runtime.cpp 44.8 KB
Newer Older
D
duke 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/*
 * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_runtime.cpp.incl"


// For debugging purposes:
//  To force FullGCALot inside a runtime function, add the following two lines
//
//  Universe::release_fullgc_alot_dummy();
//  MarkSweep::invoke(0, "Debugging");
//
// At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000




// Compiled code entry points
address OptoRuntime::_new_instance_Java                           = NULL;
address OptoRuntime::_new_array_Java                              = NULL;
address OptoRuntime::_multianewarray2_Java                        = NULL;
address OptoRuntime::_multianewarray3_Java                        = NULL;
address OptoRuntime::_multianewarray4_Java                        = NULL;
address OptoRuntime::_multianewarray5_Java                        = NULL;
47 48
address OptoRuntime::_g1_wb_pre_Java                              = NULL;
address OptoRuntime::_g1_wb_post_Java                             = NULL;
D
duke 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
address OptoRuntime::_vtable_must_compile_Java                    = NULL;
address OptoRuntime::_complete_monitor_locking_Java               = NULL;
address OptoRuntime::_rethrow_Java                                = NULL;

address OptoRuntime::_slow_arraycopy_Java                         = NULL;
address OptoRuntime::_register_finalizer_Java                     = NULL;

# ifdef ENABLE_ZAP_DEAD_LOCALS
address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
# endif


// This should be called in an assertion at the start of OptoRuntime routines
// which are entered from compiled code (all of them)
#ifndef PRODUCT
static bool check_compiled_frame(JavaThread* thread) {
  assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
#ifdef ASSERT
  RegisterMap map(thread, false);
  frame caller = thread->last_frame().sender(&map);
  assert(caller.is_compiled_frame(), "not being called from compiled like code");
#endif  /* ASSERT */
  return true;
}
#endif


#define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
  var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)

void OptoRuntime::generate(ciEnv* env) {

  generate_exception_blob();

  // Note: tls: Means fetching the return oop out of the thread-local storage
  //
  //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
  // -------------------------------------------------------------------------------------------------------------------------------
  gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
  gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
  gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
  gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
  gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
  gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
94 95
  gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
  gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
D
duke 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
  gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
  gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );

  gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
  gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);

# ifdef ENABLE_ZAP_DEAD_LOCALS
  gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
  gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
# endif

}

#undef gen


// Helper method to do generation of RunTimeStub's
address OptoRuntime::generate_stub( ciEnv* env,
                                    TypeFunc_generator gen, address C_function,
                                    const char *name, int is_fancy_jump,
                                    bool pass_tls,
                                    bool save_argument_registers,
                                    bool return_pc ) {
  ResourceMark rm;
  Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
  return  C.stub_entry_point();
}

const char* OptoRuntime::stub_name(address entry) {
#ifndef PRODUCT
  CodeBlob* cb = CodeCache::find_blob(entry);
  RuntimeStub* rs =(RuntimeStub *)cb;
  assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
  return rs->name();
#else
  // Fast implementation for product mode (maybe it should be inlined too)
  return "runtime stub";
#endif
}


//=============================================================================
// Opto compiler runtime routines
//=============================================================================


//=============================allocation======================================
// We failed the fast-path allocation.  Now we need to do a scavenge or GC
// and try allocation again.

void OptoRuntime::do_eager_card_mark(JavaThread* thread) {
  // After any safepoint, just before going back to compiled code,
  // we perform a card mark.  This lets the compiled code omit
  // card marks for initialization of new objects.
  // Keep this code consistent with GraphKit::store_barrier.

  oop new_obj = thread->vm_result();
  if (new_obj == NULL)  return;

  assert(Universe::heap()->can_elide_tlab_store_barriers(),
         "compiler must check this first");
  new_obj = Universe::heap()->new_store_barrier(new_obj);
  thread->set_vm_result(new_obj);
}

// object allocation
JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
  JRT_BLOCK;
#ifndef PRODUCT
  SharedRuntime::_new_instance_ctr++;         // new instance requires GC
#endif
  assert(check_compiled_frame(thread), "incorrect caller");

  // These checks are cheap to make and support reflective allocation.
  int lh = Klass::cast(klass)->layout_helper();
  if (Klass::layout_helper_needs_slow_path(lh)
      || !instanceKlass::cast(klass)->is_initialized()) {
    KlassHandle kh(THREAD, klass);
    kh->check_valid_for_instantiation(false, THREAD);
    if (!HAS_PENDING_EXCEPTION) {
      instanceKlass::cast(kh())->initialize(THREAD);
    }
    if (!HAS_PENDING_EXCEPTION) {
      klass = kh();
    } else {
      klass = NULL;
    }
  }

  if (klass != NULL) {
    // Scavenge and allocate an instance.
    oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
    thread->set_vm_result(result);

    // Pass oops back through thread local storage.  Our apparent type to Java
    // is that we return an oop, but we can block on exit from this routine and
    // a GC can trash the oop in C's return register.  The generated stub will
    // fetch the oop from TLS after any possible GC.
  }

  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
  JRT_BLOCK_END;

  if (GraphKit::use_ReduceInitialCardMarks()) {
    // do them now so we don't have to do them on the fast path
    do_eager_card_mark(thread);
  }
JRT_END


// array allocation
JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
  JRT_BLOCK;
#ifndef PRODUCT
  SharedRuntime::_new_array_ctr++;            // new array requires GC
#endif
  assert(check_compiled_frame(thread), "incorrect caller");

  // Scavenge and allocate an instance.
  oop result;

  if (Klass::cast(array_type)->oop_is_typeArray()) {
    // The oopFactory likes to work with the element type.
    // (We could bypass the oopFactory, since it doesn't add much value.)
    BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
    result = oopFactory::new_typeArray(elem_type, len, THREAD);
  } else {
    // Although the oopFactory likes to work with the elem_type,
    // the compiler prefers the array_type, since it must already have
    // that latter value in hand for the fast path.
    klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
    result = oopFactory::new_objArray(elem_type, len, THREAD);
  }

  // Pass oops back through thread local storage.  Our apparent type to Java
  // is that we return an oop, but we can block on exit from this routine and
  // a GC can trash the oop in C's return register.  The generated stub will
  // fetch the oop from TLS after any possible GC.
  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
  thread->set_vm_result(result);
  JRT_BLOCK_END;

  if (GraphKit::use_ReduceInitialCardMarks()) {
    // do them now so we don't have to do them on the fast path
    do_eager_card_mark(thread);
  }
JRT_END

// Note: multianewarray for one dimension is handled inline by GraphKit::new_array.

// multianewarray for 2 dimensions
JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
#ifndef PRODUCT
  SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
#endif
  assert(check_compiled_frame(thread), "incorrect caller");
  assert(oop(elem_type)->is_klass(), "not a class");
  jint dims[2];
  dims[0] = len1;
  dims[1] = len2;
  oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
  thread->set_vm_result(obj);
JRT_END

// multianewarray for 3 dimensions
JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
#ifndef PRODUCT
  SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
#endif
  assert(check_compiled_frame(thread), "incorrect caller");
  assert(oop(elem_type)->is_klass(), "not a class");
  jint dims[3];
  dims[0] = len1;
  dims[1] = len2;
  dims[2] = len3;
  oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
  thread->set_vm_result(obj);
JRT_END

// multianewarray for 4 dimensions
JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
#ifndef PRODUCT
  SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
#endif
  assert(check_compiled_frame(thread), "incorrect caller");
  assert(oop(elem_type)->is_klass(), "not a class");
  jint dims[4];
  dims[0] = len1;
  dims[1] = len2;
  dims[2] = len3;
  dims[3] = len4;
  oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
  thread->set_vm_result(obj);
JRT_END

// multianewarray for 5 dimensions
JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
#ifndef PRODUCT
  SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
#endif
  assert(check_compiled_frame(thread), "incorrect caller");
  assert(oop(elem_type)->is_klass(), "not a class");
  jint dims[5];
  dims[0] = len1;
  dims[1] = len2;
  dims[2] = len3;
  dims[3] = len4;
  dims[4] = len5;
  oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
  deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
  thread->set_vm_result(obj);
JRT_END

const TypeFunc *OptoRuntime::new_instance_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);

  // create result type (range)
  fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop

  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);

  return TypeFunc::make(domain, range);
}


const TypeFunc *OptoRuntime::athrow_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);

  // create result type (range)
  fields = TypeTuple::fields(0);

  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);

  return TypeFunc::make(domain, range);
}


const TypeFunc *OptoRuntime::new_array_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
  fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);

  // create result type (range)
  fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop

  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);

  return TypeFunc::make(domain, range);
}

const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
  // create input type (domain)
  const int nargs = ndim + 1;
  const Type **fields = TypeTuple::fields(nargs);
  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
  for( int i = 1; i < nargs; i++ )
    fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);

  // create result type (range)
  fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);

  return TypeFunc::make(domain, range);
}

const TypeFunc *OptoRuntime::multianewarray2_Type() {
  return multianewarray_Type(2);
}

const TypeFunc *OptoRuntime::multianewarray3_Type() {
  return multianewarray_Type(3);
}

const TypeFunc *OptoRuntime::multianewarray4_Type() {
  return multianewarray_Type(4);
}

const TypeFunc *OptoRuntime::multianewarray5_Type() {
  return multianewarray_Type(5);
}

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
  const Type **fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);

  // create result type (range)
  fields = TypeTuple::fields(0);
  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);

  return TypeFunc::make(domain, range);
}

const TypeFunc *OptoRuntime::g1_wb_post_Type() {

  const Type **fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
  fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);

  // create result type (range)
  fields = TypeTuple::fields(0);
  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);

  return TypeFunc::make(domain, range);
}

D
duke 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
const TypeFunc *OptoRuntime::uncommon_trap_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(1);
  // symbolOop name of class to be loaded
  fields[TypeFunc::Parms+0] = TypeInt::INT;
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);

  // create result type (range)
  fields = TypeTuple::fields(0);
  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);

  return TypeFunc::make(domain, range);
}

# ifdef ENABLE_ZAP_DEAD_LOCALS
// Type used for stub generation for zap_dead_locals.
// No inputs or outputs
const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(0);
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);

  // create result type (range)
  fields = TypeTuple::fields(0);
  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);

  return TypeFunc::make(domain,range);
}
# endif


//-----------------------------------------------------------------------------
// Monitor Handling
const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);

  // create result type (range)
  fields = TypeTuple::fields(0);

  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);

  return TypeFunc::make(domain,range);
}


//-----------------------------------------------------------------------------
const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
  fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);

  // create result type (range)
  fields = TypeTuple::fields(0);

  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);

  return TypeFunc::make(domain,range);
}

const TypeFunc* OptoRuntime::flush_windows_Type() {
  // create input type (domain)
  const Type** fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = NULL; // void
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);

  // create result type
  fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = NULL; // void
  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);

  return TypeFunc::make(domain, range);
}

const TypeFunc* OptoRuntime::l2f_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = TypeLong::LONG;
  fields[TypeFunc::Parms+1] = Type::HALF;
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);

  // create result type (range)
  fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = Type::FLOAT;
  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);

  return TypeFunc::make(domain, range);
}

const TypeFunc* OptoRuntime::modf_Type() {
  const Type **fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = Type::FLOAT;
  fields[TypeFunc::Parms+1] = Type::FLOAT;
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);

  // create result type (range)
  fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = Type::FLOAT;

  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);

  return TypeFunc::make(domain, range);
}

const TypeFunc *OptoRuntime::Math_D_D_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(2);
  // symbolOop name of class to be loaded
  fields[TypeFunc::Parms+0] = Type::DOUBLE;
  fields[TypeFunc::Parms+1] = Type::HALF;
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);

  // create result type (range)
  fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = Type::DOUBLE;
  fields[TypeFunc::Parms+1] = Type::HALF;
  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);

  return TypeFunc::make(domain, range);
}

const TypeFunc* OptoRuntime::Math_DD_D_Type() {
  const Type **fields = TypeTuple::fields(4);
  fields[TypeFunc::Parms+0] = Type::DOUBLE;
  fields[TypeFunc::Parms+1] = Type::HALF;
  fields[TypeFunc::Parms+2] = Type::DOUBLE;
  fields[TypeFunc::Parms+3] = Type::HALF;
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);

  // create result type (range)
  fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = Type::DOUBLE;
  fields[TypeFunc::Parms+1] = Type::HALF;
  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);

  return TypeFunc::make(domain, range);
}

//-------------- currentTimeMillis

const TypeFunc* OptoRuntime::current_time_millis_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(0);
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);

  // create result type (range)
  fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = TypeLong::LONG;
  fields[TypeFunc::Parms+1] = Type::HALF;
  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);

  return TypeFunc::make(domain, range);
}

// arraycopy stub variations:
enum ArrayCopyType {
  ac_fast,                      // void(ptr, ptr, size_t)
  ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
  ac_slow,                      // void(ptr, int, ptr, int, int)
  ac_generic                    //  int(ptr, int, ptr, int, int)
};

static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
  // create input type (domain)
  int num_args      = (act == ac_fast ? 3 : 5);
  int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
  int argcnt = num_args;
  LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
  const Type** fields = TypeTuple::fields(argcnt);
  int argp = TypeFunc::Parms;
  fields[argp++] = TypePtr::NOTNULL;    // src
  if (num_size_args == 0) {
    fields[argp++] = TypeInt::INT;      // src_pos
  }
  fields[argp++] = TypePtr::NOTNULL;    // dest
  if (num_size_args == 0) {
    fields[argp++] = TypeInt::INT;      // dest_pos
    fields[argp++] = TypeInt::INT;      // length
  }
  while (num_size_args-- > 0) {
    fields[argp++] = TypeX_X;               // size in whatevers (size_t)
    LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
  }
  if (act == ac_checkcast) {
    fields[argp++] = TypePtr::NOTNULL;  // super_klass
  }
  assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
  const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);

  // create result type if needed
  int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
  fields = TypeTuple::fields(1);
  if (retcnt == 0)
    fields[TypeFunc::Parms+0] = NULL; // void
  else
    fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
  const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
  return TypeFunc::make(domain, range);
}

const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
  // This signature is simple:  Two base pointers and a size_t.
  return make_arraycopy_Type(ac_fast);
}

const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
  // An extension of fast_arraycopy_Type which adds type checking.
  return make_arraycopy_Type(ac_checkcast);
}

const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
  // This signature is exactly the same as System.arraycopy.
  // There are no intptr_t (int/long) arguments.
  return make_arraycopy_Type(ac_slow);
}

const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
  // This signature is like System.arraycopy, except that it returns status.
  return make_arraycopy_Type(ac_generic);
}


//------------- Interpreter state access for on stack replacement
const TypeFunc* OptoRuntime::osr_end_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);

  // create result type
  fields = TypeTuple::fields(1);
  // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
  fields[TypeFunc::Parms+0] = NULL; // void
  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
  return TypeFunc::make(domain, range);
}

//-------------- methodData update helpers

const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
  fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);

  // create result type
  fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = NULL; // void
  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
  return TypeFunc::make(domain,range);
}

JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
  if (receiver == NULL) return;
  klassOop receiver_klass = receiver->klass();

  intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
  int empty_row = -1;           // free row, if any is encountered

  // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
  for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
    // if (vc->receiver(row) == receiver_klass)
    int receiver_off = ReceiverTypeData::receiver_cell_index(row);
    intptr_t row_recv = *(mdp + receiver_off);
    if (row_recv == (intptr_t) receiver_klass) {
      // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
      int count_off = ReceiverTypeData::receiver_count_cell_index(row);
      *(mdp + count_off) += DataLayout::counter_increment;
      return;
    } else if (row_recv == 0) {
      // else if (vc->receiver(row) == NULL)
      empty_row = (int) row;
    }
  }

  if (empty_row != -1) {
    int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
    // vc->set_receiver(empty_row, receiver_klass);
    *(mdp + receiver_off) = (intptr_t) receiver_klass;
    // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
    int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
    *(mdp + count_off) = DataLayout::counter_increment;
  }
JRT_END

//-----------------------------------------------------------------------------
// implicit exception support.

static void report_null_exception_in_code_cache(address exception_pc) {
  ResourceMark rm;
  CodeBlob* n = CodeCache::find_blob(exception_pc);
  if (n != NULL) {
    tty->print_cr("#");
    tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
    tty->print_cr("#");
    tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);

    if (n->is_nmethod()) {
      methodOop method = ((nmethod*)n)->method();
      tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
      tty->print_cr("#");
      if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
        const char* title    = "HotSpot Runtime Error";
        const char* question = "Do you want to exclude compilation of this method in future runs?";
        if (os::message_box(title, question)) {
          CompilerOracle::append_comment_to_file("");
          CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
          CompilerOracle::append_comment_to_file("");
          CompilerOracle::append_exclude_to_file(method);
          tty->print_cr("#");
          tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
          tty->print_cr("#");
        }
      }
      fatal("Implicit null exception happened in compiled method");
    } else {
      n->print();
      fatal("Implicit null exception happened in generated stub");
    }
  }
  fatal("Implicit null exception at wrong place");
}


//-------------------------------------------------------------------------------------
// register policy

bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
  assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
  switch (register_save_policy[reg]) {
    case 'C': return false; //SOC
    case 'E': return true ; //SOE
    case 'N': return false; //NS
    case 'A': return false; //AS
  }
  ShouldNotReachHere();
  return false;
}

//-----------------------------------------------------------------------
// Exceptions
//

static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;

// The method is an entry that is always called by a C++ method not
// directly from compiled code. Compiled code will call the C++ method following.
// We can't allow async exception to be installed during  exception processing.
JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))

  // Do not confuse exception_oop with pending_exception. The exception_oop
  // is only used to pass arguments into the method. Not for general
  // exception handling.  DO NOT CHANGE IT to use pending_exception, since
  // the runtime stubs checks this on exit.
  assert(thread->exception_oop() != NULL, "exception oop is found");
  address handler_address = NULL;

  Handle exception(thread, thread->exception_oop());

  if (TraceExceptions) {
    trace_exception(exception(), thread->exception_pc(), "");
  }
  // for AbortVMOnException flag
  NOT_PRODUCT(Exceptions::debug_check_abort(exception));

  #ifdef ASSERT
    if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
      // should throw an exception here
      ShouldNotReachHere();
    }
  #endif


  // new exception handling: this method is entered only from adapters
  // exceptions from compiled java methods are handled in compiled code
  // using rethrow node

  address pc = thread->exception_pc();
  nm = CodeCache::find_nmethod(pc);
  assert(nm != NULL, "No NMethod found");
  if (nm->is_native_method()) {
    fatal("Native mathod should not have path to exception handling");
  } else {
    // we are switching to old paradigm: search for exception handler in caller_frame
    // instead in exception handler of caller_frame.sender()

    if (JvmtiExport::can_post_exceptions()) {
      // "Full-speed catching" is not necessary here,
      // since we're notifying the VM on every catch.
      // Force deoptimization and the rest of the lookup
      // will be fine.
      deoptimize_caller_frame(thread, true);
    }

    // Check the stack guard pages.  If enabled, look for handler in this frame;
    // otherwise, forcibly unwind the frame.
    //
    // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
    bool force_unwind = !thread->reguard_stack();
    bool deopting = false;
    if (nm->is_deopt_pc(pc)) {
      deopting = true;
      RegisterMap map(thread, false);
      frame deoptee = thread->last_frame().sender(&map);
      assert(deoptee.is_deoptimized_frame(), "must be deopted");
      // Adjust the pc back to the original throwing pc
      pc = deoptee.pc();
    }

    // If we are forcing an unwind because of stack overflow then deopt is
    // irrelevant sice we are throwing the frame away anyway.

    if (deopting && !force_unwind) {
      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
    } else {

      handler_address =
        force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);

      if (handler_address == NULL) {
        handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
        assert (handler_address != NULL, "must have compiled handler");
        // Update the exception cache only when the unwind was not forced.
        if (!force_unwind) {
          nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
        }
      } else {
        assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
      }
    }

    thread->set_exception_pc(pc);
    thread->set_exception_handler_pc(handler_address);
    thread->set_exception_stack_size(0);
  }

  // Restore correct return pc.  Was saved above.
  thread->set_exception_oop(exception());
  return handler_address;

JRT_END

// We are entering here from exception_blob
// If there is a compiled exception handler in this method, we will continue there;
// otherwise we will unwind the stack and continue at the caller of top frame method
// Note we enter without the usual JRT wrapper. We will call a helper routine that
// will do the normal VM entry. We do it this way so that we can see if the nmethod
// we looked up the handler for has been deoptimized in the meantime. If it has been
// we must not use the handler and instread return the deopt blob.
address OptoRuntime::handle_exception_C(JavaThread* thread) {
//
// We are in Java not VM and in debug mode we have a NoHandleMark
//
#ifndef PRODUCT
  SharedRuntime::_find_handler_ctr++;          // find exception handler
#endif
  debug_only(NoHandleMark __hm;)
  nmethod* nm = NULL;
  address handler_address = NULL;
  {
    // Enter the VM

    ResetNoHandleMark rnhm;
    handler_address = handle_exception_C_helper(thread, nm);
  }

  // Back in java: Use no oops, DON'T safepoint

  // Now check to see if the handler we are returning is in a now
  // deoptimized frame

  if (nm != NULL) {
    RegisterMap map(thread, false);
    frame caller = thread->last_frame().sender(&map);
#ifdef ASSERT
    assert(caller.is_compiled_frame(), "must be");
#endif // ASSERT
    if (caller.is_deoptimized_frame()) {
      handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
    }
  }
  return handler_address;
}

//------------------------------rethrow----------------------------------------
// We get here after compiled code has executed a 'RethrowNode'.  The callee
// is either throwing or rethrowing an exception.  The callee-save registers
// have been restored, synchronized objects have been unlocked and the callee
// stack frame has been removed.  The return address was passed in.
// Exception oop is passed as the 1st argument.  This routine is then called
// from the stub.  On exit, we know where to jump in the caller's code.
// After this C code exits, the stub will pop his frame and end in a jump
// (instead of a return).  We enter the caller's default handler.
//
// This must be JRT_LEAF:
//     - caller will not change its state as we cannot block on exit,
//       therefore raw_exception_handler_for_return_address is all it takes
//       to handle deoptimized blobs
//
// However, there needs to be a safepoint check in the middle!  So compiled
// safepoints are completely watertight.
//
// Thus, it cannot be a leaf since it contains the No_GC_Verifier.
//
// *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
//
address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
#ifndef PRODUCT
  SharedRuntime::_rethrow_ctr++;               // count rethrows
#endif
  assert (exception != NULL, "should have thrown a NULLPointerException");
#ifdef ASSERT
  if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
    // should throw an exception here
    ShouldNotReachHere();
  }
#endif

  thread->set_vm_result(exception);
  // Frame not compiled (handles deoptimization blob)
  return SharedRuntime::raw_exception_handler_for_return_address(ret_pc);
}


const TypeFunc *OptoRuntime::rethrow_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);

  // create result type (range)
  fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);

  return TypeFunc::make(domain, range);
}


void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  // Deoptimize frame
  if (doit) {
    // Called from within the owner thread, so no need for safepoint
    RegisterMap reg_map(thread);
    frame stub_frame = thread->last_frame();
    assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
    frame caller_frame = stub_frame.sender(&reg_map);

    VM_DeoptimizeFrame deopt(thread, caller_frame.id());
    VMThread::execute(&deopt);
  }
}


const TypeFunc *OptoRuntime::register_finalizer_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(1);
  fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  // // The JavaThread* is passed to each routine as the last argument
  // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);

  // create result type (range)
  fields = TypeTuple::fields(0);

  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);

  return TypeFunc::make(domain,range);
}


//-----------------------------------------------------------------------------
// Dtrace support.  entry and exit probes have the same signature
const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // methodOop;    Method we are entering
  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);

  // create result type (range)
  fields = TypeTuple::fields(0);

  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);

  return TypeFunc::make(domain,range);
}

const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  // create input type (domain)
  const Type **fields = TypeTuple::fields(2);
  fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object

  const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);

  // create result type (range)
  fields = TypeTuple::fields(0);

  const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);

  return TypeFunc::make(domain,range);
}


JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  assert(obj->is_oop(), "must be a valid oop");
  assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
  instanceKlass::register_finalizer(instanceOop(obj), CHECK);
JRT_END

//-----------------------------------------------------------------------------

NamedCounter * volatile OptoRuntime::_named_counters = NULL;

//
// dump the collected NamedCounters.
//
void OptoRuntime::print_named_counters() {
  int total_lock_count = 0;
  int eliminated_lock_count = 0;

  NamedCounter* c = _named_counters;
  while (c) {
    if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
      int count = c->count();
      if (count > 0) {
        bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
        if (Verbose) {
          tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
        }
        total_lock_count += count;
        if (eliminated) {
          eliminated_lock_count += count;
        }
      }
    } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
      BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
      if (blc->nonzero()) {
        tty->print_cr("%s", c->name());
        blc->print_on(tty);
      }
    }
    c = c->next();
  }
  if (total_lock_count > 0) {
    tty->print_cr("dynamic locks: %d", total_lock_count);
    if (eliminated_lock_count) {
      tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
                    (int)(eliminated_lock_count * 100.0 / total_lock_count));
    }
  }
}

//
//  Allocate a new NamedCounter.  The JVMState is used to generate the
//  name which consists of method@line for the inlining tree.
//

NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  int max_depth = youngest_jvms->depth();

  // Visit scopes from youngest to oldest.
  bool first = true;
  stringStream st;
  for (int depth = max_depth; depth >= 1; depth--) {
    JVMState* jvms = youngest_jvms->of_depth(depth);
    ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
    if (!first) {
      st.print(" ");
    } else {
      first = false;
    }
    int bci = jvms->bci();
    if (bci < 0) bci = 0;
    st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
    // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  }
  NamedCounter* c;
  if (tag == NamedCounter::BiasedLockingCounter) {
    c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  } else {
    c = new NamedCounter(strdup(st.as_string()), tag);
  }

  // atomically add the new counter to the head of the list.  We only
  // add counters so this is safe.
  NamedCounter* head;
  do {
    head = _named_counters;
    c->set_next(head);
  } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  return c;
}

//-----------------------------------------------------------------------------
// Non-product code
#ifndef PRODUCT

int trace_exception_counter = 0;
static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  ttyLocker ttyl;
  trace_exception_counter++;
  tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  exception_oop->print_value();
  tty->print(" in ");
  CodeBlob* blob = CodeCache::find_blob(exception_pc);
  if (blob->is_nmethod()) {
    ((nmethod*)blob)->method()->print_value();
  } else if (blob->is_runtime_stub()) {
    tty->print("<runtime-stub>");
  } else {
    tty->print("<unknown>");
  }
  tty->print(" at " INTPTR_FORMAT,  exception_pc);
  tty->print_cr("]");
}

#endif  // PRODUCT


# ifdef ENABLE_ZAP_DEAD_LOCALS
// Called from call sites in compiled code with oop maps (actually safepoints)
// Zaps dead locals in first java frame.
// Is entry because may need to lock to generate oop maps
// Currently, only used for compiler frames, but someday may be used
// for interpreter frames, too.

int OptoRuntime::ZapDeadCompiledLocals_count = 0;

// avoid pointers to member funcs with these helpers
static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
static bool is_native_frame(frame* f) { return f->is_native_frame(); }


void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
                                                bool (*is_this_the_right_frame_to_zap)(frame*)) {
  assert(JavaThread::current() == thread, "is this needed?");

  if ( !ZapDeadCompiledLocals )  return;

  bool skip = false;

       if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
    warning("starting zapping after skipping");

       if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
    warning("about to zap last zap");

  ++ZapDeadCompiledLocals_count; // counts skipped zaps, too

  if ( skip )  return;

  // find java frame and zap it

  for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
    if (is_this_the_right_frame_to_zap(sfs.current()) ) {
      sfs.current()->zap_dead_locals(thread, sfs.register_map());
      return;
    }
  }
  warning("no frame found to zap in zap_dead_Java_locals_C");
}

JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  zap_dead_java_or_native_locals(thread, is_java_frame);
JRT_END

// The following does not work because for one thing, the
// thread state is wrong; it expects java, but it is native.
T
twisti 已提交
1199
// Also, the invariants in a native stub are different and
D
duke 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208
// I'm not sure it is safe to have a MachCalRuntimeDirectNode
// in there.
// So for now, we do not zap in native stubs.

JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  zap_dead_java_or_native_locals(thread, is_native_frame);
JRT_END

# endif