subnode.cpp 55.2 KB
Newer Older
D
duke 已提交
1
/*
2
 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
D
duke 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
19 20 21
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
D
duke 已提交
22 23 24
 *
 */

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "precompiled.hpp"
#include "compiler/compileLog.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/callnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/connode.hpp"
#include "opto/loopnode.hpp"
#include "opto/matcher.hpp"
#include "opto/mulnode.hpp"
#include "opto/opcodes.hpp"
#include "opto/phaseX.hpp"
#include "opto/subnode.hpp"
#include "runtime/sharedRuntime.hpp"

D
duke 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
// Portions of code courtesy of Clifford Click

// Optimization - Graph Style

#include "math.h"

//=============================================================================
//------------------------------Identity---------------------------------------
// If right input is a constant 0, return the left input.
Node *SubNode::Identity( PhaseTransform *phase ) {
  assert(in(1) != this, "Must already have called Value");
  assert(in(2) != this, "Must already have called Value");

  // Remove double negation
  const Type *zero = add_id();
  if( phase->type( in(1) )->higher_equal( zero ) &&
      in(2)->Opcode() == Opcode() &&
      phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
    return in(2)->in(2);
  }

61
  // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
D
duke 已提交
62 63 64
  if( in(1)->Opcode() == Op_AddI ) {
    if( phase->eqv(in(1)->in(2),in(2)) )
      return in(1)->in(1);
65 66 67
    if (phase->eqv(in(1)->in(1),in(2)))
      return in(1)->in(2);

D
duke 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
    // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
    // are originally used, although the optimizer sometimes jiggers things).
    // This folding through an O2 removes a loop-exit use of a loop-varying
    // value and generally lowers register pressure in and around the loop.
    if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
        phase->eqv(in(1)->in(2)->in(1),in(2)) )
      return in(1)->in(1);
  }

  return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
}

//------------------------------Value------------------------------------------
// A subtract node differences it's two inputs.
const Type *SubNode::Value( PhaseTransform *phase ) const {
  const Node* in1 = in(1);
  const Node* in2 = in(2);
  // Either input is TOP ==> the result is TOP
  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  if( t1 == Type::TOP ) return Type::TOP;
  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  if( t2 == Type::TOP ) return Type::TOP;

  // Not correct for SubFnode and AddFNode (must check for infinity)
  // Equal?  Subtract is zero
K
kvn 已提交
94
  if (in1->eqv_uncast(in2))  return add_id();
D
duke 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

  // Either input is BOTTOM ==> the result is the local BOTTOM
  if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
    return bottom_type();

  return sub(t1,t2);            // Local flavor of type subtraction

}

//=============================================================================

//------------------------------Helper function--------------------------------
static bool ok_to_convert(Node* inc, Node* iv) {
    // Do not collapse (x+c0)-y if "+" is a loop increment, because the
    // "-" is loop invariant and collapsing extends the live-range of "x"
    // to overlap with the "+", forcing another register to be used in
    // the loop.
    // This test will be clearer with '&&' (apply DeMorgan's rule)
    // but I like the early cutouts that happen here.
    const PhiNode *phi;
    if( ( !inc->in(1)->is_Phi() ||
          !(phi=inc->in(1)->as_Phi()) ||
          phi->is_copy() ||
          !phi->region()->is_CountedLoop() ||
          inc != phi->region()->as_CountedLoop()->incr() )
       &&
        // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
        // because "x" maybe invariant.
        ( !iv->is_loop_iv() )
      ) {
      return true;
    } else {
      return false;
    }
}
//------------------------------Ideal------------------------------------------
Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
  Node *in1 = in(1);
  Node *in2 = in(2);
  uint op1 = in1->Opcode();
  uint op2 = in2->Opcode();

#ifdef ASSERT
  // Check for dead loop
  if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
      ( op1 == Op_AddI || op1 == Op_SubI ) &&
      ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
        phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
    assert(false, "dead loop in SubINode::Ideal");
#endif

  const Type *t2 = phase->type( in2 );
  if( t2 == Type::TOP ) return NULL;
  // Convert "x-c0" into "x+ -c0".
  if( t2->base() == Type::Int ){        // Might be bottom or top...
    const TypeInt *i = t2->is_int();
    if( i->is_con() )
      return new (phase->C, 3) AddINode(in1, phase->intcon(-i->get_con()));
  }

  // Convert "(x+c0) - y" into (x-y) + c0"
  // Do not collapse (x+c0)-y if "+" is a loop increment or
  // if "y" is a loop induction variable.
  if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
    const Type *tadd = phase->type( in1->in(2) );
    if( tadd->singleton() && tadd != Type::TOP ) {
      Node *sub2 = phase->transform( new (phase->C, 3) SubINode( in1->in(1), in2 ));
      return new (phase->C, 3) AddINode( sub2, in1->in(2) );
    }
  }


  // Convert "x - (y+c0)" into "(x-y) - c0"
  // Need the same check as in above optimization but reversed.
  if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
    Node* in21 = in2->in(1);
    Node* in22 = in2->in(2);
    const TypeInt* tcon = phase->type(in22)->isa_int();
    if (tcon != NULL && tcon->is_con()) {
      Node* sub2 = phase->transform( new (phase->C, 3) SubINode(in1, in21) );
      Node* neg_c0 = phase->intcon(- tcon->get_con());
      return new (phase->C, 3) AddINode(sub2, neg_c0);
    }
  }

  const Type *t1 = phase->type( in1 );
  if( t1 == Type::TOP ) return NULL;

#ifdef ASSERT
  // Check for dead loop
  if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
      ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
        phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
    assert(false, "dead loop in SubINode::Ideal");
#endif

  // Convert "x - (x+y)" into "-y"
  if( op2 == Op_AddI &&
      phase->eqv( in1, in2->in(1) ) )
    return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(2));
  // Convert "(x-y) - x" into "-y"
  if( op1 == Op_SubI &&
      phase->eqv( in1->in(1), in2 ) )
    return new (phase->C, 3) SubINode( phase->intcon(0),in1->in(2));
  // Convert "x - (y+x)" into "-y"
  if( op2 == Op_AddI &&
      phase->eqv( in1, in2->in(2) ) )
    return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(1));

  // Convert "0 - (x-y)" into "y-x"
  if( t1 == TypeInt::ZERO && op2 == Op_SubI )
    return new (phase->C, 3) SubINode( in2->in(2), in2->in(1) );

  // Convert "0 - (x+con)" into "-con-x"
  jint con;
  if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
      (con = in2->in(2)->find_int_con(0)) != 0 )
    return new (phase->C, 3) SubINode( phase->intcon(-con), in2->in(1) );

  // Convert "(X+A) - (X+B)" into "A - B"
  if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
    return new (phase->C, 3) SubINode( in1->in(2), in2->in(2) );

  // Convert "(A+X) - (B+X)" into "A - B"
  if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
    return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );

222 223 224 225 226 227 228 229
  // Convert "(A+X) - (X+B)" into "A - B"
  if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
    return new (phase->C, 3) SubINode( in1->in(1), in2->in(2) );

  // Convert "(X+A) - (B+X)" into "A - B"
  if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
    return new (phase->C, 3) SubINode( in1->in(2), in2->in(1) );

D
duke 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
  // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
  // nicer to optimize than subtract.
  if( op2 == Op_SubI && in2->outcnt() == 1) {
    Node *add1 = phase->transform( new (phase->C, 3) AddINode( in1, in2->in(2) ) );
    return new (phase->C, 3) SubINode( add1, in2->in(1) );
  }

  return NULL;
}

//------------------------------sub--------------------------------------------
// A subtract node differences it's two inputs.
const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
  const TypeInt *r0 = t1->is_int(); // Handy access
  const TypeInt *r1 = t2->is_int();
  int32 lo = r0->_lo - r1->_hi;
  int32 hi = r0->_hi - r1->_lo;

  // We next check for 32-bit overflow.
  // If that happens, we just assume all integers are possible.
  if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
       ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
      (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
       ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
    return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
  else                          // Overflow; assume all integers
    return TypeInt::INT;
}

//=============================================================================
//------------------------------Ideal------------------------------------------
Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  Node *in1 = in(1);
  Node *in2 = in(2);
  uint op1 = in1->Opcode();
  uint op2 = in2->Opcode();

#ifdef ASSERT
  // Check for dead loop
  if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
      ( op1 == Op_AddL || op1 == Op_SubL ) &&
      ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
        phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
    assert(false, "dead loop in SubLNode::Ideal");
#endif

  if( phase->type( in2 ) == Type::TOP ) return NULL;
  const TypeLong *i = phase->type( in2 )->isa_long();
  // Convert "x-c0" into "x+ -c0".
  if( i &&                      // Might be bottom or top...
      i->is_con() )
    return new (phase->C, 3) AddLNode(in1, phase->longcon(-i->get_con()));

  // Convert "(x+c0) - y" into (x-y) + c0"
  // Do not collapse (x+c0)-y if "+" is a loop increment or
  // if "y" is a loop induction variable.
  if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
    Node *in11 = in1->in(1);
    const Type *tadd = phase->type( in1->in(2) );
    if( tadd->singleton() && tadd != Type::TOP ) {
      Node *sub2 = phase->transform( new (phase->C, 3) SubLNode( in11, in2 ));
      return new (phase->C, 3) AddLNode( sub2, in1->in(2) );
    }
  }

  // Convert "x - (y+c0)" into "(x-y) - c0"
  // Need the same check as in above optimization but reversed.
  if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
    Node* in21 = in2->in(1);
    Node* in22 = in2->in(2);
    const TypeLong* tcon = phase->type(in22)->isa_long();
    if (tcon != NULL && tcon->is_con()) {
      Node* sub2 = phase->transform( new (phase->C, 3) SubLNode(in1, in21) );
      Node* neg_c0 = phase->longcon(- tcon->get_con());
      return new (phase->C, 3) AddLNode(sub2, neg_c0);
    }
  }

  const Type *t1 = phase->type( in1 );
  if( t1 == Type::TOP ) return NULL;

#ifdef ASSERT
  // Check for dead loop
  if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
      ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
        phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
    assert(false, "dead loop in SubLNode::Ideal");
#endif

  // Convert "x - (x+y)" into "-y"
  if( op2 == Op_AddL &&
      phase->eqv( in1, in2->in(1) ) )
    return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
  // Convert "x - (y+x)" into "-y"
  if( op2 == Op_AddL &&
      phase->eqv( in1, in2->in(2) ) )
    return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));

  // Convert "0 - (x-y)" into "y-x"
  if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
    return new (phase->C, 3) SubLNode( in2->in(2), in2->in(1) );

  // Convert "(X+A) - (X+B)" into "A - B"
  if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
    return new (phase->C, 3) SubLNode( in1->in(2), in2->in(2) );

  // Convert "(A+X) - (B+X)" into "A - B"
  if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
    return new (phase->C, 3) SubLNode( in1->in(1), in2->in(1) );

  // Convert "A-(B-C)" into (A+C)-B"
  if( op2 == Op_SubL && in2->outcnt() == 1) {
    Node *add1 = phase->transform( new (phase->C, 3) AddLNode( in1, in2->in(2) ) );
    return new (phase->C, 3) SubLNode( add1, in2->in(1) );
  }

  return NULL;
}

//------------------------------sub--------------------------------------------
// A subtract node differences it's two inputs.
const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
  const TypeLong *r0 = t1->is_long(); // Handy access
  const TypeLong *r1 = t2->is_long();
  jlong lo = r0->_lo - r1->_hi;
  jlong hi = r0->_hi - r1->_lo;

  // We next check for 32-bit overflow.
  // If that happens, we just assume all integers are possible.
  if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
       ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
      (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
       ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
    return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
  else                          // Overflow; assume all integers
    return TypeLong::LONG;
}

//=============================================================================
//------------------------------Value------------------------------------------
// A subtract node differences its two inputs.
const Type *SubFPNode::Value( PhaseTransform *phase ) const {
  const Node* in1 = in(1);
  const Node* in2 = in(2);
  // Either input is TOP ==> the result is TOP
  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  if( t1 == Type::TOP ) return Type::TOP;
  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  if( t2 == Type::TOP ) return Type::TOP;

  // if both operands are infinity of same sign, the result is NaN; do
  // not replace with zero
  if( (t1->is_finite() && t2->is_finite()) ) {
    if( phase->eqv(in1, in2) ) return add_id();
  }

  // Either input is BOTTOM ==> the result is the local BOTTOM
  const Type *bot = bottom_type();
  if( (t1 == bot) || (t2 == bot) ||
      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
    return bot;

  return sub(t1,t2);            // Local flavor of type subtraction
}


//=============================================================================
//------------------------------Ideal------------------------------------------
Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  const Type *t2 = phase->type( in(2) );
  // Convert "x-c0" into "x+ -c0".
  if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
    // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
  }

  // Not associative because of boundary conditions (infinity)
  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
    // Convert "x - (x+y)" into "-y"
    if( in(2)->is_Add() &&
        phase->eqv(in(1),in(2)->in(1) ) )
      return new (phase->C, 3) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
  }

  // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
  // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
  //if( phase->type(in(1)) == TypeF::ZERO )
  //return new (phase->C, 2) NegFNode(in(2));

  return NULL;
}

//------------------------------sub--------------------------------------------
// A subtract node differences its two inputs.
const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
  // no folding if one of operands is infinity or NaN, do not do constant folding
  if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
    return TypeF::make( t1->getf() - t2->getf() );
  }
  else if( g_isnan(t1->getf()) ) {
    return t1;
  }
  else if( g_isnan(t2->getf()) ) {
    return t2;
  }
  else {
    return Type::FLOAT;
  }
}

//=============================================================================
//------------------------------Ideal------------------------------------------
Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
  const Type *t2 = phase->type( in(2) );
  // Convert "x-c0" into "x+ -c0".
  if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
    // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
  }

  // Not associative because of boundary conditions (infinity)
  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
    // Convert "x - (x+y)" into "-y"
    if( in(2)->is_Add() &&
        phase->eqv(in(1),in(2)->in(1) ) )
      return new (phase->C, 3) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
  }

  // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
  // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
  //if( phase->type(in(1)) == TypeD::ZERO )
  //return new (phase->C, 2) NegDNode(in(2));

  return NULL;
}

//------------------------------sub--------------------------------------------
// A subtract node differences its two inputs.
const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
  // no folding if one of operands is infinity or NaN, do not do constant folding
  if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
    return TypeD::make( t1->getd() - t2->getd() );
  }
  else if( g_isnan(t1->getd()) ) {
    return t1;
  }
  else if( g_isnan(t2->getd()) ) {
    return t2;
  }
  else {
    return Type::DOUBLE;
  }
}

//=============================================================================
//------------------------------Idealize---------------------------------------
// Unlike SubNodes, compare must still flatten return value to the
// range -1, 0, 1.
// And optimizations like those for (X + Y) - X fail if overflow happens.
Node *CmpNode::Identity( PhaseTransform *phase ) {
  return this;
}

//=============================================================================
//------------------------------cmp--------------------------------------------
// Simplify a CmpI (compare 2 integers) node, based on local information.
// If both inputs are constants, compare them.
const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
  const TypeInt *r0 = t1->is_int(); // Handy access
  const TypeInt *r1 = t2->is_int();

  if( r0->_hi < r1->_lo )       // Range is always low?
    return TypeInt::CC_LT;
  else if( r0->_lo > r1->_hi )  // Range is always high?
    return TypeInt::CC_GT;

  else if( r0->is_con() && r1->is_con() ) { // comparing constants?
    assert(r0->get_con() == r1->get_con(), "must be equal");
    return TypeInt::CC_EQ;      // Equal results.
  } else if( r0->_hi == r1->_lo ) // Range is never high?
    return TypeInt::CC_LE;
  else if( r0->_lo == r1->_hi ) // Range is never low?
    return TypeInt::CC_GE;
  return TypeInt::CC;           // else use worst case results
}

// Simplify a CmpU (compare 2 integers) node, based on local information.
// If both inputs are constants, compare them.
const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
  assert(!t1->isa_ptr(), "obsolete usage of CmpU");

  // comparing two unsigned ints
  const TypeInt *r0 = t1->is_int();   // Handy access
  const TypeInt *r1 = t2->is_int();

  // Current installed version
  // Compare ranges for non-overlap
  juint lo0 = r0->_lo;
  juint hi0 = r0->_hi;
  juint lo1 = r1->_lo;
  juint hi1 = r1->_hi;

  // If either one has both negative and positive values,
  // it therefore contains both 0 and -1, and since [0..-1] is the
  // full unsigned range, the type must act as an unsigned bottom.
  bool bot0 = ((jint)(lo0 ^ hi0) < 0);
  bool bot1 = ((jint)(lo1 ^ hi1) < 0);

  if (bot0 || bot1) {
    // All unsigned values are LE -1 and GE 0.
    if (lo0 == 0 && hi0 == 0) {
      return TypeInt::CC_LE;            //   0 <= bot
    } else if (lo1 == 0 && hi1 == 0) {
      return TypeInt::CC_GE;            // bot >= 0
    }
  } else {
    // We can use ranges of the form [lo..hi] if signs are the same.
    assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
    // results are reversed, '-' > '+' for unsigned compare
    if (hi0 < lo1) {
      return TypeInt::CC_LT;            // smaller
    } else if (lo0 > hi1) {
      return TypeInt::CC_GT;            // greater
    } else if (hi0 == lo1 && lo0 == hi1) {
      return TypeInt::CC_EQ;            // Equal results
    } else if (lo0 >= hi1) {
      return TypeInt::CC_GE;
    } else if (hi0 <= lo1) {
      // Check for special case in Hashtable::get.  (See below.)
      if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
          in(1)->Opcode() == Op_ModI &&
          in(1)->in(2) == in(2) )
        return TypeInt::CC_LT;
      return TypeInt::CC_LE;
    }
  }
  // Check for special case in Hashtable::get - the hash index is
  // mod'ed to the table size so the following range check is useless.
  // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
  // to be positive.
  // (This is a gross hack, since the sub method never
  // looks at the structure of the node in any other case.)
  if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
      in(1)->Opcode() == Op_ModI &&
      in(1)->in(2)->uncast() == in(2)->uncast())
    return TypeInt::CC_LT;
  return TypeInt::CC;                   // else use worst case results
}

//------------------------------Idealize---------------------------------------
Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
  if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
    switch (in(1)->Opcode()) {
    case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
      return new (phase->C, 3) CmpLNode(in(1)->in(1),in(1)->in(2));
    case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
      return new (phase->C, 3) CmpFNode(in(1)->in(1),in(1)->in(2));
    case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
      return new (phase->C, 3) CmpDNode(in(1)->in(1),in(1)->in(2));
    //case Op_SubI:
      // If (x - y) cannot overflow, then ((x - y) <?> 0)
      // can be turned into (x <?> y).
      // This is handled (with more general cases) by Ideal_sub_algebra.
    }
  }
  return NULL;                  // No change
}


//=============================================================================
// Simplify a CmpL (compare 2 longs ) node, based on local information.
// If both inputs are constants, compare them.
const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
  const TypeLong *r0 = t1->is_long(); // Handy access
  const TypeLong *r1 = t2->is_long();

  if( r0->_hi < r1->_lo )       // Range is always low?
    return TypeInt::CC_LT;
  else if( r0->_lo > r1->_hi )  // Range is always high?
    return TypeInt::CC_GT;

  else if( r0->is_con() && r1->is_con() ) { // comparing constants?
    assert(r0->get_con() == r1->get_con(), "must be equal");
    return TypeInt::CC_EQ;      // Equal results.
  } else if( r0->_hi == r1->_lo ) // Range is never high?
    return TypeInt::CC_LE;
  else if( r0->_lo == r1->_hi ) // Range is never low?
    return TypeInt::CC_GE;
  return TypeInt::CC;           // else use worst case results
}

//=============================================================================
//------------------------------sub--------------------------------------------
// Simplify an CmpP (compare 2 pointers) node, based on local information.
// If both inputs are constants, compare them.
const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
  const TypePtr *r0 = t1->is_ptr(); // Handy access
  const TypePtr *r1 = t2->is_ptr();

  // Undefined inputs makes for an undefined result
  if( TypePtr::above_centerline(r0->_ptr) ||
      TypePtr::above_centerline(r1->_ptr) )
    return Type::TOP;

  if (r0 == r1 && r0->singleton()) {
    // Equal pointer constants (klasses, nulls, etc.)
    return TypeInt::CC_EQ;
  }

  // See if it is 2 unrelated classes.
  const TypeOopPtr* p0 = r0->isa_oopptr();
  const TypeOopPtr* p1 = r1->isa_oopptr();
  if (p0 && p1) {
K
kvn 已提交
641 642 643 644 645 646 647
    Node* in1 = in(1)->uncast();
    Node* in2 = in(2)->uncast();
    AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
    AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
    if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
      return TypeInt::CC_GT;  // different pointers
    }
D
duke 已提交
648 649 650 651 652 653 654
    ciKlass* klass0 = p0->klass();
    bool    xklass0 = p0->klass_is_exact();
    ciKlass* klass1 = p1->klass();
    bool    xklass1 = p1->klass_is_exact();
    int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
    if (klass0 && klass1 &&
        kps != 1 &&             // both or neither are klass pointers
655
        klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
656 657 658 659 660
        klass1->is_loaded() && !klass1->is_interface() &&
        (!klass0->is_obj_array_klass() ||
         !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
        (!klass1->is_obj_array_klass() ||
         !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
661
      bool unrelated_classes = false;
D
duke 已提交
662
      // See if neither subclasses the other, or if the class on top
663 664
      // is precise.  In either of these cases, the compare is known
      // to fail if at least one of the pointers is provably not null.
D
duke 已提交
665 666 667 668 669
      if (klass0->equals(klass1)   ||   // if types are unequal but klasses are
          !klass0->is_java_klass() ||   // types not part of Java language?
          !klass1->is_java_klass()) {   // types not part of Java language?
        // Do nothing; we know nothing for imprecise types
      } else if (klass0->is_subtype_of(klass1)) {
670 671
        // If klass1's type is PRECISE, then classes are unrelated.
        unrelated_classes = xklass1;
D
duke 已提交
672
      } else if (klass1->is_subtype_of(klass0)) {
673 674
        // If klass0's type is PRECISE, then classes are unrelated.
        unrelated_classes = xklass0;
D
duke 已提交
675
      } else {                  // Neither subtypes the other
676 677 678 679 680 681 682 683 684 685
        unrelated_classes = true;
      }
      if (unrelated_classes) {
        // The oops classes are known to be unrelated. If the joined PTRs of
        // two oops is not Null and not Bottom, then we are sure that one
        // of the two oops is non-null, and the comparison will always fail.
        TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
        if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
          return TypeInt::CC_GT;
        }
D
duke 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
      }
    }
  }

  // Known constants can be compared exactly
  // Null can be distinguished from any NotNull pointers
  // Unknown inputs makes an unknown result
  if( r0->singleton() ) {
    intptr_t bits0 = r0->get_con();
    if( r1->singleton() )
      return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
    return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
  } else if( r1->singleton() ) {
    intptr_t bits1 = r1->get_con();
    return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
  } else
    return TypeInt::CC;
}

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
  // Return the klass node for
  //   LoadP(AddP(foo:Klass, #java_mirror))
  //   or NULL if not matching.
  if (n->Opcode() != Op_LoadP) return NULL;

  const TypeInstPtr* tp = phase->type(n)->isa_instptr();
  if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL;

  Node* adr = n->in(MemNode::Address);
  intptr_t off = 0;
  Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
  if (k == NULL)  return NULL;
  const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
  if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL;

  // We've found the klass node of a Java mirror load.
  return k;
}

static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
  // for ConP(Foo.class) return ConP(Foo.klass)
  // otherwise return NULL
  if (!n->is_Con()) return NULL;

  const TypeInstPtr* tp = phase->type(n)->isa_instptr();
  if (!tp) return NULL;

  ciType* mirror_type = tp->java_mirror_type();
  // TypeInstPtr::java_mirror_type() returns non-NULL for compile-
  // time Class constants only.
  if (!mirror_type) return NULL;

  // x.getClass() == int.class can never be true (for all primitive types)
  // Return a ConP(NULL) node for this case.
  if (mirror_type->is_classless()) {
    return phase->makecon(TypePtr::NULL_PTR);
  }

  // return the ConP(Foo.klass)
  assert(mirror_type->is_klass(), "mirror_type should represent a klassOop");
  return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
}

D
duke 已提交
749
//------------------------------Ideal------------------------------------------
750 751 752
// Normalize comparisons between Java mirror loads to compare the klass instead.
//
// Also check for the case of comparing an unknown klass loaded from the primary
D
duke 已提交
753 754 755 756
// super-type array vs a known klass with no subtypes.  This amounts to
// checking to see an unknown klass subtypes a known klass with no subtypes;
// this only happens on an exact match.  We can shorten this test by 1 load.
Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
  // Normalize comparisons between Java mirrors into comparisons of the low-
  // level klass, where a dependent load could be shortened.
  //
  // The new pattern has a nice effect of matching the same pattern used in the
  // fast path of instanceof/checkcast/Class.isInstance(), which allows
  // redundant exact type check be optimized away by GVN.
  // For example, in
  //   if (x.getClass() == Foo.class) {
  //     Foo foo = (Foo) x;
  //     // ... use a ...
  //   }
  // a CmpPNode could be shared between if_acmpne and checkcast
  {
    Node* k1 = isa_java_mirror_load(phase, in(1));
    Node* k2 = isa_java_mirror_load(phase, in(2));
    Node* conk2 = isa_const_java_mirror(phase, in(2));

    if (k1 && (k2 || conk2)) {
      Node* lhs = k1;
      Node* rhs = (k2 != NULL) ? k2 : conk2;
      this->set_req(1, lhs);
      this->set_req(2, rhs);
      return this;
    }
  }

D
duke 已提交
783 784 785 786 787 788 789 790 791
  // Constant pointer on right?
  const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
  if (t2 == NULL || !t2->klass_is_exact())
    return NULL;
  // Get the constant klass we are comparing to.
  ciKlass* superklass = t2->klass();

  // Now check for LoadKlass on left.
  Node* ldk1 = in(1);
792 793 794 795 796
  if (ldk1->is_DecodeN()) {
    ldk1 = ldk1->in(1);
    if (ldk1->Opcode() != Op_LoadNKlass )
      return NULL;
  } else if (ldk1->Opcode() != Op_LoadKlass )
D
duke 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
    return NULL;
  // Take apart the address of the LoadKlass:
  Node* adr1 = ldk1->in(MemNode::Address);
  intptr_t con2 = 0;
  Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
  if (ldk2 == NULL)
    return NULL;
  if (con2 == oopDesc::klass_offset_in_bytes()) {
    // We are inspecting an object's concrete class.
    // Short-circuit the check if the query is abstract.
    if (superklass->is_interface() ||
        superklass->is_abstract()) {
      // Make it come out always false:
      this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
      return this;
    }
  }

  // Check for a LoadKlass from primary supertype array.
  // Any nested loadklass from loadklass+con must be from the p.s. array.
817 818 819 820 821
  if (ldk2->is_DecodeN()) {
    // Keep ldk2 as DecodeN since it could be used in CmpP below.
    if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
      return NULL;
  } else if (ldk2->Opcode() != Op_LoadKlass)
D
duke 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
    return NULL;

  // Verify that we understand the situation
  if (con2 != (intptr_t) superklass->super_check_offset())
    return NULL;                // Might be element-klass loading from array klass

  // If 'superklass' has no subklasses and is not an interface, then we are
  // assured that the only input which will pass the type check is
  // 'superklass' itself.
  //
  // We could be more liberal here, and allow the optimization on interfaces
  // which have a single implementor.  This would require us to increase the
  // expressiveness of the add_dependency() mechanism.
  // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.

  // Object arrays must have their base element have no subtypes
  while (superklass->is_obj_array_klass()) {
    ciType* elem = superklass->as_obj_array_klass()->element_type();
    superklass = elem->as_klass();
  }
  if (superklass->is_instance_klass()) {
    ciInstanceKlass* ik = superklass->as_instance_klass();
    if (ik->has_subklass() || ik->is_interface())  return NULL;
    // Add a dependency if there is a chance that a subclass will be added later.
    if (!ik->is_final()) {
      phase->C->dependencies()->assert_leaf_type(ik);
    }
  }

  // Bypass the dependent load, and compare directly
  this->set_req(1,ldk2);

  return this;
}

857 858 859 860 861
//=============================================================================
//------------------------------sub--------------------------------------------
// Simplify an CmpN (compare 2 pointers) node, based on local information.
// If both inputs are constants, compare them.
const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
862 863
  const TypePtr *r0 = t1->make_ptr(); // Handy access
  const TypePtr *r1 = t2->make_ptr();
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

  // Undefined inputs makes for an undefined result
  if( TypePtr::above_centerline(r0->_ptr) ||
      TypePtr::above_centerline(r1->_ptr) )
    return Type::TOP;

  if (r0 == r1 && r0->singleton()) {
    // Equal pointer constants (klasses, nulls, etc.)
    return TypeInt::CC_EQ;
  }

  // See if it is 2 unrelated classes.
  const TypeOopPtr* p0 = r0->isa_oopptr();
  const TypeOopPtr* p1 = r1->isa_oopptr();
  if (p0 && p1) {
    ciKlass* klass0 = p0->klass();
    bool    xklass0 = p0->klass_is_exact();
    ciKlass* klass1 = p1->klass();
    bool    xklass1 = p1->klass_is_exact();
    int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
    if (klass0 && klass1 &&
        kps != 1 &&             // both or neither are klass pointers
        !klass0->is_interface() && // do not trust interfaces
        !klass1->is_interface()) {
888
      bool unrelated_classes = false;
889
      // See if neither subclasses the other, or if the class on top
890 891
      // is precise.  In either of these cases, the compare is known
      // to fail if at least one of the pointers is provably not null.
892 893 894 895 896
      if (klass0->equals(klass1)   ||   // if types are unequal but klasses are
          !klass0->is_java_klass() ||   // types not part of Java language?
          !klass1->is_java_klass()) {   // types not part of Java language?
        // Do nothing; we know nothing for imprecise types
      } else if (klass0->is_subtype_of(klass1)) {
897 898
        // If klass1's type is PRECISE, then classes are unrelated.
        unrelated_classes = xklass1;
899
      } else if (klass1->is_subtype_of(klass0)) {
900 901
        // If klass0's type is PRECISE, then classes are unrelated.
        unrelated_classes = xklass0;
902
      } else {                  // Neither subtypes the other
903 904 905 906 907 908 909 910 911 912
        unrelated_classes = true;
      }
      if (unrelated_classes) {
        // The oops classes are known to be unrelated. If the joined PTRs of
        // two oops is not Null and not Bottom, then we are sure that one
        // of the two oops is non-null, and the comparison will always fail.
        TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
        if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
          return TypeInt::CC_GT;
        }
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
      }
    }
  }

  // Known constants can be compared exactly
  // Null can be distinguished from any NotNull pointers
  // Unknown inputs makes an unknown result
  if( r0->singleton() ) {
    intptr_t bits0 = r0->get_con();
    if( r1->singleton() )
      return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
    return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
  } else if( r1->singleton() ) {
    intptr_t bits1 = r1->get_con();
    return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
  } else
    return TypeInt::CC;
}

//------------------------------Ideal------------------------------------------
Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
  return NULL;
}

D
duke 已提交
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
//=============================================================================
//------------------------------Value------------------------------------------
// Simplify an CmpF (compare 2 floats ) node, based on local information.
// If both inputs are constants, compare them.
const Type *CmpFNode::Value( PhaseTransform *phase ) const {
  const Node* in1 = in(1);
  const Node* in2 = in(2);
  // Either input is TOP ==> the result is TOP
  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  if( t1 == Type::TOP ) return Type::TOP;
  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  if( t2 == Type::TOP ) return Type::TOP;

  // Not constants?  Don't know squat - even if they are the same
  // value!  If they are NaN's they compare to LT instead of EQ.
  const TypeF *tf1 = t1->isa_float_constant();
  const TypeF *tf2 = t2->isa_float_constant();
  if( !tf1 || !tf2 ) return TypeInt::CC;

  // This implements the Java bytecode fcmpl, so unordered returns -1.
  if( tf1->is_nan() || tf2->is_nan() )
    return TypeInt::CC_LT;

  if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
  if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
  assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
  return TypeInt::CC_EQ;
}


//=============================================================================
//------------------------------Value------------------------------------------
// Simplify an CmpD (compare 2 doubles ) node, based on local information.
// If both inputs are constants, compare them.
const Type *CmpDNode::Value( PhaseTransform *phase ) const {
  const Node* in1 = in(1);
  const Node* in2 = in(2);
  // Either input is TOP ==> the result is TOP
  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  if( t1 == Type::TOP ) return Type::TOP;
  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  if( t2 == Type::TOP ) return Type::TOP;

  // Not constants?  Don't know squat - even if they are the same
  // value!  If they are NaN's they compare to LT instead of EQ.
  const TypeD *td1 = t1->isa_double_constant();
  const TypeD *td2 = t2->isa_double_constant();
  if( !td1 || !td2 ) return TypeInt::CC;

  // This implements the Java bytecode dcmpl, so unordered returns -1.
  if( td1->is_nan() || td2->is_nan() )
    return TypeInt::CC_LT;

  if( td1->_d < td2->_d ) return TypeInt::CC_LT;
  if( td1->_d > td2->_d ) return TypeInt::CC_GT;
  assert( td1->_d == td2->_d, "do not understand FP behavior" );
  return TypeInt::CC_EQ;
}

//------------------------------Ideal------------------------------------------
Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
  // Check if we can change this to a CmpF and remove a ConvD2F operation.
  // Change  (CMPD (F2D (float)) (ConD value))
  // To      (CMPF      (float)  (ConF value))
  // Valid when 'value' does not lose precision as a float.
  // Benefits: eliminates conversion, does not require 24-bit mode

  // NaNs prevent commuting operands.  This transform works regardless of the
  // order of ConD and ConvF2D inputs by preserving the original order.
  int idx_f2d = 1;              // ConvF2D on left side?
  if( in(idx_f2d)->Opcode() != Op_ConvF2D )
    idx_f2d = 2;                // No, swap to check for reversed args
  int idx_con = 3-idx_f2d;      // Check for the constant on other input

  if( ConvertCmpD2CmpF &&
      in(idx_f2d)->Opcode() == Op_ConvF2D &&
      in(idx_con)->Opcode() == Op_ConD ) {
    const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
    double t2_value_as_double = t2->_d;
    float  t2_value_as_float  = (float)t2_value_as_double;
    if( t2_value_as_double == (double)t2_value_as_float ) {
      // Test value can be represented as a float
      // Eliminate the conversion to double and create new comparison
      Node *new_in1 = in(idx_f2d)->in(1);
      Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
      if( idx_f2d != 1 ) {      // Must flip args to match original order
        Node *tmp = new_in1;
        new_in1 = new_in2;
        new_in2 = tmp;
      }
      CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
        ? new (phase->C, 3) CmpF3Node( new_in1, new_in2 )
        : new (phase->C, 3) CmpFNode ( new_in1, new_in2 ) ;
      return new_cmp;           // Changed to CmpFNode
    }
    // Testing value required the precision of a double
  }
  return NULL;                  // No change
}


//=============================================================================
//------------------------------cc2logical-------------------------------------
// Convert a condition code type to a logical type
const Type *BoolTest::cc2logical( const Type *CC ) const {
  if( CC == Type::TOP ) return Type::TOP;
  if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
  const TypeInt *ti = CC->is_int();
  if( ti->is_con() ) {          // Only 1 kind of condition codes set?
    // Match low order 2 bits
    int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
    if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
    return TypeInt::make(tmp);       // Boolean result
  }

  if( CC == TypeInt::CC_GE ) {
    if( _test == ge ) return TypeInt::ONE;
    if( _test == lt ) return TypeInt::ZERO;
  }
  if( CC == TypeInt::CC_LE ) {
    if( _test == le ) return TypeInt::ONE;
    if( _test == gt ) return TypeInt::ZERO;
  }

  return TypeInt::BOOL;
}

//------------------------------dump_spec-------------------------------------
// Print special per-node info
#ifndef PRODUCT
void BoolTest::dump_on(outputStream *st) const {
  const char *msg[] = {"eq","gt","??","lt","ne","le","??","ge"};
  st->print(msg[_test]);
}
#endif

//=============================================================================
uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
uint BoolNode::size_of() const { return sizeof(BoolNode); }

//------------------------------operator==-------------------------------------
uint BoolNode::cmp( const Node &n ) const {
  const BoolNode *b = (const BoolNode *)&n; // Cast up
  return (_test._test == b->_test._test);
}

//------------------------------clone_cmp--------------------------------------
// Clone a compare/bool tree
static Node *clone_cmp( Node *cmp, Node *cmp1, Node *cmp2, PhaseGVN *gvn, BoolTest::mask test ) {
  Node *ncmp = cmp->clone();
  ncmp->set_req(1,cmp1);
  ncmp->set_req(2,cmp2);
  ncmp = gvn->transform( ncmp );
  return new (gvn->C, 2) BoolNode( ncmp, test );
}

//-------------------------------make_predicate--------------------------------
Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
  if (test_value->is_Con())   return test_value;
  if (test_value->is_Bool())  return test_value;
  Compile* C = phase->C;
  if (test_value->is_CMove() &&
      test_value->in(CMoveNode::Condition)->is_Bool()) {
    BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
    const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
    const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
    if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
      return bol;
    } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
      return phase->transform( bol->negate(phase) );
    }
    // Else fall through.  The CMove gets in the way of the test.
    // It should be the case that make_predicate(bol->as_int_value()) == bol.
  }
  Node* cmp = new (C, 3) CmpINode(test_value, phase->intcon(0));
  cmp = phase->transform(cmp);
  Node* bol = new (C, 2) BoolNode(cmp, BoolTest::ne);
  return phase->transform(bol);
}

//--------------------------------as_int_value---------------------------------
Node* BoolNode::as_int_value(PhaseGVN* phase) {
  // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
  Node* cmov = CMoveNode::make(phase->C, NULL, this,
                               phase->intcon(0), phase->intcon(1),
                               TypeInt::BOOL);
  return phase->transform(cmov);
}

//----------------------------------negate-------------------------------------
BoolNode* BoolNode::negate(PhaseGVN* phase) {
  Compile* C = phase->C;
  return new (C, 2) BoolNode(in(1), _test.negate());
}


//------------------------------Ideal------------------------------------------
Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
  // This moves the constant to the right.  Helps value-numbering.
  Node *cmp = in(1);
  if( !cmp->is_Sub() ) return NULL;
  int cop = cmp->Opcode();
  if( cop == Op_FastLock || cop == Op_FastUnlock ) return NULL;
  Node *cmp1 = cmp->in(1);
  Node *cmp2 = cmp->in(2);
  if( !cmp1 ) return NULL;

  // Constant on left?
  Node *con = cmp1;
  uint op2 = cmp2->Opcode();
  // Move constants to the right of compare's to canonicalize.
  // Do not muck with Opaque1 nodes, as this indicates a loop
  // guard that cannot change shape.
  if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
      // Because of NaN's, CmpD and CmpF are not commutative
      cop != Op_CmpD && cop != Op_CmpF &&
      // Protect against swapping inputs to a compare when it is used by a
      // counted loop exit, which requires maintaining the loop-limit as in(2)
      !is_counted_loop_exit_test() ) {
    // Ok, commute the constant to the right of the cmp node.
    // Clone the Node, getting a new Node of the same class
    cmp = cmp->clone();
    // Swap inputs to the clone
    cmp->swap_edges(1, 2);
    cmp = phase->transform( cmp );
    return new (phase->C, 2) BoolNode( cmp, _test.commute() );
  }

  // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
  // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
  // test instead.
  int cmp1_op = cmp1->Opcode();
  const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
  if (cmp2_type == NULL)  return NULL;
  Node* j_xor = cmp1;
  if( cmp2_type == TypeInt::ZERO &&
      cmp1_op == Op_XorI &&
      j_xor->in(1) != j_xor &&          // An xor of itself is dead
1176
      phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
D
duke 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
      phase->type( j_xor->in(2) ) == TypeInt::ONE &&
      (_test._test == BoolTest::eq ||
       _test._test == BoolTest::ne) ) {
    Node *ncmp = phase->transform(new (phase->C, 3) CmpINode(j_xor->in(1),cmp2));
    return new (phase->C, 2) BoolNode( ncmp, _test.negate() );
  }

  // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
  // This is a standard idiom for branching on a boolean value.
  Node *c2b = cmp1;
  if( cmp2_type == TypeInt::ZERO &&
      cmp1_op == Op_Conv2B &&
      (_test._test == BoolTest::eq ||
       _test._test == BoolTest::ne) ) {
    Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
       ? (Node*)new (phase->C, 3) CmpINode(c2b->in(1),cmp2)
       : (Node*)new (phase->C, 3) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
    );
    return new (phase->C, 2) BoolNode( ncmp, _test._test );
  }

  // Comparing a SubI against a zero is equal to comparing the SubI
  // arguments directly.  This only works for eq and ne comparisons
  // due to possible integer overflow.
  if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
        (cop == Op_CmpI) &&
        (cmp1->Opcode() == Op_SubI) &&
        ( cmp2_type == TypeInt::ZERO ) ) {
    Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(1),cmp1->in(2)));
    return new (phase->C, 2) BoolNode( ncmp, _test._test );
  }

  // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
  // most general case because negating 0x80000000 does nothing.  Needed for
  // the CmpF3/SubI/CmpI idiom.
  if( cop == Op_CmpI &&
      cmp1->Opcode() == Op_SubI &&
      cmp2_type == TypeInt::ZERO &&
      phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
      phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
    Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(2),cmp2));
    return new (phase->C, 2) BoolNode( ncmp, _test.commute() );
  }

  //  The transformation below is not valid for either signed or unsigned
  //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
  //  This transformation can be resurrected when we are able to
  //  make inferences about the range of values being subtracted from
  //  (or added to) relative to the wraparound point.
  //
  //    // Remove +/-1's if possible.
  //    // "X <= Y-1" becomes "X <  Y"
  //    // "X+1 <= Y" becomes "X <  Y"
  //    // "X <  Y+1" becomes "X <= Y"
  //    // "X-1 <  Y" becomes "X <= Y"
  //    // Do not this to compares off of the counted-loop-end.  These guys are
  //    // checking the trip counter and they want to use the post-incremented
  //    // counter.  If they use the PRE-incremented counter, then the counter has
  //    // to be incremented in a private block on a loop backedge.
  //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
  //      return NULL;
  //  #ifndef PRODUCT
  //    // Do not do this in a wash GVN pass during verification.
  //    // Gets triggered by too many simple optimizations to be bothered with
  //    // re-trying it again and again.
  //    if( !phase->allow_progress() ) return NULL;
  //  #endif
  //    // Not valid for unsigned compare because of corner cases in involving zero.
  //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
  //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
  //    // "0 <=u Y" is always true).
  //    if( cmp->Opcode() == Op_CmpU ) return NULL;
  //    int cmp2_op = cmp2->Opcode();
  //    if( _test._test == BoolTest::le ) {
  //      if( cmp1_op == Op_AddI &&
  //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
  //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
  //      else if( cmp2_op == Op_AddI &&
  //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
  //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
  //    } else if( _test._test == BoolTest::lt ) {
  //      if( cmp1_op == Op_AddI &&
  //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
  //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
  //      else if( cmp2_op == Op_AddI &&
  //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
  //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
  //    }

  return NULL;
}

//------------------------------Value------------------------------------------
// Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
// based on local information.   If the input is constant, do it.
const Type *BoolNode::Value( PhaseTransform *phase ) const {
  return _test.cc2logical( phase->type( in(1) ) );
}

//------------------------------dump_spec--------------------------------------
// Dump special per-node info
#ifndef PRODUCT
void BoolNode::dump_spec(outputStream *st) const {
  st->print("[");
  _test.dump_on(st);
  st->print("]");
}
#endif

//------------------------------is_counted_loop_exit_test--------------------------------------
// Returns true if node is used by a counted loop node.
bool BoolNode::is_counted_loop_exit_test() {
  for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
    Node* use = fast_out(i);
    if (use->is_CountedLoopEnd()) {
      return true;
    }
  }
  return false;
}

//=============================================================================
//------------------------------Value------------------------------------------
// Compute sqrt
const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  double d = t1->getd();
  if( d < 0.0 ) return Type::DOUBLE;
  return TypeD::make( sqrt( d ) );
}

//=============================================================================
//------------------------------Value------------------------------------------
// Compute cos
const Type *CosDNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  double d = t1->getd();
1318
  return TypeD::make( StubRoutines::intrinsic_cos( d ) );
D
duke 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
}

//=============================================================================
//------------------------------Value------------------------------------------
// Compute sin
const Type *SinDNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  double d = t1->getd();
1329
  return TypeD::make( StubRoutines::intrinsic_sin( d ) );
D
duke 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
}

//=============================================================================
//------------------------------Value------------------------------------------
// Compute tan
const Type *TanDNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  double d = t1->getd();
1340
  return TypeD::make( StubRoutines::intrinsic_tan( d ) );
D
duke 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
}

//=============================================================================
//------------------------------Value------------------------------------------
// Compute log
const Type *LogDNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  double d = t1->getd();
1351
  return TypeD::make( StubRoutines::intrinsic_log( d ) );
D
duke 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
}

//=============================================================================
//------------------------------Value------------------------------------------
// Compute log10
const Type *Log10DNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  double d = t1->getd();
1362
  return TypeD::make( StubRoutines::intrinsic_log10( d ) );
D
duke 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
}

//=============================================================================
//------------------------------Value------------------------------------------
// Compute exp
const Type *ExpDNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  double d = t1->getd();
1373
  return TypeD::make( StubRoutines::intrinsic_exp( d ) );
D
duke 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
}


//=============================================================================
//------------------------------Value------------------------------------------
// Compute pow
const Type *PowDNode::Value( PhaseTransform *phase ) const {
  const Type *t1 = phase->type( in(1) );
  if( t1 == Type::TOP ) return Type::TOP;
  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  const Type *t2 = phase->type( in(2) );
  if( t2 == Type::TOP ) return Type::TOP;
  if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
  double d1 = t1->getd();
  double d2 = t2->getd();
1389
  return TypeD::make( StubRoutines::intrinsic_pow( d1, d2 ) );
D
duke 已提交
1390
}