interp_masm_sparc.cpp 92.3 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
/*
 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_interp_masm_sparc.cpp.incl"

#ifndef CC_INTERP
#ifndef FAST_DISPATCH
#define FAST_DISPATCH 1
#endif
#undef FAST_DISPATCH

// Implementation of InterpreterMacroAssembler

// This file specializes the assember with interpreter-specific macros

const Address InterpreterMacroAssembler::l_tmp( FP, 0,  (frame::interpreter_frame_l_scratch_fp_offset    * wordSize ) + STACK_BIAS);
const Address InterpreterMacroAssembler::d_tmp( FP, 0,  (frame::interpreter_frame_d_scratch_fp_offset    * wordSize) + STACK_BIAS);

#else // CC_INTERP
#ifndef STATE
#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
#endif // STATE

#endif // CC_INTERP

void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
  // Note: this algorithm is also used by C1's OSR entry sequence.
  // Any changes should also be applied to CodeEmitter::emit_osr_entry().
  assert_different_registers(args_size, locals_size);
  // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
  if (TaggedStackInterpreter) sll(locals_size, 1, locals_size);
  subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
  // Use br/mov combination because it works on both V8 and V9 and is
  // faster.
  Label skip_move;
  br(Assembler::negative, true, Assembler::pt, skip_move);
  delayed()->mov(G0, delta);
  bind(skip_move);
  round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
  sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
}

#ifndef CC_INTERP

// Dispatch code executed in the prolog of a bytecode which does not do it's
// own dispatch. The dispatch address is computed and placed in IdispatchAddress
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  assert_not_delayed();
#ifdef FAST_DISPATCH
  // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
  // they both use I2.
  assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
  ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
  add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
                                                        // add offset to correct dispatch table
  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
#else
  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
  // dispatch table to use
  Address tbl(G3_scratch, (address)Interpreter::dispatch_table(state));

  sethi(tbl);
  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);    // multiply by wordSize
  add(tbl, tbl.base(), 0);
  ld_ptr( G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
#endif
}


// Dispatch code executed in the epilog of a bytecode which does not do it's
// own dispatch. The dispatch address in IdispatchAddress is used for the
// dispatch.
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
  assert_not_delayed();
  verify_FPU(1, state);
  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  jmp( IdispatchAddress, 0 );
  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
  else                delayed()->nop();
}


void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
  assert_not_delayed();
  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
}


void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
  assert_not_delayed();
  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
}


void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
  // load current bytecode
  assert_not_delayed();
  ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
  dispatch_base(state, table);
}


void InterpreterMacroAssembler::call_VM_leaf_base(
  Register java_thread,
  address  entry_point,
  int      number_of_arguments
) {
  if (!java_thread->is_valid())
    java_thread = L7_thread_cache;
  // super call
  MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
}


void InterpreterMacroAssembler::call_VM_base(
  Register        oop_result,
  Register        java_thread,
  Register        last_java_sp,
  address         entry_point,
  int             number_of_arguments,
  bool            check_exception
) {
  if (!java_thread->is_valid())
    java_thread = L7_thread_cache;
  // See class ThreadInVMfromInterpreter, which assumes that the interpreter
  // takes responsibility for setting its own thread-state on call-out.
  // However, ThreadInVMfromInterpreter resets the state to "in_Java".

  //save_bcp();                                  // save bcp
  MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
  //restore_bcp();                               // restore bcp
  //restore_locals();                            // restore locals pointer
}


void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  if (JvmtiExport::can_pop_frame()) {
    Label L;

    // Check the "pending popframe condition" flag in the current thread
    Address popframe_condition_addr(G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
    ld(popframe_condition_addr, scratch_reg);

    // Initiate popframe handling only if it is not already being processed.  If the flag
    // has the popframe_processing bit set, it means that this code is called *during* popframe
    // handling - we don't want to reenter.
    btst(JavaThread::popframe_pending_bit, scratch_reg);
    br(zero, false, pt, L);
    delayed()->nop();
    btst(JavaThread::popframe_processing_bit, scratch_reg);
    br(notZero, false, pt, L);
    delayed()->nop();

    // Call Interpreter::remove_activation_preserving_args_entry() to get the
    // address of the same-named entrypoint in the generated interpreter code.
    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));

    // Jump to Interpreter::_remove_activation_preserving_args_entry
    jmpl(O0, G0, G0);
    delayed()->nop();
    bind(L);
  }
}


void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
  Register thr_state = G4_scratch;
  ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
         thr_state);
  const Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
  const Address oop_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_oop_offset()));
  const Address val_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_value_offset()));
  switch (state) {
  case ltos: ld_long(val_addr, Otos_l);                   break;
  case atos: ld_ptr(oop_addr, Otos_l);
             st_ptr(G0, oop_addr);                        break;
  case btos:                                           // fall through
  case ctos:                                           // fall through
  case stos:                                           // fall through
  case itos: ld(val_addr, Otos_l1);                       break;
  case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
  case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
  case vtos: /* nothing to do */                          break;
  default  : ShouldNotReachHere();
  }
  // Clean up tos value in the jvmti thread state
  or3(G0, ilgl, G3_scratch);
  stw(G3_scratch, tos_addr);
  st_long(G0, val_addr);
  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
}


void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
  if (JvmtiExport::can_force_early_return()) {
    Label L;
    Register thr_state = G3_scratch;
    ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
           thr_state);
    tst(thr_state);
    br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
    delayed()->nop();

    // Initiate earlyret handling only if it is not already being processed.
    // If the flag has the earlyret_processing bit set, it means that this code
    // is called *during* earlyret handling - we don't want to reenter.
    ld(Address(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_state_offset())),
       G4_scratch);
    cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
    br(Assembler::notEqual, false, pt, L);
    delayed()->nop();

    // Call Interpreter::remove_activation_early_entry() to get the address of the
    // same-named entrypoint in the generated interpreter code
    Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
    ld(tos_addr, Otos_l1);
    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);

    // Jump to Interpreter::_remove_activation_early_entry
    jmpl(O0, G0, G0);
    delayed()->nop();
    bind(L);
  }
}


void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  mov(arg_1, O0);
  MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 1);
}
#endif /* CC_INTERP */


#ifndef CC_INTERP

void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
  assert_not_delayed();
  dispatch_Lbyte_code(state, table);
}


void InterpreterMacroAssembler::dispatch_normal(TosState state) {
  dispatch_base(state, Interpreter::normal_table(state));
}


void InterpreterMacroAssembler::dispatch_only(TosState state) {
  dispatch_base(state, Interpreter::dispatch_table(state));
}


// common code to dispatch and dispatch_only
// dispatch value in Lbyte_code and increment Lbcp

void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
  verify_FPU(1, state);
  // %%%%% maybe implement +VerifyActivationFrameSize here
  //verify_thread(); //too slow; we will just verify on method entry & exit
  if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
#ifdef FAST_DISPATCH
  if (table == Interpreter::dispatch_table(state)) {
    // use IdispatchTables
    add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
                                                        // add offset to correct dispatch table
    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
    ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
  } else {
#endif
    // dispatch table to use
    Address tbl(G3_scratch, (address)table);

    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
    load_address(tbl);                                  // compute addr of table
    ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
#ifdef FAST_DISPATCH
  }
#endif
  jmp( G3_scratch, 0 );
  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
  else                delayed()->nop();
}


// Helpers for expression stack

// Longs and doubles are Category 2 computational types in the
// JVM specification (section 3.11.1) and take 2 expression stack or
// local slots.
// Aligning them on 32 bit with tagged stacks is hard because the code generated
// for the dup* bytecodes depends on what types are already on the stack.
// If the types are split into the two stack/local slots, that is much easier
// (and we can use 0 for non-reference tags).

// Known good alignment in _LP64 but unknown otherwise
void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
  assert_not_delayed();

#ifdef _LP64
  ldf(FloatRegisterImpl::D, r1, offset, d);
#else
  ldf(FloatRegisterImpl::S, r1, offset, d);
  ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize(), d->successor());
#endif
}

// Known good alignment in _LP64 but unknown otherwise
void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
  assert_not_delayed();

#ifdef _LP64
  stf(FloatRegisterImpl::D, d, r1, offset);
  // store something more useful here
  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
#else
  stf(FloatRegisterImpl::S, d, r1, offset);
  stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize());
#endif
}


// Known good alignment in _LP64 but unknown otherwise
void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
  assert_not_delayed();
#ifdef _LP64
  ldx(r1, offset, rd);
#else
  ld(r1, offset, rd);
  ld(r1, offset + Interpreter::stackElementSize(), rd->successor());
#endif
}

// Known good alignment in _LP64 but unknown otherwise
void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
  assert_not_delayed();

#ifdef _LP64
  stx(l, r1, offset);
  // store something more useful here
  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
#else
  st(l, r1, offset);
  st(l->successor(), r1, offset + Interpreter::stackElementSize());
#endif
}

#ifdef ASSERT
void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t,
                                                 Register r,
                                                 Register scratch) {
  if (TaggedStackInterpreter) {
    Label ok, long_ok;
    ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(0), r);
    if (t == frame::TagCategory2) {
      cmp(r, G0);
      brx(Assembler::equal, false, Assembler::pt, long_ok);
      delayed()->ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(1), r);
      stop("stack long/double tag value bad");
      bind(long_ok);
      cmp(r, G0);
    } else if (t == frame::TagValue) {
      cmp(r, G0);
    } else {
      assert_different_registers(r, scratch);
      mov(t, scratch);
      cmp(r, scratch);
    }
    brx(Assembler::equal, false, Assembler::pt, ok);
    delayed()->nop();
    // Also compare if the stack value is zero, then the tag might
    // not have been set coming from deopt.
    ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
    cmp(r, G0);
    brx(Assembler::equal, false, Assembler::pt, ok);
    delayed()->nop();
    stop("Stack tag value is bad");
    bind(ok);
  }
}
#endif // ASSERT

void InterpreterMacroAssembler::pop_i(Register r) {
  assert_not_delayed();
  // Uses destination register r for scratch
  debug_only(verify_stack_tag(frame::TagValue, r));
  ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
  inc(Lesp, Interpreter::stackElementSize());
  debug_only(verify_esp(Lesp));
}

void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
  assert_not_delayed();
  // Uses destination register r for scratch
  debug_only(verify_stack_tag(frame::TagReference, r, scratch));
  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
  inc(Lesp, Interpreter::stackElementSize());
  debug_only(verify_esp(Lesp));
}

void InterpreterMacroAssembler::pop_l(Register r) {
  assert_not_delayed();
  // Uses destination register r for scratch
  debug_only(verify_stack_tag(frame::TagCategory2, r));
  load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
  inc(Lesp, 2*Interpreter::stackElementSize());
  debug_only(verify_esp(Lesp));
}


void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
  assert_not_delayed();
  debug_only(verify_stack_tag(frame::TagValue, scratch));
  ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
  inc(Lesp, Interpreter::stackElementSize());
  debug_only(verify_esp(Lesp));
}


void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
  assert_not_delayed();
  debug_only(verify_stack_tag(frame::TagCategory2, scratch));
  load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
  inc(Lesp, 2*Interpreter::stackElementSize());
  debug_only(verify_esp(Lesp));
}


// (Note use register first, then decrement so dec can be done during store stall)
void InterpreterMacroAssembler::tag_stack(Register r) {
  if (TaggedStackInterpreter) {
    st_ptr(r, Lesp, Interpreter::tag_offset_in_bytes());
  }
}

void InterpreterMacroAssembler::tag_stack(frame::Tag t, Register r) {
  if (TaggedStackInterpreter) {
    assert (frame::TagValue == 0, "TagValue must be zero");
    if (t == frame::TagValue) {
      st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
    } else if (t == frame::TagCategory2) {
      st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
      // Tag next slot down too
      st_ptr(G0, Lesp, -Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes());
    } else {
      assert_different_registers(r, O3);
      mov(t, O3);
      st_ptr(O3, Lesp, Interpreter::tag_offset_in_bytes());
    }
  }
}

void InterpreterMacroAssembler::push_i(Register r) {
  assert_not_delayed();
  debug_only(verify_esp(Lesp));
  tag_stack(frame::TagValue, r);
  st(  r,    Lesp, Interpreter::value_offset_in_bytes());
  dec( Lesp, Interpreter::stackElementSize());
}

void InterpreterMacroAssembler::push_ptr(Register r) {
  assert_not_delayed();
  tag_stack(frame::TagReference, r);
  st_ptr(  r,    Lesp, Interpreter::value_offset_in_bytes());
  dec( Lesp, Interpreter::stackElementSize());
}

void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
  assert_not_delayed();
  tag_stack(tag);
  st_ptr(r, Lesp, Interpreter::value_offset_in_bytes());
  dec( Lesp, Interpreter::stackElementSize());
}

// remember: our convention for longs in SPARC is:
// O0 (Otos_l1) has high-order part in first word,
// O1 (Otos_l2) has low-order part in second word

void InterpreterMacroAssembler::push_l(Register r) {
  assert_not_delayed();
  debug_only(verify_esp(Lesp));
  tag_stack(frame::TagCategory2, r);
  // Longs are in stored in memory-correct order, even if unaligned.
  // and may be separated by stack tags.
  int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
  store_unaligned_long(r, Lesp, offset);
  dec(Lesp, 2 * Interpreter::stackElementSize());
}


void InterpreterMacroAssembler::push_f(FloatRegister f) {
  assert_not_delayed();
  debug_only(verify_esp(Lesp));
  tag_stack(frame::TagValue, Otos_i);
  stf(FloatRegisterImpl::S, f, Lesp, Interpreter::value_offset_in_bytes());
  dec(Lesp, Interpreter::stackElementSize());
}


void InterpreterMacroAssembler::push_d(FloatRegister d)   {
  assert_not_delayed();
  debug_only(verify_esp(Lesp));
  tag_stack(frame::TagCategory2, Otos_i);
  // Longs are in stored in memory-correct order, even if unaligned.
  // and may be separated by stack tags.
  int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
  store_unaligned_double(d, Lesp, offset);
  dec(Lesp, 2 * Interpreter::stackElementSize());
}


void InterpreterMacroAssembler::push(TosState state) {
  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  switch (state) {
    case atos: push_ptr();            break;
    case btos: push_i();              break;
    case ctos:
    case stos: push_i();              break;
    case itos: push_i();              break;
    case ltos: push_l();              break;
    case ftos: push_f();              break;
    case dtos: push_d();              break;
    case vtos: /* nothing to do */    break;
    default  : ShouldNotReachHere();
  }
}


void InterpreterMacroAssembler::pop(TosState state) {
  switch (state) {
    case atos: pop_ptr();            break;
    case btos: pop_i();              break;
    case ctos:
    case stos: pop_i();              break;
    case itos: pop_i();              break;
    case ltos: pop_l();              break;
    case ftos: pop_f();              break;
    case dtos: pop_d();              break;
    case vtos: /* nothing to do */   break;
    default  : ShouldNotReachHere();
  }
  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
}


// Tagged stack helpers for swap and dup
void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
                                                 Register tag) {
  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
  if (TaggedStackInterpreter) {
    ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(n), tag);
  }
}
void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
                                                  Register tag) {
  st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
  if (TaggedStackInterpreter) {
    st_ptr(tag, Lesp, Interpreter::expr_tag_offset_in_bytes(n));
  }
}


void InterpreterMacroAssembler::load_receiver(Register param_count,
                                              Register recv) {

  sll(param_count, Interpreter::logStackElementSize(), param_count);
  if (TaggedStackInterpreter) {
    add(param_count, Interpreter::value_offset_in_bytes(), param_count);  // get obj address
  }
  ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
}

void InterpreterMacroAssembler::empty_expression_stack() {
  // Reset Lesp.
  sub( Lmonitors, wordSize, Lesp );

  // Reset SP by subtracting more space from Lesp.
  Label done;

  const Address max_stack   (Lmethod, 0, in_bytes(methodOopDesc::max_stack_offset()));
  const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));

  verify_oop(Lmethod);


  assert( G4_scratch    != Gframe_size,
          "Only you can prevent register aliasing!");

  // A native does not need to do this, since its callee does not change SP.
  ld(access_flags, Gframe_size);
  btst(JVM_ACC_NATIVE, Gframe_size);
  br(Assembler::notZero, false, Assembler::pt, done);
  delayed()->nop();

  //
  // Compute max expression stack+register save area
  //
  lduh( max_stack, Gframe_size );
  if (TaggedStackInterpreter) sll ( Gframe_size, 1, Gframe_size);  // max_stack * 2 for TAGS
  add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );

  //
  // now set up a stack frame with the size computed above
  //
  //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
  sll( Gframe_size, LogBytesPerWord, Gframe_size );
  sub( Lesp, Gframe_size, Gframe_size );
  and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
  debug_only(verify_sp(Gframe_size, G4_scratch));
#ifdef _LP64
  sub(Gframe_size, STACK_BIAS, Gframe_size );
#endif
  mov(Gframe_size, SP);

  bind(done);
}


#ifdef ASSERT
void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
  Label Bad, OK;

  // Saved SP must be aligned.
#ifdef _LP64
  btst(2*BytesPerWord-1, Rsp);
#else
  btst(LongAlignmentMask, Rsp);
#endif
  br(Assembler::notZero, false, Assembler::pn, Bad);
  delayed()->nop();

  // Saved SP, plus register window size, must not be above FP.
  add(Rsp, frame::register_save_words * wordSize, Rtemp);
#ifdef _LP64
  sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
#endif
  cmp(Rtemp, FP);
  brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
  delayed()->nop();

  // Saved SP must not be ridiculously below current SP.
  size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
  set(maxstack, Rtemp);
  sub(SP, Rtemp, Rtemp);
#ifdef _LP64
  add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
#endif
  cmp(Rsp, Rtemp);
  brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
  delayed()->nop();

  br(Assembler::always, false, Assembler::pn, OK);
  delayed()->nop();

  bind(Bad);
  stop("on return to interpreted call, restored SP is corrupted");

  bind(OK);
}


void InterpreterMacroAssembler::verify_esp(Register Resp) {
  // about to read or write Resp[0]
  // make sure it is not in the monitors or the register save area
  Label OK1, OK2;

  cmp(Resp, Lmonitors);
  brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
  delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
  stop("too many pops:  Lesp points into monitor area");
  bind(OK1);
#ifdef _LP64
  sub(Resp, STACK_BIAS, Resp);
#endif
  cmp(Resp, SP);
  brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
  delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
  stop("too many pushes:  Lesp points into register window");
  bind(OK2);
}
#endif // ASSERT

// Load compiled (i2c) or interpreter entry when calling from interpreted and
// do the call. Centralized so that all interpreter calls will do the same actions.
// If jvmti single stepping is on for a thread we must not call compiled code.
void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {

  // Assume we want to go compiled if available

  ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);

  if (JvmtiExport::can_post_interpreter_events()) {
    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
    // compiled code in threads for which the event is enabled.  Check here for
    // interp_only_mode if these events CAN be enabled.
    verify_thread();
    Label skip_compiled_code;

    const Address interp_only       (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));

    ld(interp_only, scratch);
    tst(scratch);
    br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
    delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
    bind(skip_compiled_code);
  }

  // the i2c_adapters need methodOop in G5_method (right? %%%)
  // do the call
#ifdef ASSERT
  {
    Label ok;
    br_notnull(target, false, Assembler::pt, ok);
    delayed()->nop();
    stop("null entry point");
    bind(ok);
  }
#endif // ASSERT

  // Adjust Rret first so Llast_SP can be same as Rret
  add(Rret, -frame::pc_return_offset, O7);
  add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
  // Record SP so we can remove any stack space allocated by adapter transition
  jmp(target, 0);
  delayed()->mov(SP, Llast_SP);
}

void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
  assert_not_delayed();

  Label not_taken;
  if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
  else             br (cc, false, Assembler::pn, not_taken);
  delayed()->nop();

  TemplateTable::branch(false,false);

  bind(not_taken);

  profile_not_taken_branch(G3_scratch);
}


void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
                                  int         bcp_offset,
                                  Register    Rtmp,
                                  Register    Rdst,
                                  signedOrNot is_signed,
                                  setCCOrNot  should_set_CC ) {
  assert(Rtmp != Rdst, "need separate temp register");
  assert_not_delayed();
  switch (is_signed) {
   default: ShouldNotReachHere();

   case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
   case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
  }
  ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
  sll( Rdst, BitsPerByte, Rdst);
  switch (should_set_CC ) {
   default: ShouldNotReachHere();

   case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
   case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
  }
}


void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
                                  int        bcp_offset,
                                  Register   Rtmp,
                                  Register   Rdst,
                                  setCCOrNot should_set_CC ) {
  assert(Rtmp != Rdst, "need separate temp register");
  assert_not_delayed();
  add( Lbcp, bcp_offset, Rtmp);
  andcc( Rtmp, 3, G0);
  Label aligned;
  switch (should_set_CC ) {
   default: ShouldNotReachHere();

   case      set_CC: break;
   case dont_set_CC: break;
  }

  br(Assembler::zero, true, Assembler::pn, aligned);
#ifdef _LP64
  delayed()->ldsw(Rtmp, 0, Rdst);
#else
  delayed()->ld(Rtmp, 0, Rdst);
#endif

  ldub(Lbcp, bcp_offset + 3, Rdst);
  ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
  ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
#ifdef _LP64
  ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
#else
  // Unsigned load is faster than signed on some implementations
  ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
#endif
  or3(Rtmp, Rdst, Rdst );

  bind(aligned);
  if (should_set_CC == set_CC) tst(Rdst);
}


void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset) {
  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
  assert_different_registers(cache, tmp);
  assert_not_delayed();
  get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
              // convert from field index to ConstantPoolCacheEntry index
              // and from word index to byte offset
  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
  add(LcpoolCache, tmp, cache);
}


void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
  assert_different_registers(cache, tmp);
  assert_not_delayed();
  get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
              // convert from field index to ConstantPoolCacheEntry index
              // and from word index to byte offset
  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
              // skip past the header
  add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
              // construct pointer to cache entry
  add(LcpoolCache, tmp, cache);
}


// Generate a subtype check: branch to ok_is_subtype if sub_klass is
// a subtype of super_klass.  Blows registers Rsub_klass, tmp1, tmp2.
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
                                                  Register Rsuper_klass,
                                                  Register Rtmp1,
                                                  Register Rtmp2,
                                                  Register Rtmp3,
                                                  Label &ok_is_subtype ) {
  Label not_subtype, loop;

  // Profile the not-null value's klass.
  profile_typecheck(Rsub_klass, Rtmp1);

  // Load the super-klass's check offset into Rtmp1
  ld( Rsuper_klass, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes(), Rtmp1 );
  // Load from the sub-klass's super-class display list, or a 1-word cache of
  // the secondary superclass list, or a failing value with a sentinel offset
  // if the super-klass is an interface or exceptionally deep in the Java
  // hierarchy and we have to scan the secondary superclass list the hard way.
  ld_ptr( Rsub_klass, Rtmp1, Rtmp2 );
  // See if we get an immediate positive hit
  cmp( Rtmp2, Rsuper_klass );
  brx( Assembler::equal, false, Assembler::pt, ok_is_subtype );
  // In the delay slot, check for immediate negative hit
  delayed()->cmp( Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
  br( Assembler::notEqual, false, Assembler::pt, not_subtype );
  // In the delay slot, check for self
  delayed()->cmp( Rsub_klass, Rsuper_klass );
  brx( Assembler::equal, false, Assembler::pt, ok_is_subtype );

  // Now do a linear scan of the secondary super-klass chain.
  delayed()->ld_ptr( Rsub_klass, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), Rtmp2 );

  // Rtmp2 holds the objArrayOop of secondary supers.
  ld( Rtmp2, arrayOopDesc::length_offset_in_bytes(), Rtmp1 );// Load the array length
  // Check for empty secondary super list
  tst(Rtmp1);

  // Top of search loop
  bind( loop );
  br( Assembler::equal, false, Assembler::pn, not_subtype );
  delayed()->nop();
  // load next super to check
  ld_ptr( Rtmp2, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rtmp3 );

  // Bump array pointer forward one oop
  add( Rtmp2, wordSize, Rtmp2 );
  // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
  cmp( Rtmp3, Rsuper_klass );
  // A miss means we are NOT a subtype and need to keep looping
  brx( Assembler::notEqual, false, Assembler::pt, loop );
  delayed()->deccc( Rtmp1 );    // dec trip counter in delay slot
  // Falling out the bottom means we found a hit; we ARE a subtype
  br( Assembler::always, false, Assembler::pt, ok_is_subtype );
  // Update the cache
  delayed()->st_ptr( Rsuper_klass, Rsub_klass, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );

  bind(not_subtype);
  profile_typecheck_failed(Rtmp1);
}

// Separate these two to allow for delay slot in middle
// These are used to do a test and full jump to exception-throwing code.

// %%%%% Could possibly reoptimize this by testing to see if could use
// a single conditional branch (i.e. if span is small enough.
// If you go that route, than get rid of the split and give up
// on the delay-slot hack.

void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
                                                    Label&    ok ) {
  assert_not_delayed();
  br(ok_condition, true, pt, ok);
  // DELAY SLOT
}

void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
                                                    Label&    ok ) {
  assert_not_delayed();
  bp( ok_condition, true, Assembler::xcc, pt, ok);
  // DELAY SLOT
}

void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
                                                  Label&    ok ) {
  assert_not_delayed();
  brx(ok_condition, true, pt, ok);
  // DELAY SLOT
}

void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
                                                Register Rscratch,
                                                Label&   ok ) {
  assert(throw_entry_point != NULL, "entry point must be generated by now");
  Address dest(Rscratch, throw_entry_point);
  jump_to(dest);
  delayed()->nop();
  bind(ok);
}


// And if you cannot use the delay slot, here is a shorthand:

void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
                                                  address   throw_entry_point,
                                                  Register  Rscratch ) {
  Label ok;
  if (ok_condition != never) {
    throw_if_not_1_icc( ok_condition, ok);
    delayed()->nop();
  }
  throw_if_not_2( throw_entry_point, Rscratch, ok);
}
void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
                                                  address   throw_entry_point,
                                                  Register  Rscratch ) {
  Label ok;
  if (ok_condition != never) {
    throw_if_not_1_xcc( ok_condition, ok);
    delayed()->nop();
  }
  throw_if_not_2( throw_entry_point, Rscratch, ok);
}
void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
                                                address   throw_entry_point,
                                                Register  Rscratch ) {
  Label ok;
  if (ok_condition != never) {
    throw_if_not_1_x( ok_condition, ok);
    delayed()->nop();
  }
  throw_if_not_2( throw_entry_point, Rscratch, ok);
}

// Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
// Note: res is still shy of address by array offset into object.

void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
  assert_not_delayed();

  verify_oop(array);
#ifdef _LP64
  // sign extend since tos (index) can be a 32bit value
  sra(index, G0, index);
#endif // _LP64

  // check array
  Label ptr_ok;
  tst(array);
  throw_if_not_1_x( notZero, ptr_ok );
  delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
  throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);

  Label index_ok;
  cmp(index, tmp);
  throw_if_not_1_icc( lessUnsigned, index_ok );
  if (index_shift > 0)  delayed()->sll(index, index_shift, index);
  else                  delayed()->add(array, index, res); // addr - const offset in index
  // convention: move aberrant index into G3_scratch for exception message
  mov(index, G3_scratch);
  throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);

  // add offset if didn't do it in delay slot
  if (index_shift > 0)   add(array, index, res); // addr - const offset in index
}


void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
  assert_not_delayed();

  // pop array
  pop_ptr(array);

  // check array
  index_check_without_pop(array, index, index_shift, tmp, res);
}


void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
  ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
}


void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
  get_constant_pool(Rdst);
  ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
}


void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
  get_constant_pool(Rcpool);
  ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
}


// unlock if synchronized method
//
// Unlock the receiver if this is a synchronized method.
// Unlock any Java monitors from syncronized blocks.
//
// If there are locked Java monitors
//    If throw_monitor_exception
//       throws IllegalMonitorStateException
//    Else if install_monitor_exception
//       installs IllegalMonitorStateException
//    Else
//       no error processing
void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
                                                              bool throw_monitor_exception,
                                                              bool install_monitor_exception) {
  Label unlocked, unlock, no_unlock;

  // get the value of _do_not_unlock_if_synchronized into G1_scratch
  const Address do_not_unlock_if_synchronized(G2_thread, 0,
    in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  ldbool(do_not_unlock_if_synchronized, G1_scratch);
  stbool(G0, do_not_unlock_if_synchronized); // reset the flag

  // check if synchronized method
  const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  push(state); // save tos
  ld(access_flags, G3_scratch);
  btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
  br( zero, false, pt, unlocked);
  delayed()->nop();

  // Don't unlock anything if the _do_not_unlock_if_synchronized flag
  // is set.
  tstbool(G1_scratch);
  br(Assembler::notZero, false, pn, no_unlock);
  delayed()->nop();

  // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  // to check that the object has not been unlocked by an explicit monitorexit bytecode.

  //Intel: if (throw_monitor_exception) ... else ...
  // Entry already unlocked, need to throw exception
  //...

  // pass top-most monitor elem
  add( top_most_monitor(), O1 );

  ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
  br_notnull(G3_scratch, false, pt, unlock);
  delayed()->nop();

  if (throw_monitor_exception) {
    // Entry already unlocked need to throw an exception
    MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
    should_not_reach_here();
  } else {
    // Monitor already unlocked during a stack unroll.
    // If requested, install an illegal_monitor_state_exception.
    // Continue with stack unrolling.
    if (install_monitor_exception) {
      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
    }
    ba(false, unlocked);
    delayed()->nop();
  }

  bind(unlock);

  unlock_object(O1);

  bind(unlocked);

  // I0, I1: Might contain return value

  // Check that all monitors are unlocked
  { Label loop, exception, entry, restart;

    Register Rmptr   = O0;
    Register Rtemp   = O1;
    Register Rlimit  = Lmonitors;
    const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
    assert( (delta & LongAlignmentMask) == 0,
            "sizeof BasicObjectLock must be even number of doublewords");

    #ifdef ASSERT
    add(top_most_monitor(), Rmptr, delta);
    { Label L;
      // ensure that Rmptr starts out above (or at) Rlimit
      cmp(Rmptr, Rlimit);
      brx(Assembler::greaterEqualUnsigned, false, pn, L);
      delayed()->nop();
      stop("monitor stack has negative size");
      bind(L);
    }
    #endif
    bind(restart);
    ba(false, entry);
    delayed()->
    add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry

    // Entry is still locked, need to throw exception
    bind(exception);
    if (throw_monitor_exception) {
      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
      should_not_reach_here();
    } else {
      // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
      // Unlock does not block, so don't have to worry about the frame
      unlock_object(Rmptr);
      if (install_monitor_exception) {
        MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
      }
      ba(false, restart);
      delayed()->nop();
    }

    bind(loop);
    cmp(Rtemp, G0);                             // check if current entry is used
    brx(Assembler::notEqual, false, pn, exception);
    delayed()->
    dec(Rmptr, delta);                          // otherwise advance to next entry
    #ifdef ASSERT
    { Label L;
      // ensure that Rmptr has not somehow stepped below Rlimit
      cmp(Rmptr, Rlimit);
      brx(Assembler::greaterEqualUnsigned, false, pn, L);
      delayed()->nop();
      stop("ran off the end of the monitor stack");
      bind(L);
    }
    #endif
    bind(entry);
    cmp(Rmptr, Rlimit);                         // check if bottom reached
    brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
    delayed()->
    ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
  }

  bind(no_unlock);
  pop(state);
  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
}


// remove activation
//
// Unlock the receiver if this is a synchronized method.
// Unlock any Java monitors from syncronized blocks.
// Remove the activation from the stack.
//
// If there are locked Java monitors
//    If throw_monitor_exception
//       throws IllegalMonitorStateException
//    Else if install_monitor_exception
//       installs IllegalMonitorStateException
//    Else
//       no error processing
void InterpreterMacroAssembler::remove_activation(TosState state,
                                                  bool throw_monitor_exception,
                                                  bool install_monitor_exception) {

  unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);

  // save result (push state before jvmti call and pop it afterwards) and notify jvmti
  notify_method_exit(false, state, NotifyJVMTI);

  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  verify_oop(Lmethod);
  verify_thread();

  // return tos
  assert(Otos_l1 == Otos_i, "adjust code below");
  switch (state) {
#ifdef _LP64
  case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
#else
  case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
#endif
  case btos:                                      // fall through
  case ctos:
  case stos:                                      // fall through
  case atos:                                      // fall through
  case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
  case ftos:                                      // fall through
  case dtos:                                      // fall through
  case vtos: /* nothing to do */                     break;
  default  : ShouldNotReachHere();
  }

#if defined(COMPILER2) && !defined(_LP64)
  if (state == ltos) {
    // C2 expects long results in G1 we can't tell if we're returning to interpreted
    // or compiled so just be safe use G1 and O0/O1

    // Shift bits into high (msb) of G1
    sllx(Otos_l1->after_save(), 32, G1);
    // Zero extend low bits
    srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
    or3 (Otos_l2->after_save(), G1, G1);
  }
#endif /* COMPILER2 */

}
#endif /* CC_INTERP */


// Lock object
//
// Argument - lock_reg points to the BasicObjectLock to be used for locking,
//            it must be initialized with the object to lock
void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
  if (UseHeavyMonitors) {
    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  }
  else {
    Register obj_reg = Object;
    Register mark_reg = G4_scratch;
    Register temp_reg = G1_scratch;
    Address  lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
    Address  mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
    Label    done;

    Label slow_case;

    assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);

    // load markOop from object into mark_reg
    ld_ptr(mark_addr, mark_reg);

    if (UseBiasedLocking) {
      biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
    }

    // get the address of basicLock on stack that will be stored in the object
    // we need a temporary register here as we do not want to clobber lock_reg
    // (cas clobbers the destination register)
    mov(lock_reg, temp_reg);
    // set mark reg to be (markOop of object | UNLOCK_VALUE)
    or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
    // initialize the box  (Must happen before we update the object mark!)
    st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
    // compare and exchange object_addr, markOop | 1, stack address of basicLock
    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
    casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());

    // if the compare and exchange succeeded we are done (we saw an unlocked object)
    cmp(mark_reg, temp_reg);
    brx(Assembler::equal, true, Assembler::pt, done);
    delayed()->nop();

    // We did not see an unlocked object so try the fast recursive case

    // Check if owner is self by comparing the value in the markOop of object
    // with the stack pointer
    sub(temp_reg, SP, temp_reg);
#ifdef _LP64
    sub(temp_reg, STACK_BIAS, temp_reg);
#endif
    assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");

    // Composite "andcc" test:
    // (a) %sp -vs- markword proximity check, and,
    // (b) verify mark word LSBs == 0 (Stack-locked).
    //
    // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
    // Note that the page size used for %sp proximity testing is arbitrary and is
    // unrelated to the actual MMU page size.  We use a 'logical' page size of
    // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
    // field of the andcc instruction.
    andcc (temp_reg, 0xFFFFF003, G0) ;

    // if condition is true we are done and hence we can store 0 in the displaced
    // header indicating it is a recursive lock and be done
    brx(Assembler::zero, true, Assembler::pt, done);
    delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());

    // none of the above fast optimizations worked so we have to get into the
    // slow case of monitor enter
    bind(slow_case);
    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);

    bind(done);
  }
}

// Unlocks an object. Used in monitorexit bytecode and remove_activation.
//
// Argument - lock_reg points to the BasicObjectLock for lock
// Throw IllegalMonitorException if object is not locked by current thread
void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
  if (UseHeavyMonitors) {
    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  } else {
    Register obj_reg = G3_scratch;
    Register mark_reg = G4_scratch;
    Register displaced_header_reg = G1_scratch;
    Address  lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
    Address  lockobj_addr = Address(lock_reg, 0, BasicObjectLock::obj_offset_in_bytes());
    Address  mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
    Label    done;

    if (UseBiasedLocking) {
      // load the object out of the BasicObjectLock
      ld_ptr(lockobj_addr, obj_reg);
      biased_locking_exit(mark_addr, mark_reg, done, true);
      st_ptr(G0, lockobj_addr);  // free entry
    }

    // Test first if we are in the fast recursive case
    ld_ptr(lock_addr, displaced_header_reg, BasicLock::displaced_header_offset_in_bytes());
    br_null(displaced_header_reg, true, Assembler::pn, done);
    delayed()->st_ptr(G0, lockobj_addr);  // free entry

    // See if it is still a light weight lock, if so we just unlock
    // the object and we are done

    if (!UseBiasedLocking) {
      // load the object out of the BasicObjectLock
      ld_ptr(lockobj_addr, obj_reg);
    }

    // we have the displaced header in displaced_header_reg
    // we expect to see the stack address of the basicLock in case the
    // lock is still a light weight lock (lock_reg)
    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
    casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
    cmp(lock_reg, displaced_header_reg);
    brx(Assembler::equal, true, Assembler::pn, done);
    delayed()->st_ptr(G0, lockobj_addr);  // free entry

    // The lock has been converted into a heavy lock and hence
    // we need to get into the slow case

    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);

    bind(done);
  }
}

#ifndef CC_INTERP

// Get the method data pointer from the methodOop and set the
// specified register to its value.

void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  Label get_continue;

  ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
  test_method_data_pointer(get_continue);
  add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
  if (Roff != noreg)
    // Roff contains a method data index ("mdi").  It defaults to zero.
    add(ImethodDataPtr, Roff, ImethodDataPtr);
  bind(get_continue);
}

// Set the method data pointer for the current bcp.

void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  assert(ProfileInterpreter, "must be profiling interpreter");
  Label zero_continue;

  // Test MDO to avoid the call if it is NULL.
  ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
  test_method_data_pointer(zero_continue);
  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
  set_method_data_pointer_offset(O0);
  bind(zero_continue);
}

// Test ImethodDataPtr.  If it is null, continue at the specified label

void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
  assert(ProfileInterpreter, "must be profiling interpreter");
#ifdef _LP64
  bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
#else
  tst(ImethodDataPtr);
  br(Assembler::zero, false, Assembler::pn, zero_continue);
#endif
  delayed()->nop();
}

void InterpreterMacroAssembler::verify_method_data_pointer() {
  assert(ProfileInterpreter, "must be profiling interpreter");
#ifdef ASSERT
  Label verify_continue;
  test_method_data_pointer(verify_continue);

  // If the mdp is valid, it will point to a DataLayout header which is
  // consistent with the bcp.  The converse is highly probable also.
  lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
  ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::const_offset())), O5);
  add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
  add(G3_scratch, O5, G3_scratch);
  cmp(Lbcp, G3_scratch);
  brx(Assembler::equal, false, Assembler::pt, verify_continue);

  Register temp_reg = O5;
  delayed()->mov(ImethodDataPtr, temp_reg);
  // %%% should use call_VM_leaf here?
  //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
  save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
  Address d_save(FP, 0, -sizeof(jdouble) + STACK_BIAS);
  stf(FloatRegisterImpl::D, Ftos_d, d_save);
  mov(temp_reg->after_save(), O2);
  save_thread(L7_thread_cache);
  call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
  delayed()->nop();
  restore_thread(L7_thread_cache);
  ldf(FloatRegisterImpl::D, d_save, Ftos_d);
  restore();
  bind(verify_continue);
#endif // ASSERT
}

void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
                                                                Register cur_bcp,
                                                                Register Rtmp,
                                                                Label &profile_continue) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  // Control will flow to "profile_continue" if the counter is less than the
  // limit or if we call profile_method()

  Label done;

  // if no method data exists, and the counter is high enough, make one
#ifdef _LP64
  bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
#else
  tst(ImethodDataPtr);
  br(Assembler::notZero, false, Assembler::pn, done);
#endif

  // Test to see if we should create a method data oop
  Address profile_limit(Rtmp, (address)&InvocationCounter::InterpreterProfileLimit);
#ifdef _LP64
  delayed()->nop();
  sethi(profile_limit);
#else
  delayed()->sethi(profile_limit);
#endif
  ld(profile_limit, Rtmp);
  cmp(invocation_count, Rtmp);
  br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
  delayed()->nop();

  // Build it now.
  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
  set_method_data_pointer_offset(O0);
  ba(false, profile_continue);
  delayed()->nop();
  bind(done);
}

// Store a value at some constant offset from the method data pointer.

void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  st_ptr(value, ImethodDataPtr, constant);
}

void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
                                                      Register bumped_count,
                                                      bool decrement) {
  assert(ProfileInterpreter, "must be profiling interpreter");

  // Load the counter.
  ld_ptr(counter, bumped_count);

  if (decrement) {
    // Decrement the register.  Set condition codes.
    subcc(bumped_count, DataLayout::counter_increment, bumped_count);

    // If the decrement causes the counter to overflow, stay negative
    Label L;
    brx(Assembler::negative, true, Assembler::pn, L);

    // Store the decremented counter, if it is still negative.
    delayed()->st_ptr(bumped_count, counter);
    bind(L);
  } else {
    // Increment the register.  Set carry flag.
    addcc(bumped_count, DataLayout::counter_increment, bumped_count);

    // If the increment causes the counter to overflow, pull back by 1.
    assert(DataLayout::counter_increment == 1, "subc works");
    subc(bumped_count, G0, bumped_count);

    // Store the incremented counter.
    st_ptr(bumped_count, counter);
  }
}

// Increment the value at some constant offset from the method data pointer.

void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
                                                      Register bumped_count,
                                                      bool decrement) {
  // Locate the counter at a fixed offset from the mdp:
  Address counter(ImethodDataPtr, 0, constant);
  increment_mdp_data_at(counter, bumped_count, decrement);
}

// Increment the value at some non-fixed (reg + constant) offset from
// the method data pointer.

void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
                                                      int constant,
                                                      Register bumped_count,
                                                      Register scratch2,
                                                      bool decrement) {
  // Add the constant to reg to get the offset.
  add(ImethodDataPtr, reg, scratch2);
  Address counter(scratch2, 0, constant);
  increment_mdp_data_at(counter, bumped_count, decrement);
}

// Set a flag value at the current method data pointer position.
// Updates a single byte of the header, to avoid races with other header bits.

void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
                                                Register scratch) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  // Load the data header
  ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);

  // Set the flag
  or3(scratch, flag_constant, scratch);

  // Store the modified header.
  stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
}

// Test the location at some offset from the method data pointer.
// If it is not equal to value, branch to the not_equal_continue Label.
// Set condition codes to match the nullness of the loaded value.

void InterpreterMacroAssembler::test_mdp_data_at(int offset,
                                                 Register value,
                                                 Label& not_equal_continue,
                                                 Register scratch) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  ld_ptr(ImethodDataPtr, offset, scratch);
  cmp(value, scratch);
  brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
  delayed()->tst(scratch);
}

// Update the method data pointer by the displacement located at some fixed
// offset from the method data pointer.

void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
                                                     Register scratch) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
  add(ImethodDataPtr, scratch, ImethodDataPtr);
}

// Update the method data pointer by the displacement located at the
// offset (reg + offset_of_disp).

void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
                                                     int offset_of_disp,
                                                     Register scratch) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  add(reg, offset_of_disp, scratch);
  ld_ptr(ImethodDataPtr, scratch, scratch);
  add(ImethodDataPtr, scratch, ImethodDataPtr);
}

// Update the method data pointer by a simple constant displacement.

void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  add(ImethodDataPtr, constant, ImethodDataPtr);
}

// Update the method data pointer for a _ret bytecode whose target
// was not among our cached targets.

void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
                                                   Register return_bci) {
  assert(ProfileInterpreter, "must be profiling interpreter");
  push(state);
  st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  ld_ptr(l_tmp, return_bci);
  pop(state);
}

// Count a taken branch in the bytecodes.

void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(profile_continue);

    // We are taking a branch.  Increment the taken count.
    increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);

    // The method data pointer needs to be updated to reflect the new target.
    update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
    bind (profile_continue);
  }
}


// Count a not-taken branch in the bytecodes.

void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(profile_continue);

    // We are taking a branch.  Increment the not taken count.
    increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);

    // The method data pointer needs to be updated to correspond to the
    // next bytecode.
    update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
    bind (profile_continue);
  }
}


// Count a non-virtual call in the bytecodes.

void InterpreterMacroAssembler::profile_call(Register scratch) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(profile_continue);

    // We are making a call.  Increment the count.
    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);

    // The method data pointer needs to be updated to reflect the new target.
    update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
    bind (profile_continue);
  }
}


// Count a final call in the bytecodes.

void InterpreterMacroAssembler::profile_final_call(Register scratch) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(profile_continue);

    // We are making a call.  Increment the count.
    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);

    // The method data pointer needs to be updated to reflect the new target.
    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
    bind (profile_continue);
  }
}


// Count a virtual call in the bytecodes.

void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
                                                     Register scratch) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(profile_continue);

    // We are making a call.  Increment the count.
    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);

    // Record the receiver type.
    record_klass_in_profile(receiver, scratch);

    // The method data pointer needs to be updated to reflect the new target.
    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
    bind (profile_continue);
  }
}

void InterpreterMacroAssembler::record_klass_in_profile_helper(
                                        Register receiver, Register scratch,
                                        int start_row, Label& done) {
  int last_row = VirtualCallData::row_limit() - 1;
  assert(start_row <= last_row, "must be work left to do");
  // Test this row for both the receiver and for null.
  // Take any of three different outcomes:
  //   1. found receiver => increment count and goto done
  //   2. found null => keep looking for case 1, maybe allocate this cell
  //   3. found something else => keep looking for cases 1 and 2
  // Case 3 is handled by a recursive call.
  for (int row = start_row; row <= last_row; row++) {
    Label next_test;
    bool test_for_null_also = (row == start_row);

    // See if the receiver is receiver[n].
    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
    test_mdp_data_at(recvr_offset, receiver, next_test, scratch);

    // The receiver is receiver[n].  Increment count[n].
    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
    increment_mdp_data_at(count_offset, scratch);
    ba(false, done);
    delayed()->nop();
    bind(next_test);

    if (test_for_null_also) {
      // Failed the equality check on receiver[n]...  Test for null.
      if (start_row == last_row) {
        // The only thing left to do is handle the null case.
        brx(Assembler::notZero, false, Assembler::pt, done);
        delayed()->nop();
        break;
      }
      // Since null is rare, make it be the branch-taken case.
      Label found_null;
      brx(Assembler::zero, false, Assembler::pn, found_null);
      delayed()->nop();

      // Put all the "Case 3" tests here.
      record_klass_in_profile_helper(receiver, scratch, start_row + 1, done);

      // Found a null.  Keep searching for a matching receiver,
      // but remember that this is an empty (unused) slot.
      bind(found_null);
    }
  }

  // In the fall-through case, we found no matching receiver, but we
  // observed the receiver[start_row] is NULL.

  // Fill in the receiver field and increment the count.
  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  set_mdp_data_at(recvr_offset, receiver);
  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  mov(DataLayout::counter_increment, scratch);
  set_mdp_data_at(count_offset, scratch);
  ba(false, done);
  delayed()->nop();
}

void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
                                                        Register scratch) {
  assert(ProfileInterpreter, "must be profiling");
  Label done;

  record_klass_in_profile_helper(receiver, scratch, 0, done);

  bind (done);
}


// Count a ret in the bytecodes.

void InterpreterMacroAssembler::profile_ret(TosState state,
                                            Register return_bci,
                                            Register scratch) {
  if (ProfileInterpreter) {
    Label profile_continue;
    uint row;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(profile_continue);

    // Update the total ret count.
    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);

    for (row = 0; row < RetData::row_limit(); row++) {
      Label next_test;

      // See if return_bci is equal to bci[n]:
      test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
                       return_bci, next_test, scratch);

      // return_bci is equal to bci[n].  Increment the count.
      increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);

      // The method data pointer needs to be updated to reflect the new target.
      update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
      ba(false, profile_continue);
      delayed()->nop();
      bind(next_test);
    }

    update_mdp_for_ret(state, return_bci);

    bind (profile_continue);
  }
}

// Profile an unexpected null in the bytecodes.
void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(profile_continue);

    set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);

    // The method data pointer needs to be updated.
    int mdp_delta = in_bytes(BitData::bit_data_size());
    if (TypeProfileCasts) {
      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
    }
    update_mdp_by_constant(mdp_delta);

    bind (profile_continue);
  }
}

void InterpreterMacroAssembler::profile_typecheck(Register klass,
                                                  Register scratch) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(profile_continue);

    int mdp_delta = in_bytes(BitData::bit_data_size());
    if (TypeProfileCasts) {
      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());

      // Record the object type.
      record_klass_in_profile(klass, scratch);
    }

    // The method data pointer needs to be updated.
    update_mdp_by_constant(mdp_delta);

    bind (profile_continue);
  }
}

void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
  if (ProfileInterpreter && TypeProfileCasts) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(profile_continue);

    int count_offset = in_bytes(CounterData::count_offset());
    // Back up the address, since we have already bumped the mdp.
    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());

    // *Decrement* the counter.  We expect to see zero or small negatives.
    increment_mdp_data_at(count_offset, scratch, true);

    bind (profile_continue);
  }
}

// Count the default case of a switch construct.

void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(profile_continue);

    // Update the default case count
    increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
                          scratch);

    // The method data pointer needs to be updated.
    update_mdp_by_offset(
                    in_bytes(MultiBranchData::default_displacement_offset()),
                    scratch);

    bind (profile_continue);
  }
}

// Count the index'th case of a switch construct.

void InterpreterMacroAssembler::profile_switch_case(Register index,
                                                    Register scratch,
                                                    Register scratch2,
                                                    Register scratch3) {
  if (ProfileInterpreter) {
    Label profile_continue;

    // If no method data exists, go to profile_continue.
    test_method_data_pointer(profile_continue);

    // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
    set(in_bytes(MultiBranchData::per_case_size()), scratch);
    smul(index, scratch, scratch);
    add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);

    // Update the case count
    increment_mdp_data_at(scratch,
                          in_bytes(MultiBranchData::relative_count_offset()),
                          scratch2,
                          scratch3);

    // The method data pointer needs to be updated.
    update_mdp_by_offset(scratch,
                     in_bytes(MultiBranchData::relative_displacement_offset()),
                     scratch2);

    bind (profile_continue);
  }
}

// add a InterpMonitorElem to stack (see frame_sparc.hpp)

void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
                                                      Register Rtemp,
                                                      Register Rtemp2 ) {

  Register Rlimit = Lmonitors;
  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  assert( (delta & LongAlignmentMask) == 0,
          "sizeof BasicObjectLock must be even number of doublewords");

  sub( SP,        delta, SP);
  sub( Lesp,      delta, Lesp);
  sub( Lmonitors, delta, Lmonitors);

  if (!stack_is_empty) {

    // must copy stack contents down

    Label start_copying, next;

    // untested("monitor stack expansion");
    compute_stack_base(Rtemp);
    ba( false, start_copying );
    delayed()->cmp( Rtemp, Rlimit); // done? duplicated below

    // note: must copy from low memory upwards
    // On entry to loop,
    // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
    // Loop mutates Rtemp

    bind( next);

    st_ptr(Rtemp2, Rtemp, 0);
    inc(Rtemp, wordSize);
    cmp(Rtemp, Rlimit); // are we done? (duplicated above)

    bind( start_copying );

    brx( notEqual, true, pn, next );
    delayed()->ld_ptr( Rtemp, delta, Rtemp2 );

    // done copying stack
  }
}

// Locals
#ifdef ASSERT
void InterpreterMacroAssembler::verify_local_tag(frame::Tag t,
                                                 Register base,
                                                 Register scratch,
                                                 int n) {
  if (TaggedStackInterpreter) {
    Label ok, long_ok;
    // Use dst for scratch
    assert_different_registers(base, scratch);
    ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n), scratch);
    if (t == frame::TagCategory2) {
      cmp(scratch, G0);
      brx(Assembler::equal, false, Assembler::pt, long_ok);
      delayed()->ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n+1), scratch);
      stop("local long/double tag value bad");
      bind(long_ok);
      // compare second half tag
      cmp(scratch, G0);
    } else if (t == frame::TagValue) {
      cmp(scratch, G0);
    } else {
      assert_different_registers(O3, base, scratch);
      mov(t, O3);
      cmp(scratch, O3);
    }
    brx(Assembler::equal, false, Assembler::pt, ok);
    delayed()->nop();
    // Also compare if the local value is zero, then the tag might
    // not have been set coming from deopt.
    ld_ptr(base, Interpreter::local_offset_in_bytes(n), scratch);
    cmp(scratch, G0);
    brx(Assembler::equal, false, Assembler::pt, ok);
    delayed()->nop();
    stop("Local tag value is bad");
    bind(ok);
  }
}
#endif // ASSERT

void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
  assert_not_delayed();
  sll(index, Interpreter::logStackElementSize(), index);
  sub(Llocals, index, index);
  debug_only(verify_local_tag(frame::TagReference, index, dst));
  ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
  // Note:  index must hold the effective address--the iinc template uses it
}

// Just like access_local_ptr but the tag is a returnAddress
void InterpreterMacroAssembler::access_local_returnAddress(Register index,
                                                           Register dst ) {
  assert_not_delayed();
  sll(index, Interpreter::logStackElementSize(), index);
  sub(Llocals, index, index);
  debug_only(verify_local_tag(frame::TagValue, index, dst));
  ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
}

void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
  assert_not_delayed();
  sll(index, Interpreter::logStackElementSize(), index);
  sub(Llocals, index, index);
  debug_only(verify_local_tag(frame::TagValue, index, dst));
  ld(index, Interpreter::value_offset_in_bytes(), dst);
  // Note:  index must hold the effective address--the iinc template uses it
}


void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
  assert_not_delayed();
  sll(index, Interpreter::logStackElementSize(), index);
  sub(Llocals, index, index);
  debug_only(verify_local_tag(frame::TagCategory2, index, dst));
  // First half stored at index n+1 (which grows down from Llocals[n])
  load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
}


void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
  assert_not_delayed();
  sll(index, Interpreter::logStackElementSize(), index);
  sub(Llocals, index, index);
  debug_only(verify_local_tag(frame::TagValue, index, G1_scratch));
  ldf(FloatRegisterImpl::S, index, Interpreter::value_offset_in_bytes(), dst);
}


void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
  assert_not_delayed();
  sll(index, Interpreter::logStackElementSize(), index);
  sub(Llocals, index, index);
  debug_only(verify_local_tag(frame::TagCategory2, index, G1_scratch));
  load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
}


#ifdef ASSERT
void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
  Label L;

  assert(Rindex != Rscratch, "Registers cannot be same");
  assert(Rindex != Rscratch1, "Registers cannot be same");
  assert(Rlimit != Rscratch, "Registers cannot be same");
  assert(Rlimit != Rscratch1, "Registers cannot be same");
  assert(Rscratch1 != Rscratch, "Registers cannot be same");

  // untested("reg area corruption");
  add(Rindex, offset, Rscratch);
  add(Rlimit, 64 + STACK_BIAS, Rscratch1);
  cmp(Rscratch, Rscratch1);
  brx(Assembler::greaterEqualUnsigned, false, pn, L);
  delayed()->nop();
  stop("regsave area is being clobbered");
  bind(L);
}
#endif // ASSERT

void InterpreterMacroAssembler::tag_local(frame::Tag t,
                                          Register base,
                                          Register src,
                                          int n) {
  if (TaggedStackInterpreter) {
    // have to store zero because local slots can be reused (rats!)
    if (t == frame::TagValue) {
      st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
    } else if (t == frame::TagCategory2) {
      st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
      st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n+1));
    } else {
      // assert that we don't stomp the value in 'src'
      // O3 is arbitrary because it's not used.
      assert_different_registers(src, base, O3);
      mov( t, O3);
      st_ptr(O3, base, Interpreter::local_tag_offset_in_bytes(n));
    }
  }
}


void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
  assert_not_delayed();
  sll(index, Interpreter::logStackElementSize(), index);
  sub(Llocals, index, index);
  debug_only(check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);)
  tag_local(frame::TagValue, index, src);
  st(src, index, Interpreter::value_offset_in_bytes());
}

void InterpreterMacroAssembler::store_local_ptr( Register index, Register src,
                                                 Register tag ) {
  assert_not_delayed();
  sll(index, Interpreter::logStackElementSize(), index);
  sub(Llocals, index, index);
  #ifdef ASSERT
  check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
  #endif
  st_ptr(src, index, Interpreter::value_offset_in_bytes());
  // Store tag register directly
  if (TaggedStackInterpreter) {
    st_ptr(tag, index, Interpreter::tag_offset_in_bytes());
  }
}



void InterpreterMacroAssembler::store_local_ptr( int n, Register src,
                                                 Register tag ) {
  st_ptr(src,  Llocals, Interpreter::local_offset_in_bytes(n));
  if (TaggedStackInterpreter) {
    st_ptr(tag, Llocals, Interpreter::local_tag_offset_in_bytes(n));
  }
}

void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
  assert_not_delayed();
  sll(index, Interpreter::logStackElementSize(), index);
  sub(Llocals, index, index);
  #ifdef ASSERT
  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  #endif
  tag_local(frame::TagCategory2, index, src);
  store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
}


void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
  assert_not_delayed();
  sll(index, Interpreter::logStackElementSize(), index);
  sub(Llocals, index, index);
  #ifdef ASSERT
  check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
  #endif
  tag_local(frame::TagValue, index, G1_scratch);
  stf(FloatRegisterImpl::S, src, index, Interpreter::value_offset_in_bytes());
}


void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
  assert_not_delayed();
  sll(index, Interpreter::logStackElementSize(), index);
  sub(Llocals, index, index);
  #ifdef ASSERT
  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  #endif
  tag_local(frame::TagCategory2, index, G1_scratch);
  store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
}


int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
  return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
}


Address InterpreterMacroAssembler::top_most_monitor() {
  return Address(FP, 0, top_most_monitor_byte_offset());
}


void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
  add( Lesp,      wordSize,                                    Rdest );
}

#endif /* CC_INTERP */

void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
  assert(UseCompiler, "incrementing must be useful");
#ifdef CC_INTERP
  Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
                            + InvocationCounter::counter_offset()));
  Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
                            + InvocationCounter::counter_offset()));
#else
  Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
                            + InvocationCounter::counter_offset()));
  Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
                            + InvocationCounter::counter_offset()));
#endif /* CC_INTERP */
  int delta = InvocationCounter::count_increment;

  // Load each counter in a register
  ld( inv_counter, Rtmp );
  ld( be_counter, Rtmp2 );

  assert( is_simm13( delta ), " delta too large.");

  // Add the delta to the invocation counter and store the result
  add( Rtmp, delta, Rtmp );

  // Mask the backedge counter
  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );

  // Store value
  st( Rtmp, inv_counter);

  // Add invocation counter + backedge counter
  add( Rtmp, Rtmp2, Rtmp);

  // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
}

void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
  assert(UseCompiler, "incrementing must be useful");
#ifdef CC_INTERP
  Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
                            + InvocationCounter::counter_offset()));
  Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
                            +  InvocationCounter::counter_offset()));
#else
  Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
                            + InvocationCounter::counter_offset()));
  Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
                            + InvocationCounter::counter_offset()));
#endif /* CC_INTERP */
  int delta = InvocationCounter::count_increment;
  // Load each counter in a register
  ld( be_counter, Rtmp );
  ld( inv_counter, Rtmp2 );

  // Add the delta to the backedge counter
  add( Rtmp, delta, Rtmp );

  // Mask the invocation counter, add to backedge counter
  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );

  // and store the result to memory
  st( Rtmp, be_counter );

  // Add backedge + invocation counter
  add( Rtmp, Rtmp2, Rtmp );

  // Note that this macro must leave backedge_count + invocation_count in Rtmp!
}

#ifndef CC_INTERP
void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
                                                             Register branch_bcp,
                                                             Register Rtmp ) {
  Label did_not_overflow;
  Label overflow_with_error;
  assert_different_registers(backedge_count, Rtmp, branch_bcp);
  assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");

  Address limit(Rtmp, address(&InvocationCounter::InterpreterBackwardBranchLimit));
  load_contents(limit, Rtmp);
  cmp(backedge_count, Rtmp);
  br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
  delayed()->nop();

  // When ProfileInterpreter is on, the backedge_count comes from the
  // methodDataOop, which value does not get reset on the call to
  // frequency_counter_overflow().  To avoid excessive calls to the overflow
  // routine while the method is being compiled, add a second test to make sure
  // the overflow function is called only once every overflow_frequency.
  if (ProfileInterpreter) {
    const int overflow_frequency = 1024;
    andcc(backedge_count, overflow_frequency-1, Rtmp);
    brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
    delayed()->nop();
  }

  // overflow in loop, pass branch bytecode
  set(6,Rtmp);
  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);

  // Was an OSR adapter generated?
  // O0 = osr nmethod
  tst(O0);
  brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
  delayed()->nop();

  // Has the nmethod been invalidated already?
  ld(O0, nmethod::entry_bci_offset(), O2);
  cmp(O2, InvalidOSREntryBci);
  br(Assembler::equal, false, Assembler::pn, overflow_with_error);
  delayed()->nop();

  // migrate the interpreter frame off of the stack

  mov(G2_thread, L7);
  // save nmethod
  mov(O0, L6);
  set_last_Java_frame(SP, noreg);
  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  reset_last_Java_frame();
  mov(L7, G2_thread);

  // move OSR nmethod to I1
  mov(L6, I1);

  // OSR buffer to I0
  mov(O0, I0);

  // remove the interpreter frame
  restore(I5_savedSP, 0, SP);

  // Jump to the osr code.
  ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  jmp(O2, G0);
  delayed()->nop();

  bind(overflow_with_error);

  bind(did_not_overflow);
}



void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
  if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
}


// local helper function for the verify_oop_or_return_address macro
static bool verify_return_address(methodOopDesc* m, int bci) {
#ifndef PRODUCT
  address pc = (address)(m->constMethod())
             + in_bytes(constMethodOopDesc::codes_offset()) + bci;
  // assume it is a valid return address if it is inside m and is preceded by a jsr
  if (!m->contains(pc))                                          return false;
  address jsr_pc;
  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
  if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
  if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
#endif // PRODUCT
  return false;
}


void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
  if (!VerifyOops)  return;
  // the VM documentation for the astore[_wide] bytecode allows
  // the TOS to be not only an oop but also a return address
  Label test;
  Label skip;
  // See if it is an address (in the current method):

  mov(reg, Rtmp);
  const int log2_bytecode_size_limit = 16;
  srl(Rtmp, log2_bytecode_size_limit, Rtmp);
  br_notnull( Rtmp, false, pt, test );
  delayed()->nop();

  // %%% should use call_VM_leaf here?
  save_frame_and_mov(0, Lmethod, O0, reg, O1);
  save_thread(L7_thread_cache);
  call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
  delayed()->nop();
  restore_thread(L7_thread_cache);
  br_notnull( O0, false, pt, skip );
  delayed()->restore();

  // Perform a more elaborate out-of-line call
  // Not an address; verify it:
  bind(test);
  verify_oop(reg);
  bind(skip);
}


void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
}
#endif /* CC_INTERP */

// Inline assembly for:
//
// if (thread is in interp_only_mode) {
//   InterpreterRuntime::post_method_entry();
// }
// if (DTraceMethodProbes) {
//   SharedRuntime::dtrace_method_entry(method, reciever);
// }

void InterpreterMacroAssembler::notify_method_entry() {

  // C++ interpreter only uses this for native methods.

  // Whenever JVMTI puts a thread in interp_only_mode, method
  // entry/exit events are sent for that thread to track stack
  // depth.  If it is possible to enter interp_only_mode we add
  // the code to check if the event should be sent.
  if (JvmtiExport::can_post_interpreter_events()) {
    Label L;
    Register temp_reg = O5;

    const Address interp_only       (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));

    ld(interp_only, temp_reg);
    tst(temp_reg);
    br(zero, false, pt, L);
    delayed()->nop();
    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
    bind(L);
  }

  {
    Register temp_reg = O5;
    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
    call_VM_leaf(noreg,
      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
      G2_thread, Lmethod);
  }
}


// Inline assembly for:
//
// if (thread is in interp_only_mode) {
//   // save result
//   InterpreterRuntime::post_method_exit();
//   // restore result
// }
// if (DTraceMethodProbes) {
//   SharedRuntime::dtrace_method_exit(thread, method);
// }
//
// Native methods have their result stored in d_tmp and l_tmp
// Java methods have their result stored in the expression stack

void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
                                                   TosState state,
                                                   NotifyMethodExitMode mode) {
  // C++ interpreter only uses this for native methods.

  // Whenever JVMTI puts a thread in interp_only_mode, method
  // entry/exit events are sent for that thread to track stack
  // depth.  If it is possible to enter interp_only_mode we add
  // the code to check if the event should be sent.
  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
    Label L;
    Register temp_reg = O5;

    const Address interp_only       (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));

    ld(interp_only, temp_reg);
    tst(temp_reg);
    br(zero, false, pt, L);
    delayed()->nop();

    // Note: frame::interpreter_frame_result has a dependency on how the
    // method result is saved across the call to post_method_exit. For
    // native methods it assumes the result registers are saved to
    // l_scratch and d_scratch. If this changes then the interpreter_frame_result
    // implementation will need to be updated too.

    save_return_value(state, is_native_method);
    call_VM(noreg,
            CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
    restore_return_value(state, is_native_method);
    bind(L);
  }

  {
    Register temp_reg = O5;
    // Dtrace notification
    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
    save_return_value(state, is_native_method);
    call_VM_leaf(
      noreg,
      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
      G2_thread, Lmethod);
    restore_return_value(state, is_native_method);
  }
}

void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
#ifdef CC_INTERP
  // result potentially in O0/O1: save it across calls
  stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
#ifdef _LP64
  stx(O0, STATE(_native_lresult));
#else
  std(O0, STATE(_native_lresult));
#endif
#else // CC_INTERP
  if (is_native_call) {
    stf(FloatRegisterImpl::D, F0, d_tmp);
#ifdef _LP64
    stx(O0, l_tmp);
#else
    std(O0, l_tmp);
#endif
  } else {
    push(state);
  }
#endif // CC_INTERP
}

void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
#ifdef CC_INTERP
  ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
#ifdef _LP64
  ldx(STATE(_native_lresult), O0);
#else
  ldd(STATE(_native_lresult), O0);
#endif
#else // CC_INTERP
  if (is_native_call) {
    ldf(FloatRegisterImpl::D, d_tmp, F0);
#ifdef _LP64
    ldx(l_tmp, O0);
#else
    ldd(l_tmp, O0);
#endif
  } else {
    pop(state);
  }
#endif // CC_INTERP
}