *to ) {
  if( from->is_Proj() ) {       // Put precedence edge on Proj's input
    assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
    from = from->in(0);
  }
  if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
      !edge_from_to( from, to ) ) // Avoid duplicate edge
    from->add_prec(to);
}

//------------------------------anti_do_def------------------------------------
void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
  if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
    return;

  Node *pinch = _reg_node[def_reg]; // Get pinch point
  if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
      is_def ) {    // Check for a true def (not a kill)
    _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
    return;
  }

  Node *kill = def;             // Rename 'def' to more descriptive 'kill'
  debug_only( def = (Node*)0xdeadbeef; )

  // After some number of kills there _may_ be a later def
  Node *later_def = NULL;

  // Finding a kill requires a real pinch-point.
  // Check for not already having a pinch-point.
  // Pinch points are Op_Node's.
  if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
    later_def = pinch;            // Must be def/kill as optimistic pinch-point
    if ( _pinch_free_list.size() > 0) {
      pinch = _pinch_free_list.pop();
    } else {
      pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
    }
    if (pinch->_idx >= _regalloc->node_regs_max_index()) {
      _cfg->C->record_method_not_compilable("too many D-U pinch points");
      return;
    }
    _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
    _reg_node.map(def_reg,pinch); // Record pinch-point
    //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
    if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
      pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
      add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
      later_def = NULL;           // and no later def
    }
    pinch->set_req(0,later_def);  // Hook later def so we can find it
  } else {                        // Else have valid pinch point
    if( pinch->in(0) )            // If there is a later-def
      later_def = pinch->in(0);   // Get it
  }

  // Add output-dependence edge from later def to kill
  if( later_def )               // If there is some original def
    add_prec_edge_from_to(later_def,kill); // Add edge from def to kill

  // See if current kill is also a use, and so is forced to be the pinch-point.
  if( pinch->Opcode() == Op_Node ) {
    Node *uses = kill->is_Proj() ? kill->in(0) : kill;
    for( uint i=1; i<uses->req(); i++ ) {
      if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
          _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
        // Yes, found a use/kill pinch-point
        pinch->set_req(0,NULL);  //
        pinch->replace_by(kill); // Move anti-dep edges up
        pinch = kill;
        _reg_node.map(def_reg,pinch);
        return;
      }
    }
  }

  // Add edge from kill to pinch-point
  add_prec_edge_from_to(kill,pinch);
}

//------------------------------anti_do_use------------------------------------
void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
  if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
    return;
  Node *pinch = _reg_node[use_reg]; // Get pinch point
  // Check for no later def_reg/kill in block
  if( pinch && _bbs[pinch->_idx] == b &&
      // Use has to be block-local as well
      _bbs[use->_idx] == b ) {
    if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
        pinch->req() == 1 ) {   // pinch not yet in block?
      pinch->del_req(0);        // yank pointer to later-def, also set flag
      // Insert the pinch-point in the block just after the last use
      b->_nodes.insert(b->find_node(use)+1,pinch);
      _bb_end++;                // Increase size scheduled region in block
    }

    add_prec_edge_from_to(pinch,use);
  }
}

//------------------------------ComputeRegisterAntidependences-----------------
// We insert antidependences between the reads and following write of
// allocated registers to prevent illegal code motion. Hopefully, the
// number of added references should be fairly small, especially as we
// are only adding references within the current basic block.
void Scheduling::ComputeRegisterAntidependencies(Block *b) {

#ifdef ASSERT
  verify_good_schedule(b,"before block local scheduling");
#endif

  // A valid schedule, for each register independently, is an endless cycle
  // of: a def, then some uses (connected to the def by true dependencies),
  // then some kills (defs with no uses), finally the cycle repeats with a new
  // def.  The uses are allowed to float relative to each other, as are the
  // kills.  No use is allowed to slide past a kill (or def).  This requires
  // antidependencies between all uses of a single def and all kills that
  // follow, up to the next def.  More edges are redundant, because later defs
  // & kills are already serialized with true or antidependencies.  To keep
  // the edge count down, we add a 'pinch point' node if there's more than
  // one use or more than one kill/def.

  // We add dependencies in one bottom-up pass.

  // For each instruction we handle it's DEFs/KILLs, then it's USEs.

  // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
  // register.  If not, we record the DEF/KILL in _reg_node, the
  // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
  // "pinch point", a new Node that's in the graph but not in the block.
  // We put edges from the prior and current DEF/KILLs to the pinch point.
  // We put the pinch point in _reg_node.  If there's already a pinch point
  // we merely add an edge from the current DEF/KILL to the pinch point.

  // After doing the DEF/KILLs, we handle USEs.  For each used register, we
  // put an edge from the pinch point to the USE.

  // To be expedient, the _reg_node array is pre-allocated for the whole
  // compilation.  _reg_node is lazily initialized; it either contains a NULL,
  // or a valid def/kill/pinch-point, or a leftover node from some prior
  // block.  Leftover node from some prior block is treated like a NULL (no
  // prior def, so no anti-dependence needed).  Valid def is distinguished by
  // it being in the current block.
  bool fat_proj_seen = false;
  uint last_safept = _bb_end-1;
  Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
  Node* last_safept_node = end_node;
  for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
    Node *n = b->_nodes[i];
    int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
    if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
      // Fat-proj kills a slew of registers
      // This can add edges to 'n' and obscure whether or not it was a def,
      // hence the is_def flag.
      fat_proj_seen = true;
      RegMask rm = n->out_RegMask();// Make local copy
      while( rm.is_NotEmpty() ) {
        OptoReg::Name kill = rm.find_first_elem();
        rm.Remove(kill);
        anti_do_def( b, n, kill, is_def );
      }
    } else {
      // Get DEF'd registers the normal way
      anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
      anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
    }

    // Check each register used by this instruction for a following DEF/KILL
    // that must occur afterward and requires an anti-dependence edge.
    for( uint j=0; j<n->req(); j++ ) {
      Node *def = n->in(j);
      if( def ) {
        assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
        anti_do_use( b, n, _regalloc->get_reg_first(def) );
        anti_do_use( b, n, _regalloc->get_reg_second(def) );
      }
    }
    // Do not allow defs of new derived values to float above GC
    // points unless the base is definitely available at the GC point.

    Node *m = b->_nodes[i];

    // Add precedence edge from following safepoint to use of derived pointer
    if( last_safept_node != end_node &&
        m != last_safept_node) {
      for (uint k = 1; k < m->req(); k++) {
        const Type *t = m->in(k)->bottom_type();
        if( t->isa_oop_ptr() &&
            t->is_ptr()->offset() != 0 ) {
          last_safept_node->add_prec( m );
          break;
        }
      }
    }

    if( n->jvms() ) {           // Precedence edge from derived to safept
      // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
      if( b->_nodes[last_safept] != last_safept_node ) {
        last_safept = b->find_node(last_safept_node);
      }
      for( uint j=last_safept; j > i; j-- ) {
        Node *mach = b->_nodes[j];
        if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
          mach->add_prec( n );
      }
      last_safept = i;
      last_safept_node = m;
    }
  }

  if (fat_proj_seen) {
    // Garbage collect pinch nodes that were not consumed.
    // They are usually created by a fat kill MachProj for a call.
    garbage_collect_pinch_nodes();
  }
}

//------------------------------garbage_collect_pinch_nodes-------------------------------

// Garbage collect pinch nodes for reuse by other blocks.
//
// The block scheduler's insertion of anti-dependence
// edges creates many pinch nodes when the block contains
// 2 or more Calls.  A pinch node is used to prevent a
// combinatorial explosion of edges.  If a set of kills for a
// register is anti-dependent on a set of uses (or defs), rather
// than adding an edge in the graph between each pair of kill
// and use (or def), a pinch is inserted between them:
//
//            use1   use2  use3
//                \   |   /
//                 \  |  /
//                  pinch
//                 /  |  \
//                /   |   \
//            kill1 kill2 kill3
//
// One pinch node is created per register killed when
// the second call is encountered during a backwards pass
// over the block.  Most of these pinch nodes are never
// wired into the graph because the register is never
// used or def'ed in the block.
//
void Scheduling::garbage_collect_pinch_nodes() {
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
#endif
    int trace_cnt = 0;
    for (uint k = 0; k < _reg_node.Size(); k++) {
      Node* pinch = _reg_node[k];
      if (pinch != NULL && pinch->Opcode() == Op_Node &&
          // no predecence input edges
          (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
        cleanup_pinch(pinch);
        _pinch_free_list.push(pinch);
        _reg_node.map(k, NULL);
#ifndef PRODUCT
        if (_cfg->C->trace_opto_output()) {
          trace_cnt++;
          if (trace_cnt > 40) {
            tty->print("\n");
            trace_cnt = 0;
          }
          tty->print(" %d", pinch->_idx);
        }
#endif
      }
    }
#ifndef PRODUCT
    if (_cfg->C->trace_opto_output()) tty->print("\n");
#endif
}

// Clean up a pinch node for reuse.
void Scheduling::cleanup_pinch( Node *pinch ) {
  assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");

  for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
    Node* use = pinch->last_out(i);
    uint uses_found = 0;
    for (uint j = use->req(); j < use->len(); j++) {
      if (use->in(j) == pinch) {
        use->rm_prec(j);
        uses_found++;
      }
    }
    assert(uses_found > 0, "must be a precedence edge");
    i -= uses_found;    // we deleted 1 or more copies of this edge
  }
  // May have a later_def entry
  pinch->set_req(0, NULL);
}

//------------------------------print_statistics-------------------------------
#ifndef PRODUCT

void Scheduling::dump_available() const {
  tty->print("#Availist  ");
  for (uint i = 0; i < _available.size(); i++)
    tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
  tty->cr();
}

// Print Scheduling Statistics
void Scheduling::print_statistics() {
  // Print the size added by nops for bundling
  tty->print("Nops added %d bytes to total of %d bytes",
    _total_nop_size, _total_method_size);
  if (_total_method_size > 0)
    tty->print(", for %.2f%%",
      ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
  tty->print("\n");

  // Print the number of branch shadows filled
  if (Pipeline::_branch_has_delay_slot) {
    tty->print("Of %d branches, %d had unconditional delay slots filled",
      _total_branches, _total_unconditional_delays);
    if (_total_branches > 0)
      tty->print(", for %.2f%%",
        ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
    tty->print("\n");
  }

  uint total_instructions = 0, total_bundles = 0;

  for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
    uint bundle_count   = _total_instructions_per_bundle[i];
    total_instructions += bundle_count * i;
    total_bundles      += bundle_count;
  }

  if (total_bundles > 0)
    tty->print("Average ILP (excluding nops) is %.2f\n",
      ((double)total_instructions) / ((double)total_bundles));
}
#endif