buildOopMap.cpp 25.5 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
/*
 * Copyright 2002-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_buildOopMap.cpp.incl"

// The functions in this file builds OopMaps after all scheduling is done.
//
// OopMaps contain a list of all registers and stack-slots containing oops (so
// they can be updated by GC).  OopMaps also contain a list of derived-pointer
// base-pointer pairs.  When the base is moved, the derived pointer moves to
// follow it.  Finally, any registers holding callee-save values are also
// recorded.  These might contain oops, but only the caller knows.
//
// BuildOopMaps implements a simple forward reaching-defs solution.  At each
// GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
// typed as pointers (no offset), then they are oops.  Pointers+offsets are
// derived pointers, and bases can be found from them.  Finally, we'll also
// track reaching callee-save values.  Note that a copy of a callee-save value
// "kills" it's source, so that only 1 copy of a callee-save value is alive at
// a time.
//
// We run a simple bitvector liveness pass to help trim out dead oops.  Due to
// irreducible loops, we can have a reaching def of an oop that only reaches
// along one path and no way to know if it's valid or not on the other path.
// The bitvectors are quite dense and the liveness pass is fast.
//
// At GC points, we consult this information to build OopMaps.  All reaching
// defs typed as oops are added to the OopMap.  Only 1 instance of a
// callee-save register can be recorded.  For derived pointers, we'll have to
// find and record the register holding the base.
//
// The reaching def's is a simple 1-pass worklist approach.  I tried a clever
// breadth-first approach but it was worse (showed O(n^2) in the
// pick-next-block code).
//
// The relevent data is kept in a struct of arrays (it could just as well be
// an array of structs, but the struct-of-arrays is generally a little more
// efficient).  The arrays are indexed by register number (including
// stack-slots as registers) and so is bounded by 200 to 300 elements in
// practice.  One array will map to a reaching def Node (or NULL for
// conflict/dead).  The other array will map to a callee-saved register or
// OptoReg::Bad for not-callee-saved.


//------------------------------OopFlow----------------------------------------
// Structure to pass around
struct OopFlow : public ResourceObj {
  short *_callees;              // Array mapping register to callee-saved
  Node **_defs;                 // array mapping register to reaching def
                                // or NULL if dead/conflict
  // OopFlow structs, when not being actively modified, describe the _end_ of
  // this block.
  Block *_b;                    // Block for this struct
  OopFlow *_next;               // Next free OopFlow

  OopFlow( short *callees, Node **defs ) : _callees(callees), _defs(defs),
    _b(NULL), _next(NULL) { }

  // Given reaching-defs for this block start, compute it for this block end
  void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );

  // Merge these two OopFlows into the 'this' pointer.
  void merge( OopFlow *flow, int max_reg );

  // Copy a 'flow' over an existing flow
  void clone( OopFlow *flow, int max_size);

  // Make a new OopFlow from scratch
  static OopFlow *make( Arena *A, int max_size );

  // Build an oopmap from the current flow info
  OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
};

//------------------------------compute_reach----------------------------------
// Given reaching-defs for this block start, compute it for this block end
void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {

  for( uint i=0; i<_b->_nodes.size(); i++ ) {
    Node *n = _b->_nodes[i];

    if( n->jvms() ) {           // Build an OopMap here?
      JVMState *jvms = n->jvms();
      // no map needed for leaf calls
      if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
        int *live = (int*) (*safehash)[n];
        assert( live, "must find live" );
        n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
      }
    }

    // Assign new reaching def's.
    // Note that I padded the _defs and _callees arrays so it's legal
    // to index at _defs[OptoReg::Bad].
    OptoReg::Name first = regalloc->get_reg_first(n);
    OptoReg::Name second = regalloc->get_reg_second(n);
    _defs[first] = n;
    _defs[second] = n;

    // Pass callee-save info around copies
    int idx = n->is_Copy();
    if( idx ) {                 // Copies move callee-save info
      OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
      OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
      int tmp_first = _callees[old_first];
      int tmp_second = _callees[old_second];
      _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
      _callees[old_second] = OptoReg::Bad;
      _callees[first] = tmp_first;
      _callees[second] = tmp_second;
    } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
      assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
      assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
      assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
      assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
    } else {
      _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
      _callees[second] = OptoReg::Bad;

      // Find base case for callee saves
      if( n->is_Proj() && n->in(0)->is_Start() ) {
        if( OptoReg::is_reg(first) &&
            regalloc->_matcher.is_save_on_entry(first) )
          _callees[first] = first;
        if( OptoReg::is_reg(second) &&
            regalloc->_matcher.is_save_on_entry(second) )
          _callees[second] = second;
      }
    }
  }
}

//------------------------------merge------------------------------------------
// Merge the given flow into the 'this' flow
void OopFlow::merge( OopFlow *flow, int max_reg ) {
  assert( _b == NULL, "merging into a happy flow" );
  assert( flow->_b, "this flow is still alive" );
  assert( flow != this, "no self flow" );

  // Do the merge.  If there are any differences, drop to 'bottom' which
  // is OptoReg::Bad or NULL depending.
  for( int i=0; i<max_reg; i++ ) {
    // Merge the callee-save's
    if( _callees[i] != flow->_callees[i] )
      _callees[i] = OptoReg::Bad;
    // Merge the reaching defs
    if( _defs[i] != flow->_defs[i] )
      _defs[i] = NULL;
  }

}

//------------------------------clone------------------------------------------
void OopFlow::clone( OopFlow *flow, int max_size ) {
  _b = flow->_b;
  memcpy( _callees, flow->_callees, sizeof(short)*max_size);
  memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
}

//------------------------------make-------------------------------------------
OopFlow *OopFlow::make( Arena *A, int max_size ) {
  short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
  Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
  debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
  OopFlow *flow = new (A) OopFlow(callees+1, defs+1);
  assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
  assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
  return flow;
}

//------------------------------bit twiddlers----------------------------------
static int get_live_bit( int *live, int reg ) {
  return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
static void set_live_bit( int *live, int reg ) {
         live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
static void clr_live_bit( int *live, int reg ) {
         live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }

//------------------------------build_oop_map----------------------------------
// Build an oopmap from the current flow info
OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
  int framesize = regalloc->_framesize;
  int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
  debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
              memset(dup_check,0,OptoReg::stack0()) );

  OopMap *omap = new OopMap( framesize,  max_inarg_slot );
  MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
  JVMState* jvms = n->jvms();

  // For all registers do...
  for( int reg=0; reg<max_reg; reg++ ) {
    if( get_live_bit(live,reg) == 0 )
      continue;                 // Ignore if not live

    // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
    // register in that case we'll get an non-concrete register for the second
    // half. We only need to tell the map the register once!
    //
    // However for the moment we disable this change and leave things as they
    // were.

    VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);

    if (false && r->is_reg() && !r->is_concrete()) {
      continue;
    }

    // See if dead (no reaching def).
    Node *def = _defs[reg];     // Get reaching def
    assert( def, "since live better have reaching def" );

    // Classify the reaching def as oop, derived, callee-save, dead, or other
    const Type *t = def->bottom_type();
    if( t->isa_oop_ptr() ) {    // Oop or derived?
      assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
#ifdef _LP64
      // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
      // Make sure both are record from the same reaching def, but do not
      // put both into the oopmap.
      if( (reg&1) == 1 ) {      // High half of oop-pair?
        assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
        continue;               // Do not record high parts in oopmap
      }
#endif

      // Check for a legal reg name in the oopMap and bailout if it is not.
      if (!omap->legal_vm_reg_name(r)) {
        regalloc->C->record_method_not_compilable("illegal oopMap register name");
        continue;
      }
      if( t->is_ptr()->_offset == 0 ) { // Not derived?
        if( mcall ) {
          // Outgoing argument GC mask responsibility belongs to the callee,
          // not the caller.  Inspect the inputs to the call, to see if
          // this live-range is one of them.
          uint cnt = mcall->tf()->domain()->cnt();
          uint j;
          for( j = TypeFunc::Parms; j < cnt; j++)
            if( mcall->in(j) == def )
              break;            // reaching def is an argument oop
          if( j < cnt )         // arg oops dont go in GC map
            continue;           // Continue on to the next register
        }
        omap->set_oop(r);
      } else {                  // Else it's derived.
        // Find the base of the derived value.
        uint i;
        // Fast, common case, scan
        for( i = jvms->oopoff(); i < n->req(); i+=2 )
          if( n->in(i) == def ) break; // Common case
        if( i == n->req() ) {   // Missed, try a more generous scan
          // Scan again, but this time peek through copies
          for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
            Node *m = n->in(i); // Get initial derived value
            while( 1 ) {
              Node *d = def;    // Get initial reaching def
              while( 1 ) {      // Follow copies of reaching def to end
                if( m == d ) goto found; // breaks 3 loops
                int idx = d->is_Copy();
                if( !idx ) break;
                d = d->in(idx);     // Link through copy
              }
              int idx = m->is_Copy();
              if( !idx ) break;
              m = m->in(idx);
            }
          }
         guarantee( 0, "must find derived/base pair" );
        }
      found: ;
        Node *base = n->in(i+1); // Base is other half of pair
        int breg = regalloc->get_reg_first(base);
        VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);

        // I record liveness at safepoints BEFORE I make the inputs
        // live.  This is because argument oops are NOT live at a
        // safepoint (or at least they cannot appear in the oopmap).
        // Thus bases of base/derived pairs might not be in the
        // liveness data but they need to appear in the oopmap.
        if( get_live_bit(live,breg) == 0 ) {// Not live?
          // Flag it, so next derived pointer won't re-insert into oopmap
          set_live_bit(live,breg);
          // Already missed our turn?
          if( breg < reg ) {
            if (b->is_stack() || b->is_concrete() || true ) {
              omap->set_oop( b);
            }
          }
        }
        if (b->is_stack() || b->is_concrete() || true ) {
          omap->set_derived_oop( r, b);
        }
      }

    } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
      // It's a callee-save value
      assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
      debug_only( dup_check[_callees[reg]]=1; )
      VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
      if ( callee->is_concrete() || true ) {
        omap->set_callee_saved( r, callee);
      }

    } else {
      // Other - some reaching non-oop value
      omap->set_value( r);
    }

  }

#ifdef ASSERT
  /* Nice, Intel-only assert
  int cnt_callee_saves=0;
  int reg2 = 0;
  while (OptoReg::is_reg(reg2)) {
    if( dup_check[reg2] != 0) cnt_callee_saves++;
    assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
    reg2++;
  }
  */
#endif

  return omap;
}

//------------------------------do_liveness------------------------------------
// Compute backwards liveness on registers
static void do_liveness( PhaseRegAlloc *regalloc, PhaseCFG *cfg, Block_List *worklist, int max_reg_ints, Arena *A, Dict *safehash ) {
  int *live = NEW_ARENA_ARRAY(A, int, (cfg->_num_blocks+1) * max_reg_ints);
  int *tmp_live = &live[cfg->_num_blocks * max_reg_ints];
  Node *root = cfg->C->root();
  // On CISC platforms, get the node representing the stack pointer  that regalloc
  // used for spills
  Node *fp = NodeSentinel;
  if (UseCISCSpill && root->req() > 1) {
    fp = root->in(1)->in(TypeFunc::FramePtr);
  }
  memset( live, 0, cfg->_num_blocks * (max_reg_ints<<LogBytesPerInt) );
  // Push preds onto worklist
  for( uint i=1; i<root->req(); i++ )
    worklist->push(cfg->_bbs[root->in(i)->_idx]);

  // ZKM.jar includes tiny infinite loops which are unreached from below.
  // If we missed any blocks, we'll retry here after pushing all missed
  // blocks on the worklist.  Normally this outer loop never trips more
  // than once.
  while( 1 ) {

    while( worklist->size() ) { // Standard worklist algorithm
      Block *b = worklist->rpop();

      // Copy first successor into my tmp_live space
      int s0num = b->_succs[0]->_pre_order;
      int *t = &live[s0num*max_reg_ints];
      for( int i=0; i<max_reg_ints; i++ )
        tmp_live[i] = t[i];

      // OR in the remaining live registers
      for( uint j=1; j<b->_num_succs; j++ ) {
        uint sjnum = b->_succs[j]->_pre_order;
        int *t = &live[sjnum*max_reg_ints];
        for( int i=0; i<max_reg_ints; i++ )
          tmp_live[i] |= t[i];
      }

      // Now walk tmp_live up the block backwards, computing live
      for( int k=b->_nodes.size()-1; k>=0; k-- ) {
        Node *n = b->_nodes[k];
        // KILL def'd bits
        int first = regalloc->get_reg_first(n);
        int second = regalloc->get_reg_second(n);
        if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
        if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);

        MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;

        // Check if m is potentially a CISC alternate instruction (i.e, possibly
        // synthesized by RegAlloc from a conventional instruction and a
        // spilled input)
        bool is_cisc_alternate = false;
        if (UseCISCSpill && m) {
          is_cisc_alternate = m->is_cisc_alternate();
        }

        // GEN use'd bits
        for( uint l=1; l<n->req(); l++ ) {
          Node *def = n->in(l);
          assert(def != 0, "input edge required");
          int first = regalloc->get_reg_first(def);
          int second = regalloc->get_reg_second(def);
          if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
          if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
          // If we use the stack pointer in a cisc-alternative instruction,
          // check for use as a memory operand.  Then reconstruct the RegName
          // for this stack location, and set the appropriate bit in the
          // live vector 4987749.
          if (is_cisc_alternate && def == fp) {
            const TypePtr *adr_type = NULL;
            intptr_t offset;
            const Node* base = m->get_base_and_disp(offset, adr_type);
            if (base == NodeSentinel) {
              // Machnode has multiple memory inputs. We are unable to reason
              // with these, but are presuming (with trepidation) that not any of
              // them are oops. This can be fixed by making get_base_and_disp()
              // look at a specific input instead of all inputs.
              assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
            } else if (base != fp || offset == Type::OffsetBot) {
              // Do nothing: the fp operand is either not from a memory use
              // (base == NULL) OR the fp is used in a non-memory context
              // (base is some other register) OR the offset is not constant,
              // so it is not a stack slot.
            } else {
              assert(offset >= 0, "unexpected negative offset");
              offset -= (offset % jintSize);  // count the whole word
              int stack_reg = regalloc->offset2reg(offset);
              if (OptoReg::is_stack(stack_reg)) {
                set_live_bit(tmp_live, stack_reg);
              } else {
                assert(false, "stack_reg not on stack?");
              }
            }
          }
        }

        if( n->jvms() ) {       // Record liveness at safepoint

          // This placement of this stanza means inputs to calls are
          // considered live at the callsite's OopMap.  Argument oops are
          // hence live, but NOT included in the oopmap.  See cutout in
          // build_oop_map.  Debug oops are live (and in OopMap).
          int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
          for( int l=0; l<max_reg_ints; l++ )
            n_live[l] = tmp_live[l];
          safehash->Insert(n,n_live);
        }

      }

      // Now at block top, see if we have any changes.  If so, propagate
      // to prior blocks.
      int *old_live = &live[b->_pre_order*max_reg_ints];
      int l;
      for( l=0; l<max_reg_ints; l++ )
        if( tmp_live[l] != old_live[l] )
          break;
      if( l<max_reg_ints ) {     // Change!
        // Copy in new value
        for( l=0; l<max_reg_ints; l++ )
          old_live[l] = tmp_live[l];
        // Push preds onto worklist
        for( l=1; l<(int)b->num_preds(); l++ )
          worklist->push(cfg->_bbs[b->pred(l)->_idx]);
      }
    }

    // Scan for any missing safepoints.  Happens to infinite loops
    // ala ZKM.jar
    uint i;
    for( i=1; i<cfg->_num_blocks; i++ ) {
      Block *b = cfg->_blocks[i];
      uint j;
      for( j=1; j<b->_nodes.size(); j++ )
        if( b->_nodes[j]->jvms() &&
            (*safehash)[b->_nodes[j]] == NULL )
           break;
      if( j<b->_nodes.size() ) break;
    }
    if( i == cfg->_num_blocks )
      break;                    // Got 'em all
#ifndef PRODUCT
    if( PrintOpto && Verbose )
      tty->print_cr("retripping live calc");
#endif
    // Force the issue (expensively): recheck everybody
    for( i=1; i<cfg->_num_blocks; i++ )
      worklist->push(cfg->_blocks[i]);
  }

}

//------------------------------BuildOopMaps-----------------------------------
// Collect GC mask info - where are all the OOPs?
void Compile::BuildOopMaps() {
  NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
  // Can't resource-mark because I need to leave all those OopMaps around,
  // or else I need to resource-mark some arena other than the default.
  // ResourceMark rm;              // Reclaim all OopFlows when done
  int max_reg = _regalloc->_max_reg; // Current array extent

  Arena *A = Thread::current()->resource_area();
  Block_List worklist;          // Worklist of pending blocks

  int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
  Dict *safehash = NULL;        // Used for assert only
  // Compute a backwards liveness per register.  Needs a bitarray of
  // #blocks x (#registers, rounded up to ints)
  safehash = new Dict(cmpkey,hashkey,A);
  do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
  OopFlow *free_list = NULL;    // Free, unused

  // Array mapping blocks to completed oopflows
  OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->_num_blocks);
  memset( flows, 0, _cfg->_num_blocks*sizeof(OopFlow*) );


  // Do the first block 'by hand' to prime the worklist
  Block *entry = _cfg->_blocks[1];
  OopFlow *rootflow = OopFlow::make(A,max_reg);
  // Initialize to 'bottom' (not 'top')
  memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
  memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
  flows[entry->_pre_order] = rootflow;

  // Do the first block 'by hand' to prime the worklist
  rootflow->_b = entry;
  rootflow->compute_reach( _regalloc, max_reg, safehash );
  for( uint i=0; i<entry->_num_succs; i++ )
    worklist.push(entry->_succs[i]);

  // Now worklist contains blocks which have some, but perhaps not all,
  // predecessors visited.
  while( worklist.size() ) {
    // Scan for a block with all predecessors visited, or any randoms slob
    // otherwise.  All-preds-visited order allows me to recycle OopFlow
    // structures rapidly and cut down on the memory footprint.
    // Note: not all predecessors might be visited yet (must happen for
    // irreducible loops).  This is OK, since every live value must have the
    // SAME reaching def for the block, so any reaching def is OK.
    uint i;

    Block *b = worklist.pop();
    // Ignore root block
    if( b == _cfg->_broot ) continue;
    // Block is already done?  Happens if block has several predecessors,
    // he can get on the worklist more than once.
    if( flows[b->_pre_order] ) continue;

    // If this block has a visited predecessor AND that predecessor has this
    // last block as his only undone child, we can move the OopFlow from the
    // pred to this block.  Otherwise we have to grab a new OopFlow.
    OopFlow *flow = NULL;       // Flag for finding optimized flow
    Block *pred = (Block*)0xdeadbeef;
    uint j;
    // Scan this block's preds to find a done predecessor
    for( j=1; j<b->num_preds(); j++ ) {
      Block *p = _cfg->_bbs[b->pred(j)->_idx];
      OopFlow *p_flow = flows[p->_pre_order];
      if( p_flow ) {            // Predecessor is done
        assert( p_flow->_b == p, "cross check" );
        pred = p;               // Record some predecessor
        // If all successors of p are done except for 'b', then we can carry
        // p_flow forward to 'b' without copying, otherwise we have to draw
        // from the free_list and clone data.
        uint k;
        for( k=0; k<p->_num_succs; k++ )
          if( !flows[p->_succs[k]->_pre_order] &&
              p->_succs[k] != b )
            break;

        // Either carry-forward the now-unused OopFlow for b's use
        // or draw a new one from the free list
        if( k==p->_num_succs ) {
          flow = p_flow;
          break;                // Found an ideal pred, use him
        }
      }
    }

    if( flow ) {
      // We have an OopFlow that's the last-use of a predecessor.
      // Carry it forward.
    } else {                    // Draw a new OopFlow from the freelist
      if( !free_list )
        free_list = OopFlow::make(A,max_reg);
      flow = free_list;
      assert( flow->_b == NULL, "oopFlow is not free" );
      free_list = flow->_next;
      flow->_next = NULL;

      // Copy/clone over the data
      flow->clone(flows[pred->_pre_order], max_reg);
    }

    // Mark flow for block.  Blocks can only be flowed over once,
    // because after the first time they are guarded from entering
    // this code again.
    assert( flow->_b == pred, "have some prior flow" );
    flow->_b = NULL;

    // Now push flow forward
    flows[b->_pre_order] = flow;// Mark flow for this block
    flow->_b = b;
    flow->compute_reach( _regalloc, max_reg, safehash );

    // Now push children onto worklist
    for( i=0; i<b->_num_succs; i++ )
      worklist.push(b->_succs[i]);

  }
}